A plug connector for media lines that includes a plug part having a plug shaft, which can be inserted into a receiving part and is releasably locked therein. The plug part has at least two spring elastic latching arms that extend in the insertion direction. The latching arms have radially inwardly projecting catch cams at their free ends for engaging behind a latching step of the receiving part. The latching arms can be spread radially by a release element to release the plug part. The latching arms are radially spread by displacing the release element. The release element has axially extending release arms, which extend to the area of the catch cams, located radially between the latching arms and the plug shaft. The actuating sections are arranged in such a way for spreading the latching arms to release the catch cams.
|
1. A plug connector for media lines, comprising a plug part having a plug shaft, which can be inserted in a plug opening of a receiving part and releasably locked via locking means, wherein the plug part has at least two spring elastic latching arms as the locking means, which extend in the insertion direction at a radial distance with respect to the plug shaft and have radially inwardly projecting catch cams at their free ends for lockingly engaging behind a latching step of the receiving part, wherein the latching arms can be spread radially outwardly by means of a release element in order to release the locking of the plug part, the release element is axially displaceably arranged on the plug part and interacts in such a way with the latching arms that the latching arms are radially spread apart by displacing the release element in that the release element acts radially from inside with a spreading force (F) provided by actuating sections against the latching arms via angular faces, the release element has axially extending release arms, which extend at least up to the area of the catch cams, in the area located radially between the latching arms and the plug shaft, wherein the actuating sections with the angular faces are arranged in such a way that the latching arms are acted upon with the spreading force (F) to release the catch cams from the receiving part.
2. The plug connector according to
3. The plug connector according to
4. The plug connector according to
5. The plug connector according to
6. The plug connector according to
7. The plug connector according to
8. The plug connector according
9. The plug connector according to
10. The plug connector according to
11. The plug connector according to
12. The plug connector according to of
13. The plug connector according to
14. The plug connector according to
15. The plug connector according to
16. The plug connector according to
17. The plug connector according to
18. The plug connector according to
19. The plug connector according to
20. The plug connector according to
|
1. Field of the Invention
The present invention relates to a plug connector for media lines (hose lines or pipelines for any desired pneumatic or hydraulic flow and/or pressurized media, such as gases or liquids) having releasable latch arms.
2. Related Technology
A plug connector is described in the publication EP 0 691 501 A1 (B2). In this known plug connector, the release element is radially latched from one side onto the plug part as spring elastic clamp-like clip element in such a way that the actuating sections with the angular faces for spreading the latching arms are located approximately in the central section of the latching arms between the catch cams and the side connected to the plug part. The release element must be grasped from the side, that is, from radial direction, in order to manually displace it, for which purpose it is provided with recessed grips on the outside. This embodiment does not result in optimal conditions for the introduction of the radial spreading force due to short operative lever arms. A large lateral free space is additionally necessary at the respective installation location in order to be able to manually grasp the release element. The known plug connector finally features an overall large design as a result of the special arrangement of the entire release element between the plug part and the latching arms.
The objective of the invention is to create a plug connector of the described kind, which ensures improved usage properties, in particular with regard to handling and introduction of the spreading force during release, with a compact design.
Thus, according to the invention, the release element has release arms, which extend in axial direction within the radial area located between the latching arms and the plug shaft at least up to the area of the catch cams, wherein the actuating sections with the angular faces are arranged on the release arms for the purpose of spreading the latching arms in such a way that the latching arms are acted on for release with the spreading force in the direct vicinity of the catch cams. Thus, according to the invention, the location at which the radial spreading force is axially introduced into the free end area of the latching arms is thus relocated, so that a more advantageous ratio exists between lever arm and force.
In another preferred embodiment, the catch cam of each latching arm is provided with a central interruption, through which the respective release arm passes, wherein the actuating sections with the angular faces act against the latching arms in the area of the interruptions of the catch cams. Each latching arm is also suitably provided herein with a corresponding counter angular face, which acts against the angular face of the corresponding release arm in the area of the catch cam interruptions.
Each latching arm can additionally be provided on its inner side that faces toward the plug shaft with an axial, channel-like guide recess for the respective release arm of the release element. This guide recess migrates continuously into the interruption of the respective catch cam. As a result of this advantageous configuration, each release arm runs in radial direction into the respective guide recess in some sections, which also leads to a reduction of the radial dimensions and consequently to the altogether sought compact design of the plug connector.
It is furthermore advantageous if the release arms, which run parallel with respect to each other, are integrally connected via a grasping section in the area of the plug part located outside of the area axially opposite to the latching arms of the catch cams. For this purpose, each latching arm is provided with a feed through opening for the respective release arm of the release element in a base section integrally connected to the plug part and located axially opposite to the free end having the catch cam. The grasping section is accordingly advantageously arranged on the side axially opposite to the plug shaft, so that it can be easily grasped even in tight installation situations, and namely manually, for example, with the thumb and pointer finger or, however, by means of a suitable (commercially available) tool (for example, long nose pliers).
An advantageously slender design is attained with this embodiment according to the invention, wherein the axial displacement path of the release element can be selected to be as large as desired, because there is no restriction, such as possibly due to the length of the latching arms.
The handling of the plug connector according to the invention is easy and comfortable. The plug part can be grasped quite easily in the area of the release element and released from a locked position in which it is inserted in a receiving part and locked in position against unintentional release, and the unlocking takes place initially by pulling with a specific unlocking force in axial direction, while displacing the release element and in this way spreading the latching arms. The plug part is then released from the receiving part, that is, the plug shaft is extracted from the plug opening by means of a continuous pulling in the same direction with an extraction force, because the release element according to the invention reaches advantageously a specific displaced position at a pull end stop, so that the pulling or extraction force exerted on the release element is transferred to the entire plug part, whereby the plug part can be pulled out with its plug shaft, because the latching arms are in their spread release position in this pull end stop position, so that the catch is exposed and released. The release element can moreover be grasped for insertion in the area of its grasping section and the entire plug part can thus be inserted, because the release element is preferably also limited in its axial displacement movement in insertion direction of the plug part by means of a pressure end stop, and namely in a specific relative position, in which the latching arms are in an initial position in which they are not spread and are ready for locking the catch cams.
The invention will be described in further detail in the following with the aid of the drawings and the preferred exemplary embodiments represented therein. In the drawings:
The same parts are always provided with the same reference signs in the different figures of the drawings and are therefore as a rule only described once.
The plug connector 1 according to the invention includes a plug part 2 with a plug shaft 4. The plug shaft 4 can be inserted into a plug opening 6 of a receiving part 8 in direction toward a longitudinal axis X of the connector, and the plug part 2 can be releasably locked in this inserted position of the plug shaft 4 via locking means, that is, the plug connection is locked (secured) against unintentional release, but the locking can be reversed (unlocked), if needed, in order to release the plug connection. A peripheral seal 10, which is preferably arranged in an outer annular groove on the plug shaft 4, is provided in order to seal the plug connection.
The plug part 2 serves for connecting (at least) one media line (hose line or pipeline), which is not represented, to the receiving part 8. For this reason, the plug part 2 consists of a connecting section, which migrates on one side into the plug shaft 4 and has at least one line connection 12 especially in the form of a so-called connecting pin on the other side. However, the line connection 12 can also be alternatively configured analogously to the receiving part 8 with a corresponding plug opening 6 and an embodiment that will be described in more detail in the following (cf. in particular the reference signs 20, 22), so that the plug connector 1 forms, for example, an angular adapter. In the embodiment according to
The plug part 2 has preferably two mutually diametrically opposite lying spring elastic latching arms 16 as locking means, which extend in the plugging direction respectively at a radial distance with respect to the plug shaft 4 and have radially inwardly projecting catch cams 18 at their free ends for the purpose of locking the plug part 2 with the receiving part 8 in the inserted condition of the plug shaft 4. In the inserted state—see in particular
The release element 24 is provided according to the invention with release arms 32, which extend in axial direction in the radial region between the latching arms 16 and the plug shaft 4 at least up to the area of the catch cams 18. The already mentioned actuating sections 28 with the angular faces 30 are to be arranged in such a way on the release arms 32 for spreading the latching arms 16 that the latching arms 16 can be acted upon with the spreading force F for the release in the area of the catch cams 18. Reference is especially made for this purpose to the sectional views shown in
As can be seen best in
Each latching arm 16 is also suitably provided in this area with a corresponding counter angular face (see in this connection also in particular the representation of
In another advantageous embodiment—see in this connection in particular
To ensure that the release arms 32 can bring about the spreading force F for the latching arms 16 via the angular faces 30 with a movement in arrow direction 26, they must be radially inwardly supported. For this purpose, the release arms 32 are provided with radially inner support surfaces 38 for radially inward support by means of the abutment against the plug part 2 and/or on the receiving part 8 during the spreading procedure of the latching arms 16. In the embodiment according to
In another preferred embodiment, each latching arm 16 is integrally connected via a base section 40 to the plug part 2 in its area axially opposite to the catch cam 18. In the area of each base section 40 is now formed a window-like through opening 42 for the respective release arm 32 of the release element 24. In this way, the release arms 32 that run parallel with respect to each other can be connected as one piece via a grasping section 44 in the area of the plug part 2 that is axially opposite to the catch cams 18 on the outside of the latching arms 16.
In a first embodiment according to
The U-shaped embodiment of the release element 24 is especially suitable for the angular connector according to
In the case of the through connector represented in
A release element similar to the one in the embodiment according to
The release element 24 can also be produced together with the plug part 2 with the method of so-called assembly injection molding. For this purpose, the plug part 2 is preferably made from a first material in a first step, preferably PA, and the release element 24 is injection molded from a second material in a second step. This second material, for example, PP, PE, POM, has a lower melting temperature than that of the first material of the plug part 2, and therefore an integral connection to the first material of the plug part 2 does is not formed. The production process is qualitatively improved in this way, since the assembly is simplified and the logistics expenditure is reduced.
As is furthermore shown in the figures of the drawing, each release arm 32 of the release element 24 has a guide section 50 having radial inner and outer angular faces 52, 54, which extend beyond the free end of the respective latching arm 16 and over the catch cam 18. The outer angular faces 52 serve herein as insertion chamfers during the assembly of the release element 24, that is, during the insertion of the release arms 32 through the through openings 42 of the base section 40 of the latching arms 16. Through the inner angular faces 54 it is ensured that the release arms 32 cannot impede the insertion procedure, but that they are guided via the angular faces 54 with their support surfaces 38 for support on the peripheral contour, in particular the annular web 22, of the receiving part 8.
In order to be able to utilize the release element 24 via its grasping section 44 also for handling during the insertion and release of the entire plug part 2, it is provided in another advantageous embodiment that the release element 24 is limited in its axial displacement movement in release direction of the plug part (arrow 26) by means of a pull end stop 56, and namely in a relative position in which the latching arms 16 are in a spread release position. In a preferred embodiment according to
The release element 24 is furthermore limited in its axial displacement movement also in insertion direction of the plug part (arrows 60) by means of a pressure end stop 62, and namely in a relative position in which the latching arms 16 are in an initial position in which they are not spread and are ready for spring elastic locking. In the configuration according to
In the represented exemplary embodiments, the receiving part 8 is configured as connection adapter 66, wherein this adapter 66 has initially a hexagon head 68 preferably adjacent to the outlet side of the plug opening 6, and adjacent thereto the latching step 20 as well as a screwing section 70 opposite to the plug opening 6. Instead of the hexagonal head 68 can also be provided any other desired outer force engagement for a rotary tool. This configuration facilitates the assembly of the adapter 66, since the screwing can be carried out by means of a conventional socket wrench. The screwing section 70 is configured as a threaded bushing with outer thread. This arrangement leads to an advantageous optimization of the installation space, since the hexagonal head 68 is covered by the plug part 2 and thus reduces the height of the installation space of the plug connector 1.
The plug part 2 together with the latching arms 16 is suitably formed as an integral piece of molded plastic with the latching arms 16. The same applies also for the release element 24 with its release arms 32.
In another advantageous embodiment, a rifling or similar contour is preferably provided on both sides of the area of the grasping section 44 of the release element 24 in order to obtain an improved “grip” for manual assembly. The release element 24 can also have an opening to make possible the use of a suitable auxiliary tool during assembly and disassembly.
In a deviation from the previously described exemplary embodiments, in which two latching arms 16 and correspondingly also two release arms 32 are provided, the plug connector 1 according to the invention can also have more than two latching arms 16 with a corresponding number of release arms 32.
The invention is not limited to the represented and described exemplary embodiments, but also comprises all of the similarly functioning embodiments in the sense of the invention. It is expressly emphasized that the exemplary embodiments are not limited to all of the features in combination, but rather each individual partial feature detached from all other partial features also has inventive importance per se. The invention is furthermore also not limited to the feature combination defined in the independent claim, but can also be defined by any other desired combination of specific features of all overall disclosed individual features. This means that basically practically each individual feature of the independent claim can be omitted or replaced by means of at least one individual feature disclosed in another location of the application. The claims are merely to be understood as a first formulation attempt of an invention.
Lechner, Martin, Zenses, Frank, Rosowski, Evelin
Patent | Priority | Assignee | Title |
10167983, | Oct 27 2015 | Ford Global Technologies, LLC | Quick connect with visual indicator |
10240701, | Feb 02 2017 | Caterpillar Inc. | Hose coupler for transferring fluids from a machine |
11498087, | Jun 28 2019 | MEDMIX SWITZERLAND AG | Connecting device |
9080705, | Jun 15 2010 | NIFCO INC | Connector |
9429261, | May 16 2012 | Voss Automotive GmbH | Plug connection for fluid lines and retaining part for such a plug connection |
Patent | Priority | Assignee | Title |
1966718, | |||
2899215, | |||
4108475, | Dec 21 1973 | Coupling device | |
4875711, | Apr 25 1988 | Usui Kokusai Sangyo Kaisha Ltd. | Slender tube connector |
5131687, | May 29 1989 | Autobrevets | Device for making a sealed connection between a tube and a flexible hose |
5799986, | Dec 21 1994 | FLEX TECHNOLOGIES, INC | Connector assembly and method of manufacture |
6505866, | Aug 07 2000 | Tokyo Gas Co., Ltd.; Nikko Kogyo Kabushiki Kaisha | Pipe joint |
7044506, | Aug 07 2003 | XIAMEN LOTA INTERNATIONAL CO., LTD. | Quick connector assembly |
7284774, | Jan 29 2004 | NORMA GERMANY GBMH | Plug-in coupling for connecting a fluid line to a pipe |
7658420, | Jul 13 2006 | Parker Intangibles, LLC | Quick-connect fitting with unlocking ring |
7770938, | Mar 25 2006 | NORMA GERMANY GMBH | Quick coupling |
7850210, | Aug 14 2002 | Voss Automotive GmbH | Plug-in coupling for fluid systems |
7874595, | Oct 10 2005 | Voss Automotive GmbH | Plug-in connector for medium conduits |
8146956, | Apr 07 2008 | A RAYMOND ET CIE | Coupling for a connector for fluid pipes with a metal wire spring |
8205912, | Jul 11 2007 | A RAYMOND ET CIE | Fluid line coupling |
940678, | |||
DE102005011777, | |||
DE202005015966, | |||
EP691501, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 03 2010 | Voss Automotive GmbH | (assignment on the face of the patent) | / | |||
Aug 27 2012 | ZENSES, FRANK | Voss Automotive GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029141 | /0218 | |
Aug 27 2012 | ROSOWSKI, EVELIN | Voss Automotive GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029141 | /0218 | |
Aug 29 2012 | LECHNER, MARTIN | Voss Automotive GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029141 | /0218 |
Date | Maintenance Fee Events |
Oct 16 2017 | REM: Maintenance Fee Reminder Mailed. |
Apr 02 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 04 2017 | 4 years fee payment window open |
Sep 04 2017 | 6 months grace period start (w surcharge) |
Mar 04 2018 | patent expiry (for year 4) |
Mar 04 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 04 2021 | 8 years fee payment window open |
Sep 04 2021 | 6 months grace period start (w surcharge) |
Mar 04 2022 | patent expiry (for year 8) |
Mar 04 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 04 2025 | 12 years fee payment window open |
Sep 04 2025 | 6 months grace period start (w surcharge) |
Mar 04 2026 | patent expiry (for year 12) |
Mar 04 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |