Embodiments of a pendant associated with a multi-process welding power supply that allows a user to switch processes and reverse an output polarity while located remotely from a power supply unit are provided. Certain embodiments include a pendant with a wire spool and wire feeder drive circuitry that is configured to activate spooling during MIG welding. control circuitry that may include processing circuitry and memory is provided. The control system may disable redundant controls on the power supply unit user interface when the power supply unit is connected to the pendant via a supply cable. Additionally, the control system may set the process, set the polarity, enable or disable a wire feed, and enable or disable gas flow according to inputs received via a user interface on either the power supply unit or the pendant.
|
16. A pendant remotely located from a power supply unit, comprising:
a user interface comprising one or more control devices that enable a user to enable the output of power from the power supply unit at a first polarity or a second polarity opposite from the first polarity, or to set the welding process; and
a control circuitry configured to enable the reversible output of the power supply unit at the first polarity or at the second polarity depending on the welding process set by the user via the user interface or via a second user interface located on the power supply unit and having one or more additional control devices.
7. A pendant remotely located from a power supply unit, comprising:
a user interface comprising one or more control devices that enable a user to enable the output of power from the remotely located power supply unit at a first polarity or at a second polarity opposite from the first polarity, or to set the welding process;
at least one reversible output that may be enabled at the first polarity or reversed to the second polarity; and
a control circuitry configured to enable the reversible output at the first polarity or at the second polarity depending on the welding process set by the user via the user interface or via a second user interface located on the power supply unit and having one or more additional control devices.
12. A remotely controlled welding system comprising:
a power supply unit comprising a first user interface comprising one or more control devices that enable a user to enable a reversible output of power from the power supply unit at either a first polarity or a second polarity opposite from the first polarity, or to set a welding process;
a pendant located remotely with respect to the power supply unit and comprising:
a second user interface comprising one or more additional control devices that enable the user to enable the reversible output of power from the power supply unit at the first polarity or the second polarity, or to set the welding process; and
a control circuitry configured to enable the reversible output of the power supply unit at the first polarity or at the second polarity depending on the welding process set by the user via the first user interface or the second user interface; and
a supply cable that communicatively couples the power supply unit to the pendant.
1. A remotely controlled welding system comprising:
a power supply unit comprising a first user interface comprising one or more control devices that enable a user to enable output of power from the power supply unit at either a first polarity or a second polarity opposite from the first polarity, or to set a welding process;
a pendant located remotely with respect to the power supply unit and comprising:
a second user interface comprising one or more additional control devices that enable the user to enable the output of power from the power supply unit at the first polarity or the second polarity, or to set the welding process;
at least one reversible output that may be enabled at the first polarity or reversed to the second polarity; and
a control circuitry configured to enable the reversible output at the first polarity or at the second polarity depending on the welding process set by the user via the first user interface or the second user interface; and
a supply cable that communicatively couples the power supply unit to the pendant.
2. The remotely controlled welding system of
3. The remotely controlled welding system of
4. The remotely controlled welding system of
6. The remotely controlled welding system of
9. The pendant of
10. The pendant of
13. The remotely controlled welding system of
14. The remotely controlled welding system of
15. The remotely controlled welding system of
19. The pendant of
20. The pendant of
|
This application is a continuation of application Ser. No. 12/553,796, filed Sep. 3, 2009, entitled “Remote Welding System and Method,” in the name of James Francis Rappl et al.
The invention relates generally to welding systems, and more particularly to a pendant located remotely from a multi-process welding power source.
Traditional single process welding systems support a variety of processes, such as metal inert gas (MIG) welding, tungsten inert gas (TIG) welding, stick welding, and so forth, which may operate in different modes, such as constant current or constant voltage. Such welding systems typically include a single output connection and, therefore, are configured to support a single process at a time. In contrast to these single process welding systems, multi-process welding systems may connect to and support multiple processes at the same time. While single process welding systems only need to support a single output polarity, multi-process welding systems require two different polarities, including industry standard direct current electrode positive (DCEP) and direct current electrode negative (DCEN).
Certain multi-process welding applications, such as coal-fired boiler repair, shipyard work, and so forth, may include large distances between a workpiece and the multi-process welding power source. In such applications, switching between DCEP and DCEN processes traditionally requires a manual adjustment to a knob or switch proximate to the welding power source, and even connection of entirely different welding cables to the source, particularly when the welder uses stick or MIG processes for some of the work, and a TIG process for other work, typically finer or more intricate tasks. Accordingly, the location of power terminals (e.g., plugs) and controls on or proximate to the welding power source may require the user to stop welding and return to the power source to change the polarity. In many applications, this may entail walking back considerable distances, through sometimes complex and intricate work environments. Therefore, substantial amounts of time and effort may be required to change polarity in multi-process welding applications. Such arrangements also may result in long runs of heavy secondary weld cables and gas conduits, making movement difficult, and requiring careful tracking of which cable corresponds to which process. While some time loss can be avoided by stationing a person at the power source dedicated to making needed adjustments, this adds considerably to the cost of the operations.
Accordingly, there exists a need for more convenient systems and methods for switching output polarity in multi-process welding systems, particularly in environments where the welding operation is carried on at a considerable distance from the welding power source.
The present invention provides solutions for such welding applications. In accordance with certain embodiments, a pendant or remote access device is associated with a multi-process welding power supply to allow a user to switch processes and reverse an output polarity while located remotely from a power supply unit. The disclosed embodiments may include a pendant with a wire spool and wire feeder drive circuitry that is configured to activate spooling during MIG welding. In some embodiments, gas valves may be located in the pendant and may receive one or more gas inputs from gas cylinders remotely located with respect to the pendant (e.g., near the power supply). Control circuitry that may include processing circuitry and memory is provided. The control system may disable redundant controls on the power supply unit user interface when the power supply unit is connected to the pendant via a supply cable. Additionally, the control system may set the process, set the polarity, enable or disable a wire feed, and enable or disable gas flow according to inputs received via a user interface on either the power supply unit or the pendant.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
As discussed in further detail below, various embodiments of a pendant associated with a multi-process welding power supply are provided to allow a user to switch processes and reverse an output polarity while located remotely from a power supply unit. In general, as used herein the term “pendant” refers to a welding power access and/or control device that is designed to be coupled to a welding power supply to provide power to at least two different welding processes at a remote welding location. The pendant may be configured to lock out redundant controls on the welding power supply when controls on the pendant are enabled, and able to reverse a polarity output at outlets located on a user interface. Moreover, the pendant may include or be included in a wire feeder. It may be designed to permit remote switching between constant current, constant voltage, and regulated metal deposition (i.e., a hybrid between constant current and constant voltage) outputs. It may also be capable of switching between one or more types of gas, and so forth. The disclosed embodiments include a pendant with a wire spool and wire feeder drive circuitry that is configured to activate spooling during MIG welding. In some embodiments, gas valves may be located in the pendant and may receive one or more gas inputs from gas cylinders remotely located with respect to the pendant.
Control circuitry that may include processing circuitry and memory is provided, as also discussed below. The memory may include volatile or non-volatile memory, such as read only memory (ROM), random access memory (RAM), magnetic storage memory, optical storage memory, or a combination thereof. Furthermore, a variety of control parameters may be stored in the memory along with code configured to provide a specific output (e.g., initiate wire feed, enable gas flow, etc.) to the pendant during operation. As discussed below, the control system may disable redundant controls on the power supply unit user interface when the power supply unit is connected to the pendant via a supply cable. Additionally, the control system may set the process (e.g., set constant current, constant voltage, or regulated metal deposition), set the polarity (e.g., set DCEN or DCEP), enable or disable a wire feed, and enable or disable gas flow according to inputs received via a user interface on either the power supply unit or the pendant.
Turning now to the drawings,
The power supply 12 also includes control circuitry 18 that is configured to receive and process a plurality of inputs regarding the performance and demands of the system 10. The control circuitry 18 includes processing circuitry 20 and memory 22. As mentioned above, the memory 22 may include volatile or non-volatile memory, such as ROM, RAM, magnetic storage memory, optical storage memory, or a combination thereof. Furthermore, a variety of control parameters may be stored in the memory 22 along with code configured to provide a specific output (e.g., initiate wire feed, enable gas flow, etc.) during operation. The processing circuitry 20 may also receive an input from a user interface 24 located on the power supply 12, through which the user may choose a process, and input desired parameters (e.g., voltages, currents, particular pulsed or non-pulsed welding regimes, and so forth).
The power supply 12 may also include one or more gas tanks 26, 28. The gas tanks 26 and 28 may supply shielding gases, such as argon, helium, carbon dioxide, and so forth, via hoses 30 and 32, respectively. In the embodiment illustrated in
A lead cable 44 terminating in a clamp 46 couples the power conversion circuitry 16 to the workpiece 40 and closes the circuit between the power source 12, the workpiece 40, and a welding device (e.g., MIG torch, TIG torch, stick electrode, etc.). In a presently contemplated embodiment, the plurality of conduits 38 includes the gas conduit 36, a data conduit 48, and a power conduit 50. The power conduit 50 transfers the output of the power conversion circuitry 16 to the pendant 42 to power the welding process during operation. The data conduit 48 bidirectionally communicatively couples the pendant 42 to the control circuitry 18 in the power supply 12. That is, data conduit 48 may transmit information both from the pendant 42 to the power supply 12 and from the power supply 12 to the pendant 42.
In the illustrated embodiment, the pendant 42 includes a user interface 52, through which a user may choose a process (e.g., MIG, TIG, stick, etc.), control the voltage, control the current, and so forth, while remotely located with respect to the power supply unit 12. The user interface 52 may also allow the user to electrically isolate welding devices (e.g., MIG torch, TIG torch, etc.) when not in use. For instance, if the user switches from a MIG welding process to a TIG welding process, the pendant 42 may allow the user to keep both the MIG torch and the TIG torch connected to outlets located on the pendant 42 (e.g., without the need to unplug conductors and a gas conduit for one and plug in conductors and a gas conduit for the other). However, a switch located on the user interface 52 may allow the user to electrically isolate the MIG torch such that only the TIG torch is active or “hot” during the weld.
In addition to the user interface 52, the pendant 42 also may include processing circuitry 54 that receives inputs from the power supply 12 and the user interface 52, processes the inputs, and generates output data that may be communicated back to the power supply 12. The pendant 42 in the illustrated embodiment includes two output connections 56 and 58, which may be coupled to welding devices that require either a DCEN or a DCEP process. For instance, a TIG torch may be connected to the first output connection 56 and a stick welding stinger may be connected to the second output connection 58. Alternatively, the stick welding stinger may be connected to the first output connection 56 and the TIG torch may be connected to the second output connection 58. That is, the output terminals on the pendant 42 may be interchangeable between devices requiring DCEN or DCEP processes since the pendant 42 is configured to reverse the polarity of the outputs to the output connections 56 and 58 depending upon the active or selected process.
In certain embodiments, the pendant 42 may be located in close proximity to the welding operation but distant from the power supply 12. For instance, coal-fired boiler welding applications, shipyard applications, construction sites, and so forth often require a welding operator to be located distant from the power supply 12. Since the pendant 42 may be located close to the weld, the current system 10 may have the effect of reducing the amount of time and effort that the welding operator traditionally spends returning from the site of the weld to the power supply in instances when the polarity of the welding process must be reversed, adjustments must be made to the process settings, or process cables must be changed. Such instances may include demands that give rise to the need to switch between MIG, TIG, and stick welding processes.
In the embodiment illustrated in
In the embodiments illustrated in
The user may turn the knob 72 such that the remote panel 84 and the remote icon 85 are illuminated. In such instances, controls on the power supply 12 which are redundant with those on the user interface 52 of the pendant 42 are disabled. Additionally, in one embodiment, when a supply cable connecting the power supply 12 to the pendant 42 is detected, the power supply unit 12 automatically selects the remote process position and the remote panel icon 85 illuminates. Further control over process selection can then only be accomplished via controls located on the pendant 42. That is, detection of communication between the power supply 12 and the pendant 42 locks out controls on the power supply 12 and relegates control to the pendant 42 in use. When the pendant 42 is detected, the user may depress a setup button 86, which allows the power supply unit 12 to display process settings. However, the knob 72 remains deactivated, prohibiting the user from changing the displayed process settings. The foregoing features, among others, may have the effect of reducing accidental setting changes made by non-operators while the user is performing a welding operation in a location remotely located with respect to the power supply unit 12. Alternatively, enabling the pendant controls and disabling the power supply controls may be manual.
In the illustrated embodiment, the selection panel 73 includes a variety of sub-panels corresponding to a variety of welding processes and a sub-panel corresponding to a remote operation mode. However, it should be noted that in other embodiments, the selection panel 73 may include more or fewer sub-panels that correspond to different processes or modes. For instance, in one embodiment, the remote panel 84 may be eliminated. That is, in certain embodiments, the system may be intelligently designed such that the remote panel 84 is not necessary for operation of the device.
During operation, after setting the welding process via knob 72, the user may utilize the setup button 86 in conjunction with panels 94 and 100 and knob 74 to set parameters associated with the chosen weld process. For instance, in one embodiment, the user may first position the knob 72 to select the MIG panel 82, which will cause the MIG indicator 83 to illuminate. The user may then press the setup button 86, which will cause the control indicator 106 to illuminate. Pressing the setup button again will cause the wire type indicator 108 to illuminate. Panel 94 may then display the default diameter of the welding wire, and panel 100 may display the default type of welding wire. The user may use knob 74 to adjust the wire diameter and wire type. As the user turns knob 74, the panels 94 and 100 display the chosen wire diameter and wire type. The user may then press the setup button 86 again, which will cause the gas type indicator 110 to illuminate. The user may then use knob 74 to adjust the type of gas desired for the given application. As the user turns knob 74, the chosen gas is displayed on panels 94 and 100. In this way, the user may utilize the user interface 24 to set both the welding process and the parameters associated with the chosen process.
The user interface 24 on the power supply unit 12 also includes an output indicator panel 88, which visually indicates the active status of the power supply unit 12 to the user during operation. A volt indicator 90 and an arc length indicator 92 cooperate with a left display panel 94 to communicate the volts and arc length of the welding operation, respectively, to the user. Similarly, an amp indicator 96 and a setup indicator 98 cooperate with a right display panel 100 to communicate the amps and setup of the welding operation, respectively, to the user. A DCEP indicator 102 and a DCEN indicator 104 communicate the polarity of the welding process to the user via LEDs located behind the user interface 24. An arc control indicator 106, a wire type indicator 108, and a gas type indicator 110 communicate process details to the user.
In the illustrated embodiment, a bottom panel 112 of the power supply unit 12 may include an output terminal 114 configured to support a welding electrode and an output terminal 116 configured to support a work clamp. Additionally, the bottom panel 112 may include a gas valve terminal 118 that is configured to connect to a gas conduit. The bottom panel 120 may also include a power switch 120, which may be used to turn the power supply unit 12 on and off.
In some embodiments, process indicators 152, 154, 156, 158, 160, 162 may cooperate with display panels 172 and 174 to communicate information to the user. For instance, in one embodiment, during operation, the user may press process button 182 to set the welding process via control knobs 176 and 178. That is, when the user presses process button 182, the default weld process will be communicated to the user via panels 172 and 174, and the process indicator 166 will illuminate. The user may then adjust knobs 176 and 178 to change the welding process. As the user changes the welding process, the chosen welding process will be displayed on panels 172 and 174. The user may further utilize knobs 176 and 178 in conjunction with panels 172 and 174 and setup button 184 to set parameters associated with the chosen weld process. In this way, the user may utilize the user interface 150 to set both the welding process and the parameters associated with the chosen process.
The control system may then inquire as to whether a TIG process is selected on the interface 150 located on the pendant 42, as indicated by block 194. If a TIG process has been selected, the control system will set a constant current process mode, as indicated by block 196, and set the polarity as DCEN, as indicated by block 198. Furthermore, the control system will disable the wire feeder, as indicated by block 200, and enable a gas flow suitable for a TIG welding process, as indicated by block 202. In this way, the user selection of the TIG process on the pendant 42 triggers the correct settings. The selection and any particular settings for the TIG process are then communicated from the pendant to the power supply unit, which then outputs appropriate power in accordance with the selections and settings. Such selection and setting data may be communicated via a dedicated data conductor as discussed above, or in certain embodiments along one of the welding power conductors.
If a TIG process has not been selected, the control system may then inquire as to whether a MIG process is selected, as indicated by block 204. If a MIG process has been selected, the control system will set a constant voltage process, as indicated by block 206, and set a polarity as DCEP, as indicated by block 208. Furthermore, the control system will enable the wire feeder, as indicated by block 210, and enable a second gas flow suitable for a MIG process, as indicated by block 212. That is, the user selection of the MIG process on the pendant 42 automatically triggers the correct process parameters and supplies, such as gas and wire. As in the former case, the data regarding the selection of the process, and any settings to be implemented in the process are communicated to the power supply unit, which then provides welding power in accordance with the selections and settings.
Similarly, if a MIG process has not been selected, the control system may then inquire as to whether a stick welding process is selected, as indicated by block 214. If a stick welding process has been selected, the control system will set a constant current process, as indicated by block 216, and set a polarity as DCEP, as indicated by block 218. Furthermore, the control system will disable the wire feeder, as indicated by block 220, and disable gas flow, as indicated by block 222. As before, the selection, and any settings to be used for stick welding are communicated to the power supply unit, which outputs the requested power. If the stick welding process has not been selected, the control system may again inquire as to whether a TIG process is selected, as indicated by block 194. In this way, in the illustrated embodiment, the control system continues to cycle through inquiries 194, 204, and 214 until the user selects a process.
As noted above, in all of the foregoing cases, the control system, if separate setting controls are provided on the pendant, the control system will collect information from those inputs for the regulation of power to the welding operation. For example, in certain embodiments, the pendant may permit the adjustment of currents and/or voltages for welding. As also noted above, these inputs may be sampled in the pendant and communicated to the welding power supply via a data conductor, if provided in the cable assembly, although in certain presently contemplated embodiments, such data may also be communicated over the welding power conductors. Similarly, when a wire feeder is included in the pendant, or controlled by the pendant, wire feed speeds may be set for MIG welding directly on the pendant or on the wire feeder. These inputs, too, may be handled by the control circuitry of the pendant for regulation of wire spooling to the MIG torch.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Ihde, Jeffery R., Rappl, James Francis, Lahti, Thomas D., Feldhausen, Joseph Edward
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3621177, | |||
3808397, | |||
4093845, | Jun 19 1975 | Controller for DC arc welding generators | |
4119830, | Aug 08 1977 | Remote welding control system | |
4151396, | Oct 11 1977 | Welding control system | |
4216367, | Apr 18 1978 | Miller Electric Manufacturing Company | Wireless remote control for electric welder |
4467174, | Feb 19 1981 | Remote control of open circuit voltage in a welding power supply | |
4508954, | May 18 1984 | Oxo Welding Equipment Co., Inc. | Portable arc voltage wirefeed welding system |
5406050, | Oct 08 1992 | ADVANCED FUSHION TECHNOLOGIES, INC | Multiple operator welding apparatus |
5990446, | Mar 27 1998 | University of Kentucky Research Founadtion | Method of arc welding using dual serial opposed torches |
6075255, | Sep 14 1998 | Silicon Integrated Systems Company | Contactor system for a ball grid array device |
6103994, | Apr 12 1999 | Illinois Tool Works | Welding device with remote device detection |
6570132, | Jan 15 1999 | Fronius International GmbH | Remote regulation unit for a welding apparatus or a power source |
6720678, | Feb 15 2002 | Arc welding electrical shock protection circuit | |
6781095, | Apr 01 1999 | Illinois Tool Works Inc. | Method and apparatus for welding with a trigger hold |
6855912, | Apr 17 2001 | Lincoln Global, Inc. | Electric arc welding system |
6906285, | Oct 24 2003 | Lincoln Global, Inc. | Remote wire feeder |
6933467, | Apr 01 1999 | Illinois Tool Works Inc. | Method and apparatus for welding with a trigger hold |
6982398, | Jun 01 2004 | Illinois Tool Works Inc. | Fuel saving engine driven welding-type device and method of use |
7180029, | Apr 16 2004 | Illinois Tool Works Inc. | Method and system for a remote wire feeder where standby power and system control are provided via weld cables |
7205503, | Jul 24 2003 | Illinois Tool Works Inc. | Remotely controlled welding machine |
7247814, | Mar 23 2005 | Illinois Tool Works Inc. | System and method for data communications over a gas hose in a welding-type application |
7294808, | Mar 15 2004 | Lincoln Global, Inc. | Remote wire feeder |
7307241, | Sep 19 2001 | Illinois Tool Works Inc. | Pendant control for a welding-type system |
7952051, | May 31 2006 | Illinois Tool Works Inc. | Electronic polarity reversing switch for a multi-process welding power source |
20060138113, | |||
20070080154, | |||
20070114216, | |||
20080035621, | |||
EP1500456, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 07 2012 | Illinois Tool Works Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Mar 04 2017 | 4 years fee payment window open |
Sep 04 2017 | 6 months grace period start (w surcharge) |
Mar 04 2018 | patent expiry (for year 4) |
Mar 04 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 04 2021 | 8 years fee payment window open |
Sep 04 2021 | 6 months grace period start (w surcharge) |
Mar 04 2022 | patent expiry (for year 8) |
Mar 04 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 04 2025 | 12 years fee payment window open |
Sep 04 2025 | 6 months grace period start (w surcharge) |
Mar 04 2026 | patent expiry (for year 12) |
Mar 04 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |