A system and method for filtering electric power system data communicated from faulted circuit indicators (FCIs) and at least one other source before the electric power system data is further communicated to a monitoring system such as SCADA. The power system data from the FCIs may include an event such as a fault on the electric power system. To avoid sending incorrect or excess information along to the monitoring system, the present disclosure describes a system and method for comparing data from the FCIs against electric power system data gathered either directly from the electric power system or from an intelligent electronic device (IED). If the two sets of data agree, then the information is passed on to the monitoring system. The FCIs may communicate to a transceiver interface periodically, upon detection of an event, and/or upon interrogation by the transceiver interface.
|
35. A method for filtering status messages from a faulted circuit indicator in communication with an electric power system and to a receiver interface in communication with a monitoring system, the method comprising the steps of:
detecting an adverse power system event by the faulted circuit indicator;
transmitting a status message to the transceiver interface, wherein the status message comprises an indication of the adverse power system event;
receiving power system information by the transceiver interface;
verifying the adverse power system event using power system information received from a second device associated with the electric power system; and
transmitting the status message to the monitoring system only upon verification of the status message.
43. A method for reducing an amount of communication from faulted circuit indicators to a monitoring system of an electric power system including a transceiver interface for filtering status messages from the faulted circuit indicators in communication with an electric power system and sending electric power system information to the monitoring system, the method comprising the steps of:
detecting an inimical power system event by the faulted circuit indicator;
transmitting a status message to the transceiver interface, wherein the status message comprises an indication of the inimical power system event;
receiving power system information by the transceiver interface;
verifying the inimical power system event using power system information received from a second device associated with the electric power system; and
transmitting the status message to the monitoring system only upon verification of the status message.
30. A transceiver interface for receiving a status message from a first device comprising a faulted circuit indicator monitoring an electric power system, processing the status message, and transmitting the status message to a supervisory control and data acquisition scheme, comprising:
a radio receiver configured to receive the status message from the faulted circuit indicator, wherein the status message comprises an indication of a fault on the electric power system;
a logic module configured to:
verify the fault using other power system information received from a second device associated with the electric power system, wherein verifying the fault comprises determining whether the second device detected the fault and
communicate the status message to a transceiver only upon verification of the status message; and
a transceiver in communication with the logic module and configured to transmit the status message to the supervisory control and data acquisition scheme.
1. A system for providing power system information to a monitoring scheme, comprising:
a monitoring scheme associated with an electric power system;
a first device comprising a faulted circuit indicator associated with the electric power system, comprising:
an acquisition circuit configured to monitor a power system condition;
a processor in communication with the acquisition circuit configured to detect an adverse event on the electric power system based on the power system condition; and
a radio transmitter in communication with the processor and configured to transmit a status message upon occurrence of a predetermined condition, wherein the status message comprises an indication of the adverse event;
a transceiver interface associated with the electric power system, including:
a radio receiver configured to receive the status message from the first device;
a logic module in communication with the radio receiver, configured to receive the status message from the first device and a status message from a second device associated with the electric power system, and verify the adverse event using power system information received from the first device and the second device and only upon verification communicate the status message to a transceiver; and
wherein the transceiver is in communication with the logic module and configured to transmit the status message to the monitoring scheme.
2. The system of
3. The system of
4. The system of
5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
10. The system of
11. The system of
12. The system of
13. The system of
14. The system of
16. The system of
17. The system of
18. The system of
19. The system of
20. The system of
22. The system of
24. The system of
25. The system of
26. The system of
27. The system of
28. The system of
29. The system of
the faulted circuit indicator further comprises a clock in communication with the processor;
the processor is configured to record a time between the detection of the adverse event and receipt of an interrogation from the transceiver interface, and to write the time into the status message.
31. The transceiver interface of
32. The transceiver interface of
33. The transceiver interface of
34. The transceiver interface of
36. The method of
detecting a permanent fault on the electric power system; detecting a temporary fault on the electric power system; detecting an overcurrent condition; detecting an undervoltage condition; detecting an elevated temperature condition; detecting a passage of a predetermined amount of time; and combinations thereof.
37. The method of
38. The method of
39. The method of
40. The method of
41. The method of
42. The method of
|
This disclosure relates to communications from faulted circuit indicators. More particularly, this disclosure relates to filtering the communications from faulted circuit indicators and sending only selected communications to a central monitoring system.
Non-limiting and non-exhaustive embodiments of the disclosure are described, including various embodiments of the disclosure with reference to the figures, in which:
Processes and distributed systems are often monitored, automated, controlled or protected by a central monitoring system. Some examples of central monitoring systems include supervisory control and data acquisition (SCADA) systems, outage management systems, automatic meter reading (AMR) systems, advanced metering infrastructure (AMI) systems, other communications systems, and the like. One such process or distributed system that is typically monitored and controlled by a monitoring system is electric power transmission and distribution. The monitoring system may be configured to receive data, events, and actions taken on the power system from various devices on the electric power transmission and distribution system. Accordingly, the supervisory control operations made at the monitoring system level are only as appropriate as the data received from the power system devices is timely and accurate. Thus, monitoring systems require that the data received from the various power system devices be timely and accurate.
As mentioned above, electric power protection, automation, control, and monitoring may involve the use of various devices intended to gather and/or process power system information from the electrical power system equipment. Faulted circuit indicators (FCIs) are one type of such device, and may be used to indicate the presence of a fault and/or other events on a conductor. Various types and functions of FCIs are described in U.S. Pat. Nos. 3,676,740, 3,906,477, 4,063,171, 4,234,847, 4,375,617, 4,438,403, 4,456,873, 4,458,198, 4,495,489, 4,974,329, 5,677,678, 5,990,674, 6,014,301, 6,016,105, 6,133,723, 6,133,724, 6,429,661, 6,433,698, 6,479,981, 6,734,662, 6,822,576, 6,894,478, 6,949,921, 6,963,197, 7,023,691, 7,053,601, 7,106,048, 7,271,580, and 7,315,169, each of which is herein incorporated by reference in its entirety.
FCIs often include means of detecting and processing various power system conditions. Among those are the current, voltage, and temperature. Temperature is typically measured using a diode that is part of a processor on the FCI. With these measured conditions, the FCI can perform various calculations to determine whether an event has occurred on the power system such as a permanent fault, a temporary fault, an overcurrent condition, an undervoltage condition, a high temperature condition, an inrush condition, a backfeed condition, direction of current flow, loss of potential, a switching transient, a system overload, an exceeded load profile, and the like.
FCIs may further include a means of communication to a monitoring system such as via radio frequency, fiber optics, copper wire, and the like. Typically, FCIs with the ability to communicate to the monitoring system are configured to communicate every event and/or at predetermined time intervals. This results in communication of vast amounts of data back to the monitoring system, leading to an overload of information for the system.
Further, though FCIs have been used for many years to assist electric utility personnel to locate faulted sections of power line more efficiently, FCIs may tend to false trip and/or false reset. These false tripping and false resetting events provide misleading information to linemen and reduce the perceived reliability of FCIs. Most of the sources of undesirable operation can be attributed to misapplication or human error. However, because most FCI events are a result of a detection of a peak current and FCIs have no inherent means of discriminating fault current from other overcurrent event, they may misoperate by indicating a fault when the line is not faulted. Further, FCIs typically have no inherent means of discriminating between load current and backfeed current, leading to similar misoperations. Consequently, due to the various possible misoperations, utility personnel may loose trust in the devices. Further, because misoperations may lead to communications of events back to the monitoring system (in schemes where the FCIs are capable of communicating events back to the monitoring system), misinformation concerning those events may cause improper reaction. Because of the many communications due to misoperations, the monitoring system may become overwhelmed with data provided by the FCIs.
The embodiments of the disclosure will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the disclosed embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of the systems and methods of the disclosure is not intended to limit the scope of the disclosure, as claimed, but is merely representative of possible embodiments of the disclosure. In addition, the steps of a method do not necessarily need to be executed in any specific order, or even sequentially, nor need the steps be executed only once, unless otherwise specified.
In some cases, well-known features, structures or operations are not shown or described in detail. Furthermore, the described features, structures, or operations may be combined in any suitable manner in one or more embodiments. It will also be readily understood that the components of the embodiments as generally described and illustrated in the figures herein could be arranged and designed in a wide variety of different configurations.
Several aspects of the embodiments described will be illustrated as software modules or components. As used herein, a software module or component may include any type of computer instruction or computer executable code located within a memory device and/or transmitted as electronic signals over a system bus or wired or wireless network. A software module or component may, for instance, comprise one or more physical or logical blocks of computer instructions, which may be organized as a routine, program, object, component, data structure, etc., that performs one or more tasks or implements particular abstract data types.
In certain embodiments, a particular software module or component may comprise disparate instructions stored in different locations of a memory device, which together implement the described functionality of the module. Indeed, a module or component may comprise a single instruction or many instructions, and may be distributed over several different code segments, among different programs, and across several memory devices. Some embodiments may be practiced in a distributed computing environment where tasks are performed by a remote processing device linked through a communications network. In a distributed computing environment, software modules or components may be located in local and/or remote memory storage devices. In addition, data being tied or rendered together in a database record may be resident in the same memory device, or across several memory devices, and may be linked together in fields of a record in a database across a network.
Embodiments may be provided as a computer program product including a machine-readable medium having stored thereon instructions that may be used to program a computer (or other electronic device) to perform processes described herein. The machine-readable medium may include, but is not limited to, hard drives, floppy diskettes, optical disks, CD-ROMs, DVD-ROMs, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, solid-state memory devices, or other types of media/machine-readable medium suitable for storing electronic instructions.
The interrupting devices and/or the phases may further be monitored, protected, controlled, and/or automated by various intelligent electronic devices (IEDs). IEDs are typically computer-based relays such as those sold by Schweitzer Engineering Laboratories, Inc. of Pullman Wash. Further, the IEDs may consist of remote terminal units (RTUs) configured to monitor the power system and communicate power system information back to a central computer, monitoring system, or the like. IEDs 122, 120 may further be configured to communicate power system information including, but not limited to, currents, voltages, resistances, reactances, distance to fault, phasors, synchrophasors, impedances, contact outputs, statuses (such as a circuit breaker status, for example), and the like.
As can be seen, FCIs 102, 104, and 106 are installed on the overhead conductors of the electric power distribution system 180. Each of the three FCIs 102, 104, and 106 are of the type that includes a means for radio communication and an antenna. The FCIs 102, 104, 106 may be configured to broadcast a status message upon detection of an event and/or following the passage of a predetermined amount of time (scheduled reporting).
As can be seen, the FCIs 102, 104, and 106 are configured to broadcast the status messages and the Transceiver interface (TI) 150 is configured to receive the status messages. TI 150 includes a means for receiving radio frequency messages such as an antenna and a transceiver. TI 150 may further be configured to receive power system information either directly from the power system or from IEDs connected to the power system.
It is contemplated that any such scheme for communicating power system information from the power system to TI may be used. As many interrupting devices and conductors are monitored by IEDs, it may be easiest for utilities to simply configure those IEDs to send power system information to the TI 150. Even so, it is contemplated that TI may employ known techniques for acquiring power system information directly from power system equipment and sensors as IEDs typically do.
Further illustrated is that IEDs 120 and 122 have a communications link to the monitoring system 160. Thus, the monitoring system is capable of receiving data directly from the IEDs. Though IEDs provide a great deal of information to the monitoring system 160, fault location on a distribution system is difficult to derive solely from such information. For example, though an IED may be capable of detecting a fault and calculating a distance to the fault, the distribution system may have several branches, resulting in several possible locations of a fault. Further, because there are typically several pieces of distribution equipment such as transformers, capacitor banks, voltage regulators, and the like on the distribution system, distance calculations may be flawed. Accordingly, power system information from FCIs installed on conductors throughout the electric power system may be of much value to the monitoring system 160 to better determine location of a fault.
According to the present disclosure, therefore, the monitoring system is also capable of receiving power system information from TI 150. TI 150 is configured, as described in more detail herein, to receive radio frequency communications from the FCIs 102, 104, and 106, and compare it against other power system information either received from the IEDs 120, and 122 or from the power system itself before communicating the power system information gathered from the FCIs 102, 103, and 106 to the monitoring system 160. The result is that the monitoring system 160 receives power system information from FCIs that has been verified with power system information from other sources, thus decreasing the degree to which power system information from the FCIs communicated to the monitoring system includes misinformation due to misoperation by the FCIs. A further result is a decrease in the overall communication of power system information from FCIs to the monitoring system. That is, the present disclosure describes a system of only transmitting filtered or validated data to the monitoring system instead of a system where all status messages from all FCIs are communicated to the monitoring system.
The monitoring system of the present disclosure may be any system configured to receive information from the IEDs, FCIs, and/or TIs. The monitoring system may be a stand-alone monitoring system, or part of a larger monitoring scheme. For example, the monitoring system may be or may be part of a larger outage management system configured to monitor and/or locate faults or outages on an electric power system. The monitoring system may include an existing communications infrastructure. The monitoring system may be a SCADA system or pass data along to a SCADA system. The monitoring system may be or pass data along to an AMR or AMI system. Other monitoring systems are also within the scope of this disclosure.
a. Faulted Circuit Indicator with RF Communications
As described in
The output from amplifier 206 is tied to the positive input terminal of comparator 210. The negative input terminal of comparator 210 is sourced by DAC 218, which is programmed by processor 216. In this way, processor 216 can control the threshold level of comparator 210. Adjusting the threshold of comparator 210 directly controls the fault current threshold (i.e.; the level of current in the monitored conductor that is considered a fault) and provides the means for auto-ranging.
The output of amplifier 208 is shown being passed through a second ADC 220. Note that a single ADC and a multi-position analog switch could be used as well. Processor 216 uses the input from this second ADC 220 to monitor the peak current detected by the current acquisition circuit approximately once every half-cycle period. If the monitored peak current is not sufficiently large, processor 216 will record the time. If the monitored peak current is of sufficiently small magnitude for a predetermined time period the processor 216 will place the fault indicator into system detect state, which is the method in which inrush lockout is accomplished. System detect state is discussed later in the application. The particular magnitude below which the current must fall before system detect state is triggered is determined by the value of the monitored average current. Additionally, the fault threshold that is determined from the monitored average current is saved in the processor non-volatile memory such that the re-energization level will be configured in the event that the processor loses power during an outage.
In addition to the above, the FCI may be configured to detect other power system events using the available information and algorithms in the microprocessor. For example, the microprocessor may be programmed to detect for loss of voltage, compare a load against a load profile, count the number of events by event type (permanent faults, temporary faults, and the like), record the amount of time between events, record the amount of time between an event and sending a message, record the amount of time between detecting an event and being interrogated, and the like.
As for the exceeded load profile, the FCI may include a load profile defining acceptable load conditions over time and be configured to indicate that an event has occurred if the load exceeds the load profile. For example, the load profile may indicate acceptable conditions unless the total time in an overcurrent condition is over 10 hours. Thus, once the FCI detects that the total time spent in an overcurrent condition is greater than 10 hours, it indicates an event. Another possible load profile may be that an overcurrent condition must persist for a predetermined amount of time. As long as the overcurrent condition does not exceed the predetermined amount of time, no event is issued for that profile. If, however, an overcurrent condition exists for the predetermined amount of time, the FCI does issue an event for that load profile.
As described above, the FCI may be configured to only communicate to the TI under certain circumstances. For example the FCI may be configured to initiate a message to TI after the passage of a predetermined amount of time (scheduled reporting). In such a configuration, the FCI would also include a clock module configured to track the passage of time. The FCI may include a predetermined message configuration and simply populate the message with data and transmit the populated message upon a lapse of the predetermined amount of time or on a report schedule. For example, the FCI may be configured to populate and transmit a report every eight hours. The predetermined message configuration may include areas for populating the detected current, detected voltage, whether a permanent fault is detected, whether a temporary fault has been detected, detected temperature, the fault detection level, whether an inrush condition was detected, the number of previous faults detected, an expected remaining lifetime, identification information, and the like.
The FCI may be configured to send a message to TI upon receiving an interrogation from TI. In such a configuration, the FCI would be capable of receiving an instruction from TI to configure and send a status message containing either a preconfigured set of data, or a set of data required by TI. The existing RF link may be used to receive the message from TI, communicate it to the micro-controller 216, and communicate the resulting message from the micro-controller 216 to TI. The micro-controller 216 may be configured to populate data in a pre-configured message. For example, the pre-configured message may be the status message that the FCI transmits upon the passage of time or the occurrence of an event. As above, the pre-configured message may include data such as the detected current, detected voltage, whether a permanent fault is detected, whether a temporary fault has been detected, ambient temperature, the fault detection level, whether an inrush condition was detected, the number of previous faults detected, an expected remaining lifetime, identification information, and the like.
Further, the TI may interrogate for specific power system information, in which case the micro-controller 216 would populate a message with only the information required by the TI, and cause the message to be transmitted to the TI. In this configuration, the message may be preconfigured, and the FCI would only populate the fields corresponding with the information required by TI. Further, the message may be preconfigured with certain data that is required to be in each message such as FCI identification information. The message may be configured based on what was requested by the TI. After the message is populated, the FCI would cause the message to be communicated to TI using, for example, the RF link 280 used to receive the interrogation from the TI.
In an embodiment, the FCI may configure and transmit a status message upon the occurrence of an event. The event may be any event condition detectable by the FCI. For example, the event may be any of: detection of a permanent fault, detection of a temporary fault, detection of load current above a certain threshold and/or for a predetermined amount of time, an overcurrent condition, an undervoltage condition, a loss-of-voltage condition, a high-temperature alarm, a change in fault detection levels, lapse of a predetermined amount of time, expected FCI lifetime falling below a predetermined threshold, an exceeded load profile, and the like.
If an event is detected by the FCI, the micro-controller 216 is configured to either create or populate a status message and cause the RF link 280 to transmit the message to the TI. In the embodiment where the message configuration is predetermined, the microcontroller populates the fields of the message with the required information. In the configuration where the message configuration is not predetermined, the FCI may form a message with the event type, and may include FCI identification information as well. The FCI causes the message to be transmitted once the message is formed.
The FCI may further be configured to transmit a status message to TI upon occurrence of any of the message triggers described above.
The FCI may include a clock or other timing device and start a timer when an event is detected. The microcontroller may stop the timer upon receiving an interrogation and include the lapsed time in the status message.
In one embodiment, the FCI may be configured to transmit a status message only after a predetermined amount of time after the detection of an event if the FCI has not yet been interrogated by the TI. In this embodiment, the FCI would initiate a timer upon occurrence of an event (if the event is a fault and no current is flowing through the conductor, the battery may be necessary to run the timer). If the FCI were not interrogated by the TI for a status message before the timer runs out, then the FCI would initiate a status message to the TI. In one embodiment, once the FCI has been interrogated, it cancels the timer, and does not send a status message solely based on the lapse of the timer.
In one embodiment, the FCI is configured such that it does not send a status message to the TI unless it is interrogated thereby. This saves battery life of the FCI in that status messages are not sent unless they are needed by the TI.
In one embodiment, the TI may be capable of signaling the FCIs not to send a status report. Upon receipt of such a message, FCIs would not send a status message until the next time that the FCI is configured to send a status report (upon further interrogation, event occurrence, passage of time, or the like).
One field of information in the status message that the FCI may send to the TI that may help with fault location is FCI identification information. This identification information may include, for example, an FCI serial number, GPS coordinates of the FCI, or other FCI identification information. Another possible identification information may be a pole number of a power pole near where the FCI is installed. Several electric power utilities maintain maps of power distribution systems using power pole numbers. In this case, the pole number may give the best information as to the location of the FCI that detected the event. This identification information may be stored either in the micro-controller 216 or within a memory storage (not separately pictured). The FCI identification information may be preprogrammed into the FCI by the manufacturer (e.g. a serial number programmed into the FCI by the manufacturer) or writeable to the FCI by either the manufacturer or the end user. The RF link, or optical communication via the external LED 230 may be used to program the FCI identification information into the FCI.
One helpful type of FCI identification information that may be programmed into the FCI is GPS coordinates of the installed FCI. In this embodiment, when the FCI is installed, the GPS coordinates of the FCI may be calculated (using a GPS device), and programmed into the FCI using, for example, the RF link or the optical communication via the External LED 230.
Alternatively, the GPS coordinates may be calculated when the FCI is installed and associated with other FCI identification information in a database. For example, when the FCI is installed, the GPS coordinates may be calculated and recorded along with the installed FCI serial number. Thus, using the FCI serial number, the exact location of the FCI may be determined using the GPS coordinates and the database correlating the two types of information.
FCI location information may be useable by the SCADA scheme and/or the TI to determine the location of the FCI and for correlating status messages from the FCI with other power system information. The location of the FCI is helpful in determining the location of an event on the electric power system. For example, where two FCIs are adjacent on the same conductor, and one reports a fault and the other does not, then the fault is likely somewhere on the conductor between those two FCIs.
b. Transceiver Interface
Turning now to
Illustrated in
TI 150 further includes a communications port 362 for communication with the monitoring system 160 for transmitting data to the monitoring system 160 and if needed for receiving data from the monitoring system 160. For example, when the TI is within an IED, it may receive commands from the monitoring system to open a line such as by opening the interrupting device 114.
TI also includes a RF communications port 360. The RF communications port 360 may be connected directly to the TI 150, or may be simply in communication with the TI 150. For example, the RF communications port 360 may be a cable leading to an RF antenna. Further, the RF communications port 360 may include an intermediate device such as a modem or external radio. One such intermediate device may be the SEL-3021-1 or SEL-3021-2 serial encrypting transceiver (available from Schweitzer Engineering Laboratories, Inc.) used to encrypt and/or decrypt data communicated with the FCIs. If the SEL 3021-1 or SEL 3021-2 is used, a separate RF transceiver is needed to transmit the communications over RF.
Another such intermediate device may be the SEL 3022 Wireless Encrypting Transceiver (available from Schweitzer Engineering Laboratories, Inc.) used to encrypt and/or decrypt data communicated with the FCIs and for wireless communication of such data.
The RF communications port 360 is configured to receive RF communications from the FCIs 102, 104, and 106 and communicate such to the transceiver module 356. In an embodiment, the RF communications port 360 is also configured to transmit communication from the TI 150 to the FCIs 102, 104, and 106 such as interrogation of the FCIs.
The TI further includes a processor 352 (which may be a device such as an application specific integrated circuit (ASIC), field programmable gate array (FPGA), microprocessor, or the like) in communication with the transceiver. The processor 352 includes a logic module 354 operating thereon. The logic module 354 is configured to receive power system information from various sources and verify such information through comparison. In an embodiment, the logic module 354 is configured to receive and parse status messages from FCIs 102, 104, and 106, and power system information from other sources (such as the power system itself or IEDs connected thereto, as described herein) and compare the power system information from status messages from the FCIs 102, 104, and 106 against the power system information from other sources. If the power system information from other sources agrees with the power system information from the FCIs, then the logic module 354 is further configured to have the power system information from the FCIs formatted into a format expected by the monitoring system 160 and transmitted to the monitoring system 160 using the transceiver module 356 and the communications port 362.
For example, if FCI 102 determines that there is a fault on the monitored conductor, it may be configured to send a status message containing such information and identification information to the TI via the RF communications port 360. The status message is then communicated to the logic module. Similarly, IED 122 is monitoring the same phase as FCI 102, and may be configured to constantly send status messages to TI 150 via the communications port 364. The logic module 354 is configured, in this example, to parse the message from FCI 102 to determine the identification information (including the monitored phase), and that the FCI 102 has determined that there is a fault on that phase. The logic module 354 is further configured to parse the status message from IED 122 to determine whether IED 122 has also detected a fault on the monitored phase. If the status message from the IED 122 also indicates the presence of a fault on the phase monitored by FCI 102, then the logic module is configured to have the processor transmit the status message from the FCI to the monitoring system 160.
As mentioned above, the monitoring system 160 may expect the message to be communicated according to a particular protocol (e.g. DNP, MODBUS, IEC-61850, and the like). The processor may be configured to format the status message according to the expected protocol before sending the status message to the monitoring system 160 via the transceiver module 356 and the communications port 362.
The logic module 354 is further configured to interrogate the IEDs 120 and 122 for status information in an effort to verify a status message received from an FCI 102, 104, and 106.
The transceiver module 356 may be in communication with the power system via a communications port 364. In this embodiment, the TI 150 may be capable of making calculations on the received power system data as an IED would do to derive power system information that may be used to verify status messages from FCIs. For example, if the received information is a current and breaker status (from interrupting device 114 and current transformer 124), the processor 352 may be configured to filter and process the current information as is known in the art to determine whether there is a fault on the conductor.
The logic module 354 may be configured to have an FCI interrogated so that the FCI sends, and the TI receives a status message from the FCI in an effort to verify power system information received from either the power system or an IED. The logic module 354 may be configured to have an FCI interrogated to receive a status message so that a location of an event may be determined when an event is either derived from the received power system information or received from an IED. The logic module 354 may trigger the processor 352 to configure and send an interrogation message to the FCIs requesting a status message from each FCI.
The logic module 354 may be configured to trigger the processor 352 to configure and send an interrogation message to a particular one of the FCIs requesting a status message from that particular FCI. In this case, the interrogation message may include the FCI identification information, and each FCI receiving the interrogation message would be configured to compare the received FCI identification information against its own FCI identification information and respond to the request only if the two match.
The processor 352 may be configured to request specific information in the interrogation message. Alternatively, the processor 352 may be configured to simply request a status message. In either case, the FCIs may be configured to respond to the particular request presented in the interrogation message as described above.
The logic module 354 may further be configured to use the received response to the interrogation message as is described above to either verify the power system information received from the power system and/or IEDs, and have the status message from the FCI communicated to the monitoring system 160.
As described above, the FCIs may be configured to record a time between detecting an event and receiving an interrogation from the TI. The time elapsed is written into the status message and sent to the TI. The TI may then use the elapsed time with the event detected to time align this event with events detected by other FCIs and reported to the TI. In an alternative embodiment, each FCI may include a clock and include the time of the event in the status message. However, as the time kept by the individual clocks may drift, these time stamps may not be as accurate. In one embodiment, each FCI also includes a clock with access to a common time source such as described below. Such FCIs could include a time stamp from the common time source for proper time alignment of status messages and/or events by the TI and or the monitoring system.
As is illustrated, the TI 150 may further be in communication with a local human-machine interface (HMI) 366. The local HMI 366 may be useful in operating the TI 150. The local HMI 366 may be in communication with the TI 150 to change and/or apply settings, set message configurations, set the monitoring system communications protocols, upload a database of FCI identification and location information, and the like.
TI 150 further includes a data storage module 358 that may be any medium capable of data storage known in the art. The processor 352 may be configured such that certain information may be written to and/or received from the data storage module 358. For example, a database of FCI identification and location information may be written to the data storage module 358. Further, certain events reports, FCI status messages, power system information, and the like may be written to the data storage module 358.
TI 150 may further be in communication with a common time source 368. The common time source 368 may be provided by various time sources including, but not limited to: a Global Positioning System (GPS); a radio time source, such as the short-wave WWV transmitter operated by the National Institute of Standards and Technology (NIST) at 2.5 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, or a low frequency transmitter, such as WWVB operated by NIST at 60 Hz; a cesium clock; an atomic clock; and the like. TI 150 may use time information from the common time source 368 to apply time stamps to certain data, and/or for comparing data from FCI status messages with other power system data. IEDs also often receive common time information, and are often capable of applying time stamps to the data.
Turning now to
The TI 426 (acting as a protective relay) may also attempt to calculate the distance to the fault 406 using conventional fault distance algorithms. However, because the line 416 may include branches, capacitor banks, voltage regulators, transformers or other equipment, the location of the fault may not be known or calculable by a distance-to-fault calculation. Further, certain conditions of the fault and the line make the calculation of the distance to the fault less accurate. For example, the duration of the fault affects the accuracy of the fault distance calculation.
The TI 426 could also use its communication capabilities with the FCIs on the line to narrow down the location of the fault occurred on the line. In one scenario, the FCIs would be programmed such that they would indicate a fault, but would not communicate to an TI that they sensed a fault until either a predetermined amount of time had passed or the TI interrogated the FCI about whether it detected a fault. For example, TI 426 in detected the fault 406. In order to determine where the fault 406 is (or verify the location of the fault with its calculation of the distance to the fault), the TI 426 would interrogate one of the FCIs to determine if the FCI also indicated the presence of the fault. The TI could interrogate the FCIs one at a time so that not all FCIs are interrogated, and not all FCIs would use up battery life on communication with the TI, thus saving battery life of the FCIs.
The TI 426 may start with interrogating the first FCI 430. When the first FCI 430 reports the fault, then the TI 426 will interrogate the next FCI 432, and so forth, until it gets to the first FCI that does not report the fault 434. The TI would then conclude that the fault is between the last FCI that reported a fault 432 and the first FCI that did not report the fault 434. If the FCIs are programmed to report a fault after a predetermined amount of time, then interrogation by the TI may set the FCIs to not report the presence of that fault.
The TI 426 may use its calculated distance to the fault 406 to intelligently interrogate the FCIs. Here, it may be helpful for the TI to have knowledge of the “line distance” (distance on the power line instead of a straight-line or “as the crow flies” distance) to each of the FCIs, and coordinate this information with the particular identification information of each FCI. This information can be calculated and stored in, for example, a lookup table within the TI 426. Other methods for calculating and/or coordinating FCI location with its line-distance from the TI 426 may be used. If the TI 426 calculates that the fault 30 is a certain distance down a particular line, and looks up the adjacent FCIs using the lookup table. Thus, the TI 426 may calculate that the fault would lie between FCIs 432 and 434, then the TI 426 may begin its interrogation with the FCI 432 it calculates as adjacent and previous to the fault 406. When that FCI 432 reports the fault, the TI 426 could then interrogate the FCI 434 that it calculates as immediately after the fault 406. When the FCI 432 immediately before the fault reports the presence of the fault, and the FCI 434 immediately after the fault reports no fault, then the TI 426 can confirm that the fault is on a portion of the line between the FCIs 432 and 434. The TI 426 may then signal the remaining FCIs on the line 418 to not report the presence or absence of a fault or loss of potential. The TI 426 may further communicate to the substation IED 404 that the fault 406 is on the feeder 418 associated with that TI 426, and may also communicate the location of and/or distance to the fault 406. The TI 426 may also communicate to the substation IED 404 that the location of and/or distance to the fault 406 have been checked by interrogating the FCIs. The substation TI 426 can use this information to communicate to a technician the presence of, distance to, and/or location of the fault 406. The substation IED 404 can further use this information to verify that it calculated the correct phase with the fault 406.
Illustrated in
The FCIs 30 of the embodiments described herein may be programmed to signal the presence of a fault back to their respective TIs 424, 426, or 428 after a predetermined time period in a case that the TI 424, 426, or 428 fails to signal the FCIs 30 not to report the event. For example, in
The FCIs 30 of the present disclosure may be capable of storing event data. They may further be capable of time-stamping the event data as described above with a “time since event” or a common time. In this way the TI can better use the event data.
The FCIs may further be capable of storing and time stamping multiple events. For example, if the line experienced a fault and a recloser on the line attempted to reclose the line several times, the FCI would experience several loss-of-potential, overcurrent, inrush, and/or fault events. When later interrogated, the FCI can report each event with a time stamp, and the TI can use or transmit the event information.
As mentioned herein, the present disclosure may be used on electric power systems that include branches off of a feeder. One such embodiment is illustrated in
As with other embodiments described herein, the IED can interrogate FCIs it suspects to be the FCI immediately before the fault. Accordingly, IED will interrogate FCIs 706, 708, and 711. When FCIs 706 and 708 report no fault detection, and FCI 711 does report the fault 720, then the IED can determine that the fault 706 is on the second branch 704. To confirm the distance to the fault, the TI 424 may interrogate FCI 718 as described above. To facilitate the IED in determining which FCIs 30 are on which branch or feeder, each FCI may include its FCI identification information as described above in its status message back to the TI 424. With this information, the TI, substation IED, and/or the monitoring system can determine which feeder or branch is associated with the FCI, and its location on the feeder or branch. Accordingly, in the embodiment described above, after interrogation of the FCIs 706, 708, and 711, the TI can report the distance to the fault, and the branch (or feeder) on which the fault occurred.
Alternatively, the IED may be configured to interrogate the first FCI on each branch to determine which is the faulted branch when its distance calculation algorithms indicate that the fault is present on one of several branches. Here, the FCI would interrogate FCIs 706, 708, and 710, with only 710 reporting a fault. The IED could then conclude that the fault is located on branch 704, and either continue to interrogate FCIs on that branch to determine fault location, and/or use its distance calculation algorithms to determine the location of the fault on branch 704.
While specific embodiments and applications of the disclosure have been illustrated and described, it is to be understood that the disclosure is not limited to the precise configuration and components disclosed herein. Various modifications, changes, and variations apparent to those of skill in the art may be made in the arrangement, operation, and details of the methods and systems of the disclosure without departing from the spirit and scope of the disclosure.
Feight, Laurence V., Salewske, Tyson J.
Patent | Priority | Assignee | Title |
10009063, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
10009065, | Dec 05 2012 | AT&T Intellectual Property I, LP | Backhaul link for distributed antenna system |
10009067, | Dec 04 2014 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for configuring a communication interface |
10009901, | Sep 16 2015 | AT&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
10020587, | Jul 31 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Radial antenna and methods for use therewith |
10020844, | Dec 06 2016 | AT&T Intellectual Property I, LP | Method and apparatus for broadcast communication via guided waves |
10027397, | Dec 07 2016 | AT&T Intellectual Property I, L P | Distributed antenna system and methods for use therewith |
10027398, | Jun 11 2015 | AT&T Intellectual Property I, LP | Repeater and methods for use therewith |
10033107, | Jul 14 2015 | AT&T Intellectual Property I, LP | Method and apparatus for coupling an antenna to a device |
10033108, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
10044409, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
10050697, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
10051483, | Oct 16 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for directing wireless signals |
10051629, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
10051630, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
10063280, | Sep 17 2014 | AT&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
10069185, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
10069535, | Dec 08 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
10074886, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration |
10074890, | Oct 02 2015 | AT&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
10075212, | Sep 17 2014 | AT&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
10079661, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having a clock reference |
10090594, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
10090601, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium |
10090606, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
10091787, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
10096881, | Aug 26 2014 | AT&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium |
10103422, | Dec 08 2016 | AT&T Intellectual Property I, L P | Method and apparatus for mounting network devices |
10103801, | Jun 03 2015 | AT&T Intellectual Property I, LP | Host node device and methods for use therewith |
10135145, | Dec 06 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
10135146, | Oct 18 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
10135147, | Oct 18 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
10135491, | Sep 17 2014 | AT&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
10136434, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
10139820, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
10142010, | Jun 11 2015 | AT&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
10142086, | Jun 11 2015 | AT&T Intellectual Property I, L P | Repeater and methods for use therewith |
10144036, | Jan 30 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
10148016, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for communicating utilizing an antenna array |
10154493, | Jun 03 2015 | AT&T Intellectual Property I, LP | Network termination and methods for use therewith |
10168695, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
10170840, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
10178445, | Nov 23 2016 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Methods, devices, and systems for load balancing between a plurality of waveguides |
10194437, | Dec 05 2012 | AT&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
10205655, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
10224634, | Nov 03 2016 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Methods and apparatus for adjusting an operational characteristic of an antenna |
10224981, | Apr 24 2015 | AT&T Intellectual Property I, LP | Passive electrical coupling device and methods for use therewith |
10225025, | Nov 03 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
10225842, | Sep 16 2015 | AT&T Intellectual Property I, L.P. | Method, device and storage medium for communications using a modulated signal and a reference signal |
10243270, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
10243784, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
10264586, | Dec 09 2016 | AT&T Intellectual Property I, L P | Cloud-based packet controller and methods for use therewith |
10291311, | Sep 09 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
10291334, | Nov 03 2016 | AT&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
10298293, | Mar 13 2017 | AT&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
10305190, | Dec 01 2016 | AT&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
10312567, | Oct 26 2016 | AT&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
10320586, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
10326494, | Dec 06 2016 | AT&T Intellectual Property I, L P | Apparatus for measurement de-embedding and methods for use therewith |
10326689, | Dec 08 2016 | AT&T Intellectual Property I, LP | Method and system for providing alternative communication paths |
10340573, | Oct 26 2016 | AT&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
10340600, | Oct 18 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
10340601, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
10340603, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
10340983, | Dec 09 2016 | AT&T Intellectual Property I, L P | Method and apparatus for surveying remote sites via guided wave communications |
10341142, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
10348391, | Jun 03 2015 | AT&T Intellectual Property I, LP | Client node device with frequency conversion and methods for use therewith |
10349418, | Sep 16 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion |
10355367, | Oct 16 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Antenna structure for exchanging wireless signals |
10359749, | Dec 07 2016 | AT&T Intellectual Property I, L P | Method and apparatus for utilities management via guided wave communication |
10361489, | Dec 01 2016 | AT&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
10361750, | Sep 17 2014 | AT&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
10374316, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
10382976, | Dec 06 2016 | AT&T Intellectual Property I, LP | Method and apparatus for managing wireless communications based on communication paths and network device positions |
10389029, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
10389037, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
10396887, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
10411356, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
10439675, | Dec 06 2016 | AT&T Intellectual Property I, L P | Method and apparatus for repeating guided wave communication signals |
10446936, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
10459025, | Apr 04 2018 | Schweitzer Engineering Laboratories, Inc. | System to reduce start-up times in line-mounted fault detectors |
10461579, | Aug 14 2014 | Siemens Aktiengesellschaft | Method and system for monitoring the operating status of an energy delivery network |
10495674, | Jan 29 2014 | NEC Corporation | Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium |
10498044, | Nov 03 2016 | AT&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
10530505, | Dec 08 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for launching electromagnetic waves along a transmission medium |
10535928, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
10547348, | Dec 07 2016 | AT&T Intellectual Property I, L P | Method and apparatus for switching transmission mediums in a communication system |
10601494, | Dec 08 2016 | AT&T Intellectual Property I, L P | Dual-band communication device and method for use therewith |
10613119, | Jul 02 2015 | Hubbell Incorporated | Voltage measurement and wireless communication system |
10637149, | Dec 06 2016 | AT&T Intellectual Property I, L P | Injection molded dielectric antenna and methods for use therewith |
10650940, | May 15 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
10665942, | Oct 16 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for adjusting wireless communications |
10679767, | May 15 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
10694379, | Dec 06 2016 | AT&T Intellectual Property I, LP | Waveguide system with device-based authentication and methods for use therewith |
10719062, | Aug 14 2014 | Siemens Aktiengesellschaft | Telecontrol arrangement, system and method for observing and/or controlling an installation |
10727599, | Dec 06 2016 | AT&T Intellectual Property I, L P | Launcher with slot antenna and methods for use therewith |
10755542, | Dec 06 2016 | AT&T Intellectual Property I, L P | Method and apparatus for surveillance via guided wave communication |
10777873, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
10784670, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
10797781, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
10811767, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
10812174, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
10819035, | Dec 06 2016 | AT&T Intellectual Property I, L P | Launcher with helical antenna and methods for use therewith |
10916969, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
10938108, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
10962608, | Oct 11 2019 | Schweitzer Engineering Laboratories, Inc. | High-impedance fault detection using wireless current transformers |
11032819, | Sep 15 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
11067612, | Jan 29 2014 | NEC Corporation | Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium |
11114858, | Sep 16 2019 | Schweitzer Engineering Laboratories, Inc. | Bidirectional capacitor bank control |
11372045, | Jan 24 2020 | Schweitzer Engineering Laboratories, Inc | Predictive maintenance of protective devices using wireless line sensors and systems |
11397198, | Aug 23 2019 | Schweitzer Engineering Laboratories, Inc. | Wireless current sensor |
11431161, | Mar 06 2020 | Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc | Electric power distribution sectionalizing in high-risk areas using wireless fault sensors |
11435403, | Sep 19 2019 | Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc | Determining the size of a capacitor bank |
11506546, | Oct 11 2019 | Schweitzer Engineering Laboratories, Inc. | Systems and methods for measuring internal transformer temperatures |
11549996, | Nov 09 2021 | Schweitzer Engineering Laboratories, Inc. | Automatically determining the size of a capacitor bank using wireless current sensors (WCS) |
11567109, | Oct 11 2019 | Schweitzer Engineering Laboratories, Inc. | Capacitor bank control using wireless electrical measurement sensors away from capacitor bank |
9042812, | Nov 06 2013 | AT&T Intellectual Property I, LP | Surface-wave communications and methods thereof |
9113347, | Dec 05 2012 | AT&T Intellectual Property I, LP; AT&T Intellectual Property I, L P | Backhaul link for distributed antenna system |
9119127, | Dec 05 2012 | AT&T Intellectual Property I, LP | Backhaul link for distributed antenna system |
9154966, | Nov 06 2013 | AT&T Intellectual Property I, LP | Surface-wave communications and methods thereof |
9209902, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
9244114, | Jan 08 2012 | MEGGER GRID ANALYTICS LTD | System and method for assessing faulty power-line insulator strings |
9263915, | Sep 05 2008 | ITRON NETWORKED SOLUTIONS, INC | Determining electric grid endpoint phase connectivity |
9312919, | Oct 21 2014 | AT&T Intellectual Property I, LP | Transmission device with impairment compensation and methods for use therewith |
9461706, | Jul 31 2015 | AT&T Intellectual Property I, LP | Method and apparatus for exchanging communication signals |
9467870, | Nov 06 2013 | AT&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
9479266, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
9490869, | May 14 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
9503189, | Oct 10 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
9509415, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
9520945, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
9525210, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9525524, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
9531427, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
9544006, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
9564947, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
9571209, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
9577306, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
9577307, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
9596001, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
9608692, | Jun 11 2015 | AT&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
9608740, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
9615269, | Oct 02 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
9627768, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9628116, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
9628854, | Sep 29 2014 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for distributing content in a communication network |
9640850, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
9653770, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
9654173, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
9661505, | Nov 06 2013 | AT&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
9667317, | Jun 15 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
9674711, | Nov 06 2013 | AT&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
9680670, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
9685992, | Oct 03 2014 | AT&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
9692101, | Aug 26 2014 | AT&T Intellectual Property I, LP | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
9699785, | Dec 05 2012 | AT&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
9705561, | Apr 24 2015 | AT&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
9705571, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system |
9705610, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
9712350, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
9722318, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
9729197, | Oct 01 2015 | AT&T Intellectual Property I, LP | Method and apparatus for communicating network management traffic over a network |
9735833, | Jul 31 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for communications management in a neighborhood network |
9742462, | Dec 04 2014 | AT&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
9742521, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
9748626, | May 14 2015 | AT&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
9749013, | Mar 17 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
9749053, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
9749083, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
9755697, | Sep 15 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
9762289, | Oct 14 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
9768833, | Sep 15 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
9769020, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
9769128, | Sep 28 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
9780834, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
9787412, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
9788326, | Dec 05 2012 | AT&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
9793951, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
9793954, | Apr 28 2015 | AT&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
9793955, | Apr 24 2015 | AT&T Intellectual Property I, LP | Passive electrical coupling device and methods for use therewith |
9794003, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
9800327, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
9806818, | Jul 23 2015 | AT&T Intellectual Property I, LP | Node device, repeater and methods for use therewith |
9820146, | Jun 12 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
9831912, | Apr 24 2015 | AT&T Intellectual Property I, LP | Directional coupling device and methods for use therewith |
9836957, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
9838078, | Jul 31 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
9838896, | Dec 09 2016 | AT&T Intellectual Property I, L P | Method and apparatus for assessing network coverage |
9847566, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
9847850, | Oct 14 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
9853342, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
9860075, | Aug 26 2016 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Method and communication node for broadband distribution |
9865911, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
9866276, | Oct 10 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
9866309, | Jun 03 2015 | AT&T Intellectual Property I, LP | Host node device and methods for use therewith |
9871282, | May 14 2015 | AT&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
9871283, | Jul 23 2015 | AT&T Intellectual Property I, LP | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
9871558, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
9876264, | Oct 02 2015 | AT&T Intellectual Property I, LP | Communication system, guided wave switch and methods for use therewith |
9876570, | Feb 20 2015 | AT&T Intellectual Property I, LP | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9876571, | Feb 20 2015 | AT&T Intellectual Property I, LP | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9876584, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
9876587, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
9876605, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
9882257, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
9882277, | Oct 02 2015 | AT&T Intellectual Property I, LP | Communication device and antenna assembly with actuated gimbal mount |
9882657, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
9887447, | May 14 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
9893795, | Dec 07 2016 | AT&T Intellectual Property I, LP | Method and repeater for broadband distribution |
9904535, | Sep 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
9906269, | Sep 17 2014 | AT&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
9911020, | Dec 08 2016 | AT&T Intellectual Property I, L P | Method and apparatus for tracking via a radio frequency identification device |
9912027, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
9912033, | Oct 21 2014 | AT&T Intellectual Property I, LP | Guided wave coupler, coupling module and methods for use therewith |
9912381, | Jun 03 2015 | AT&T Intellectual Property I, LP | Network termination and methods for use therewith |
9912382, | Jun 03 2015 | AT&T Intellectual Property I, LP | Network termination and methods for use therewith |
9912419, | Aug 24 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
9913139, | Jun 09 2015 | AT&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
9917341, | May 27 2015 | AT&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
9927517, | Dec 06 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for sensing rainfall |
9929755, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
9930668, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
9935703, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
9947982, | Jul 14 2015 | AT&T Intellectual Property I, LP | Dielectric transmission medium connector and methods for use therewith |
9948333, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
9948354, | Apr 28 2015 | AT&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
9948355, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
9954286, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9954287, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
9960808, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
9967002, | Jun 03 2015 | AT&T INTELLECTUAL I, LP | Network termination and methods for use therewith |
9967173, | Jul 31 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for authentication and identity management of communicating devices |
9973299, | Oct 14 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
9973416, | Oct 02 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
9973940, | Feb 27 2017 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
9991580, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
9997819, | Jun 09 2015 | AT&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
9998870, | Dec 08 2016 | AT&T Intellectual Property I, L P | Method and apparatus for proximity sensing |
9998932, | Oct 02 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
9999038, | May 31 2013 | AT&T Intellectual Property I, L P | Remote distributed antenna system |
Patent | Priority | Assignee | Title |
2379664, | |||
2928048, | |||
2967267, | |||
3292579, | |||
3296493, | |||
3476997, | |||
3525903, | |||
3621334, | |||
3676740, | |||
3702966, | |||
3706930, | |||
3708724, | |||
3715742, | |||
3781682, | |||
3816816, | |||
3866197, | |||
3876911, | |||
3906477, | |||
3972581, | Jul 04 1974 | International Standard Electric Corporation | Underwater electrical connector |
3974446, | Apr 10 1975 | Polyphase fault current flow detecting and resetting means | |
4029951, | Oct 21 1975 | Westinghouse Electric Corporation | Turbine power plant automatic control system |
4034360, | Aug 06 1976 | System for disabling the reset circuit of fault indicating means | |
4038625, | Jun 07 1976 | General Electric Company | Magnetic inductively-coupled connector |
4045726, | Jul 06 1976 | Tool for manually tripping a fault indicator for high voltage electric power circuits and resetting same | |
4063171, | Nov 04 1976 | Fault indicator responsive to flow of fault current in a conductor when power flow is in one direction only | |
4086529, | Jul 26 1976 | Fault indicator and means for resetting the same | |
4112292, | Aug 17 1976 | JAMES HARDIE BUILDING | Magnetic identification apparatus |
4144485, | Dec 03 1974 | Nippon Soken, Inc. | Contactless connector circuit |
4165528, | Jul 26 1976 | Fault indicator and means for resetting same | |
4186986, | Nov 16 1978 | AMP Incorporated | Sealed splice |
4199741, | Nov 05 1976 | Moving magnet, rotary switch | |
4234847, | Nov 06 1978 | Fault indicator | |
4251770, | Jun 25 1979 | Combined fault and voltage indicator | |
4288743, | Oct 10 1978 | Fault indicator operable from a remote excitation source through a uniformly distributed impedance cable | |
4375617, | Mar 20 1980 | Fault indicator with flux concentrating means | |
4414543, | Sep 25 1980 | Ground fault indicator | |
4424512, | Sep 25 1980 | Fault indicator having increased sensitivity to fault currents | |
4438403, | Aug 04 1981 | Fault indicator with combined trip and reset winding | |
4456873, | Aug 04 1981 | Cable mounted magnetic core assembly | |
4458198, | Dec 13 1979 | Fault indicator having a remote test point at which fault occurrence is indicated by change in magnetic state | |
4495489, | Jul 20 1982 | Fault indicator with improved flag indicator assembly | |
4536758, | Mar 10 1983 | Fault indicator with push button reset | |
4599487, | Apr 05 1984 | Klein, Schanzlin & Becker Aktiengesellschaft | Cable gland |
4686518, | Jul 29 1983 | SCHWEITZER, JEAN E ; SCHWEITZER, EDMUND O III; SCHWEITZER, MARILYN L | Fault indicator having trip inhibit circuit |
4689752, | Apr 13 1983 | UNDERSGROUND SYSTEMS, INC | System and apparatus for monitoring and control of a bulk electric power delivery system |
4709339, | Apr 13 1983 | Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules | |
4794328, | Apr 13 1983 | UNDERSGROUND SYSTEMS, INC | Tool for mounting a sensor module on a live power transmission line |
4794329, | Mar 28 1986 | SCHWEITZER, JEAN E ; SCHWEITZER, III, EDMUND O ; SCHWEITZER, MARILYN L ; Schweitzer Engineering Laboratories, Inc | Cable mounted capacitively-coupled circuit condition indicating device |
4794332, | Mar 28 1986 | SCHWEITZER, JEAN E ; SCHWEITZER, III, EDMUND O ; SCHWEITZER, MARILYN L ; Schweitzer Engineering Laboratories, Inc | Fault indicator having improved trip inhibit circuit |
4795982, | Apr 24 1987 | SCHWEITZER, JEAN E ; SCHWEITZER, III, EDMUND O ; SCHWEITZER, MARILYN L ; Schweitzer Engineering Laboratories, Inc | Fault indicator having delayed trip circuit |
4829298, | Apr 13 1983 | Electrical power line monitoring systems, including harmonic value measurements and relaying communications | |
4940976, | Feb 05 1988 | UTILICOM INC , A CORP OF CALIFORNIA | Automated remote water meter readout system |
4996624, | Sep 28 1989 | SCHWEITZER, ENGINEERING LABORATORIES, INC | Fault location method for radial transmission and distribution systems |
5008651, | Nov 08 1989 | Schweitzer Engineering Laboratories, Inc | Battery-powered fault indicator |
5038246, | Aug 31 1989 | Square D Company | Fault powered, processor controlled circuit breaker trip system having reliable tripping operation |
5070301, | Nov 08 1989 | Schweitzer Engineering Laboratories, Inc | Fault indicator having liquid crystal status display |
5089928, | Aug 31 1989 | SQUARE D COMPANY, THE | Processor controlled circuit breaker trip system having reliable status display |
5136457, | Aug 31 1989 | Square D Company | Processor controlled circuit breaker trip system having an intelligent rating plug |
5136458, | Aug 31 1989 | SQUARE D COMPANY, THE | Microcomputer based electronic trip system for circuit breakers |
5140257, | Jun 22 1984 | System for rating electric power transmission lines and equipment | |
5150361, | Jan 23 1989 | MOTOROLA, INC , SCHAUMBURG, IL A CORP OF DE | Energy saving protocol for a TDM radio |
5153565, | Aug 10 1988 | Schweitzer Engineering Laboratories, Inc | Fault indicator having electrostatically-actuated indicator flag |
5168414, | May 25 1990 | Dipl.-ing. H.Horstmann GmbH | Faulted circuit indicator |
5196682, | Jun 30 1986 | Wang Laboratories, Inc. | Infrared optical card having an opaque case for hiding internal components |
5220311, | Feb 19 1991 | Schweitzer Engineering Laboratories, Inc | Direction indicating fault indicators |
5298894, | Jun 17 1992 | Badger Meter, Inc. | Utility meter transponder/antenna assembly for underground installations |
5343155, | Dec 20 1991 | Montana State University | Fault detection and location system for power transmission and distribution lines |
5420502, | Dec 21 1992 | Schweitzer Engineering Laboratories, Inc | Fault indicator with optically-isolated remote readout circuit |
5438329, | Jun 04 1993 | SENSUS USA INC | Duplex bi-directional multi-mode remote instrument reading and telemetry system |
5495239, | Aug 02 1994 | General Electric Company | Method and apparatus for communicating with a plurality of electrical metering devices and a system control center with a mobile node |
5519527, | Jul 17 1992 | Siemens Aktiengesellschaft | Modem for communicating with enclosed electronic equipment |
5542856, | Apr 11 1994 | INOVA LTD | Field repairable electrical connector |
5550476, | Sep 29 1994 | Pacific Gas and Electric Company | Fault sensor device with radio transceiver |
5565783, | Sep 29 1994 | Pacific Gas and Electric Company | Fault sensor device with radio transceiver |
5648726, | Apr 21 1995 | Thomas & Betts International LLC | Remotely accessible electrical fault detection |
5656931, | Jan 20 1995 | Pacific Gas and Electric Company | Fault current sensor device with radio transceiver |
5659300, | Jan 30 1995 | SILVER SPRING NETWORKS, INC | Meter for measuring volumetric consumption of a commodity |
5677623, | Apr 08 1996 | Schweitzer Engineering Laboratories, Inc | Fault powered fault indicator having timed reset |
5677678, | Apr 08 1996 | Schweitzer Engineering Laboratories, Inc | Fault indicator having auxiliary fault sensing winding |
5701121, | Apr 11 1988 | SATO VICINITY PTY LTD | Transducer and interrogator device |
5793214, | Jun 30 1994 | Agilent Technologies Inc | Electromagnetic inductive probe |
5808902, | May 23 1996 | Basic Measuring Instruments | Power quality transducer for use with supervisory control systems |
5821869, | Feb 06 1997 | Schweitzer Engineering Laboratories, Inc | Fault indicator for use with load-break connector |
5825303, | Aug 30 1996 | Badger Meter, Inc. | Sealed housing and method of sealing for apparatus in meter pit enclosures |
5862391, | Apr 03 1996 | General Electric Company | Power management control system |
5877703, | Aug 12 1997 | Badger Meter, Inc.; BADGER METER, INC | Utility meter transmitter assembly for subsurface installations |
5889399, | Feb 06 1997 | Schweitzer Engineering Laboratories, Inc | Test-point mounted fault indicator having immunity to fault currents in adjacent conductors |
5892430, | Apr 25 1994 | Foster-Miller, Inc. | Self-powered powerline sensor |
5990674, | Jul 08 1996 | Schweitzer Engineering Laboratories, Inc | Clamping mechanism for mounting circuit condition monitoring devices on cables of various diameters |
6002260, | Sep 23 1997 | Pacific Gas & Electric Company | Fault sensor suitable for use in heterogenous power distribution systems |
6014301, | Apr 30 1998 | Schweitzer Engineering Laboratories, Inc | Fault indicator providing contact closure on fault detection |
6016105, | Apr 30 1998 | Schweitzer Engineering Laboratories, Inc | Fault indicator providing contact closure and light indication on fault detection |
6029061, | Mar 11 1997 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Power saving scheme for a digital wireless communications terminal |
6072405, | Apr 13 1998 | ACLARA TECHNOLOGIES LLC | Meter transmission unit for use with a pit set utility meter |
6078785, | Oct 16 1995 | Demand reporting of electricity consumption by radio in relays to a base station, and demand relays wattmeters so reporting over a wide area | |
6133723, | Jun 29 1998 | Schweitzer Engineering Laboratories, Inc | Fault indicator having remote light indication of fault detection |
6133724, | Jun 29 1998 | Schweitzer Engineering Laboratories, Inc | Remote light indication fault indicator with a timed reset circuit and a manual reset circuit |
6177883, | Sep 02 1998 | UBS AG, STAMFORD BRANCH, AS ADMINISTRATIVE AGENT | Utility meter transponder exposed ground level antenna assembly |
6188216, | May 18 1998 | CTS Corporation | Low profile non-contacting position sensor |
6239722, | Oct 16 1997 | ACOUSTIC TECHNOLOGY, INC | System and method for communication between remote locations |
6326905, | Aug 10 1999 | Detection Systems, Inc. | Coded rotary switch with contacts at common radius |
6349248, | Oct 28 1999 | General Electric Company | Method and system for predicting failures in a power resistive grid of a vehicle |
6366217, | Sep 12 1997 | INTERNET TELEMETRY CORP | Wide area remote telemetry |
6380733, | Dec 11 1996 | AB Elektronik GmbH | Latched switching device |
6414605, | Sep 02 1998 | UBS AG, STAMFORD BRANCH, AS ADMINISTRATIVE AGENT | Utility meter pit lid mounted antenna assembly and method |
6429661, | Dec 09 1999 | Schweitzer Engineering Laboratories, Inc | Fault indicator for three-phase sheathed cable |
6433698, | Apr 30 1998 | Schweitzer Engineering Laboratories, Inc | Fault indicator providing light indication on fault detection |
6479981, | Jun 29 1998 | Schweitzer Engineering Laboratories, Inc | Remote light indication fault indicator with a timed reset circuit and a manual reset circuit |
6522247, | May 23 2000 | Kabushiki Kaisha Toshiba | Apparatus monitoring system and apparatus monitoring method |
6525504, | Nov 28 1997 | ABB AB | Method and device for controlling the magnetic flux in a rotating high voltage electric alternating current machine |
6535797, | Feb 01 2000 | Spectrum Engineering Corporation | Electrical distribution system and method of monitoring and/or controlling same |
6573707, | Aug 30 2000 | Mitutoyo Corporation | Displacement detecting device power supply and data communication device |
6577608, | Aug 17 1998 | Samsung Electronics Co., Ltd. | Communication control device and method for CDMA communication system |
6617976, | Sep 02 1998 | Neptune Technology Group, Inc. | Utility meter pit lid mounted antenna antenna assembly and method |
6662124, | Apr 17 2002 | Schweitzer Engineering Laboratories, Inc | Protective relay with synchronized phasor measurement capability for use in electric power systems |
6671824, | Apr 19 1999 | Lakefield Technologies Group | Cable network repair control system |
6687574, | Nov 01 2001 | Intellectual Ventures II LLC | System and method for surveying utility outages |
6734662, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Microprocessor controlled fault indicator having led fault indication circuit with battery conservation mode |
6736646, | May 31 2001 | Yazaki Corporation | Electromagnetic induction-type connector |
6751562, | Nov 28 2000 | POWER MEASUREMENT LTD | Communications architecture for intelligent electronic devices |
6753792, | Jan 09 2001 | Distribution line capacitor monitoring and protection module | |
6759933, | Jun 30 2000 | AB Eletronik GmbH | Position selector device |
6792337, | Dec 30 1994 | Power Measurement Ltd. | Method and system for master slave protocol communication in an intelligent electronic device |
6796821, | Jun 06 2002 | TELEDYNE INSTRUMENTS, INC | Field installable cable termination assembly |
6798211, | Oct 30 1997 | Remote Monitoring Systems, Inc. | Power line fault detector and analyzer |
6822576, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Microprocessor controlled fault detector with circuit overload condition detection |
6828906, | Mar 06 2003 | International Business Machines Corporation | Device for responding to state request on an open phone line |
6892115, | Feb 25 2002 | ABB Schweiz AG | Method and apparatus for optimized centralized critical control architecture for switchgear and power equipment |
6892145, | Feb 25 2002 | ABB Schweiz AG | Method and system for conditionally triggered system data capture |
6894478, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Fault indicator with automatically configured trip settings |
6917888, | May 06 2002 | Arkados, Inc | Method and system for power line network fault detection and quality monitoring |
6944555, | Dec 30 1994 | POWER MEASUREMENT LTD | Communications architecture for intelligent electronic devices |
6949921, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Auto-calibration of multiple trip settings in a fault indicator |
6963197, | May 31 2002 | Schweitzer Engineering Laboratories, Inc | Targeted timed reset fault indicator |
7023691, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Fault Indicator with permanent and temporary fault indication |
7053601, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Microprocessor controlled fault indicator having high visibility LED fault indication |
7106048, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Fault indicator with auto-configuration for overhead or underground application |
7109699, | May 19 2004 | Long range alternating current phasing voltmeter | |
7132950, | Aug 30 2002 | Power management method and system | |
7254001, | Feb 25 2002 | ABB S P A | Circuit protection system |
7271580, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Apparatus and method for programmable trip settings in a faulted circuit indicator |
7315169, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Microprocessor controlled fault indicator having inrush restraint circuit |
7336202, | Apr 17 2001 | SANYO ELECTRIC CO , LTD | Temperature monitoring device |
7382272, | Oct 19 2005 | Schweitzer Engineering Laboratories, Inc | System, a tool and method for communicating with a faulted circuit indicator using a remote display |
7406536, | Jul 23 2001 | MAIN NET COMMUNICATIONS LTD | Dynamic power line access connection |
7430932, | Oct 31 2002 | Device for telemonitoring the state of aerial power lines(variants) | |
7646308, | Oct 30 2007 | EATON INTELLIGENT POWER LIMITED | System for monitoring electrical equipment and providing predictive diagnostics therefor |
7714735, | Sep 13 2005 | ACLARA TECHNOLOGIES LLC | Monitoring electrical assets for fault and efficiency correction |
7725295, | Nov 01 2006 | HITACHI ENERGY LTD | Cable fault detection |
8018337, | Aug 03 2007 | BELKIN INTERNATIONAL, INC | Emergency notification device and system |
8059006, | May 18 2007 | Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc | System and method for communicating power system information through a radio frequency device |
8065099, | Dec 20 2007 | ACLARA TECHNOLOGIES LLC | Power distribution monitoring system and method |
8067946, | Nov 02 2007 | EATON INTELLIGENT POWER LIMITED | Method for repairing a transmission line in an electrical power distribution system |
20020089802, | |||
20030020765, | |||
20030119568, | |||
20030153368, | |||
20030174067, | |||
20030178290, | |||
20030179149, | |||
20040005809, | |||
20040032340, | |||
20040036478, | |||
20040067366, | |||
20040113810, | |||
20040214616, | |||
20040233159, | |||
20050040809, | |||
20050068193, | |||
20050068194, | |||
20050079818, | |||
20050087599, | |||
20050110656, | |||
20050132115, | |||
20050151659, | |||
20050163432, | |||
20050205395, | |||
20050215280, | |||
20060084419, | |||
20080077336, | |||
20090115426, | |||
20090119068, | |||
20100013632, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 17 2008 | SALEWSKE, TYSON J | Schweitzer Engineering Laboratories, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021257 | /0151 | |
Jul 17 2008 | FEIGHT, LAURENCE V | Schweitzer Engineering Laboratories, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021257 | /0151 | |
Jul 18 2008 | Schweitzer Engineering Laboratories Inc | (assignment on the face of the patent) | / | |||
Jun 01 2018 | Schweitzer Engineering Laboratories, Inc | CITIBANK, N A , AS ADMINISTRATIVE AGENT | NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS | 047231 | /0253 |
Date | Maintenance Fee Events |
Sep 05 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 07 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 04 2017 | 4 years fee payment window open |
Sep 04 2017 | 6 months grace period start (w surcharge) |
Mar 04 2018 | patent expiry (for year 4) |
Mar 04 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 04 2021 | 8 years fee payment window open |
Sep 04 2021 | 6 months grace period start (w surcharge) |
Mar 04 2022 | patent expiry (for year 8) |
Mar 04 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 04 2025 | 12 years fee payment window open |
Sep 04 2025 | 6 months grace period start (w surcharge) |
Mar 04 2026 | patent expiry (for year 12) |
Mar 04 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |