A system and method for filtering electric power system data communicated from faulted circuit indicators (FCIs) and at least one other source before the electric power system data is further communicated to a monitoring system such as SCADA. The power system data from the FCIs may include an event such as a fault on the electric power system. To avoid sending incorrect or excess information along to the monitoring system, the present disclosure describes a system and method for comparing data from the FCIs against electric power system data gathered either directly from the electric power system or from an intelligent electronic device (IED). If the two sets of data agree, then the information is passed on to the monitoring system. The FCIs may communicate to a transceiver interface periodically, upon detection of an event, and/or upon interrogation by the transceiver interface.

Patent
   8665102
Priority
Jul 18 2008
Filed
Jul 18 2008
Issued
Mar 04 2014
Expiry
Jan 07 2032
Extension
1268 days
Assg.orig
Entity
Large
240
183
currently ok
35. A method for filtering status messages from a faulted circuit indicator in communication with an electric power system and to a receiver interface in communication with a monitoring system, the method comprising the steps of:
detecting an adverse power system event by the faulted circuit indicator;
transmitting a status message to the transceiver interface, wherein the status message comprises an indication of the adverse power system event;
receiving power system information by the transceiver interface;
verifying the adverse power system event using power system information received from a second device associated with the electric power system; and
transmitting the status message to the monitoring system only upon verification of the status message.
43. A method for reducing an amount of communication from faulted circuit indicators to a monitoring system of an electric power system including a transceiver interface for filtering status messages from the faulted circuit indicators in communication with an electric power system and sending electric power system information to the monitoring system, the method comprising the steps of:
detecting an inimical power system event by the faulted circuit indicator;
transmitting a status message to the transceiver interface, wherein the status message comprises an indication of the inimical power system event;
receiving power system information by the transceiver interface;
verifying the inimical power system event using power system information received from a second device associated with the electric power system; and
transmitting the status message to the monitoring system only upon verification of the status message.
30. A transceiver interface for receiving a status message from a first device comprising a faulted circuit indicator monitoring an electric power system, processing the status message, and transmitting the status message to a supervisory control and data acquisition scheme, comprising:
a radio receiver configured to receive the status message from the faulted circuit indicator, wherein the status message comprises an indication of a fault on the electric power system;
a logic module configured to:
verify the fault using other power system information received from a second device associated with the electric power system, wherein verifying the fault comprises determining whether the second device detected the fault and
communicate the status message to a transceiver only upon verification of the status message; and
a transceiver in communication with the logic module and configured to transmit the status message to the supervisory control and data acquisition scheme.
1. A system for providing power system information to a monitoring scheme, comprising:
a monitoring scheme associated with an electric power system;
a first device comprising a faulted circuit indicator associated with the electric power system, comprising:
an acquisition circuit configured to monitor a power system condition;
a processor in communication with the acquisition circuit configured to detect an adverse event on the electric power system based on the power system condition; and
a radio transmitter in communication with the processor and configured to transmit a status message upon occurrence of a predetermined condition, wherein the status message comprises an indication of the adverse event;
a transceiver interface associated with the electric power system, including:
a radio receiver configured to receive the status message from the first device;
a logic module in communication with the radio receiver, configured to receive the status message from the first device and a status message from a second device associated with the electric power system, and verify the adverse event using power system information received from the first device and the second device and only upon verification communicate the status message to a transceiver; and
wherein the transceiver is in communication with the logic module and configured to transmit the status message to the monitoring scheme.
2. The system of claim 1 wherein the second device comprises the transceiver interface, which further comprises an acquisition circuit for acquiring power system data from the electric power system.
3. The system of claim 2, wherein the logic module is configured to compare the status message against power system data acquired by the acquisition circuit.
4. The system of claim 3, wherein the adverse event comprises a fault on the electric power system and the data acquired by the acquisition circuit comprises status of an interrupting device on the electric power system.
5. The system of claim 3, wherein the adverse event comprises a fault on the electric power system and the data acquired by the acquisition circuit comprises status of a contact of an intelligent electronic device.
6. The system of claim 3, wherein the adverse event comprises a fault on the electric power system and the data acquired by the acquisition circuit comprises a digital signal.
7. The system of claim 3, wherein the logic module is further configured to interrogate the faulted circuit indicator for a status message, and the event comprises an interrogation command from the transceiver interface.
8. The system of claim 1, wherein the adverse event comprises one selected from the group consisting of: a fault on the electric power system, detection of load above a threshold for a determined amount of time, a temporary fault, a permanent fault, loss of potential, a switching transient, a system overload, and exceeded load profile, and combinations thereof.
9. The system of claim 5, wherein the status of the contact comprises one selected from the group consisting of a protective element pickup, a trip signal, an overcurrent element pickup, an undervoltage element pickup, a power swing pickup, a ground fault element pickup, a ground overcurrent element pickup, and combinations thereof.
10. The system of claim 3, wherein the logic module is further configured to only communicate the status message to the monitoring scheme if the adverse event correlates with the data acquired by the acquisition circuit.
11. The system of claim 10, wherein the transceiver interface further comprises a memory in communication with the logic module, and the logic module is further configured to write the status message to memory.
12. The system of claim 3, wherein the logic module is further configured to communicate the status message on a low priority basis to the transceiver if the adverse event does not correlate with the data acquired by the acquisition circuit.
13. The system of claim 2, wherein the acquisition circuit comprises a communications circuit in communication with the second device comprising an intelligent electronic device connected to the electric power system.
14. The system of claim 2, wherein the acquisition circuit comprises a communications circuit in communication with equipment installed on the electric power system.
15. The system of claim 14, wherein the equipment comprises an interrupting device.
16. The system of claim 1, wherein the adverse event comprises one selected from the group consisting of: an overcurrent condition, an undervoltage condition, an overtemperature condition, a fault condition, and combinations thereof.
17. The system of claim 1, wherein the faulted circuit indicator further comprises a temperature-sensing module configured to sense a temperature associated with the faulted circuit indicator.
18. The system of claim 1, wherein the faulted circuit indicator further comprises a temperature-sensing module configured to sense a temperature associated with the electric power system.
19. The system of claim 1, wherein the predetermined condition comprises detection of the adverse event.
20. The system of claim 1, wherein the status message further comprises faulted circuit indicator location information.
21. The system of claim 20, wherein the location information comprises GPS coordinates.
22. The system of claim 20, wherein the location information comprises a serial number of the faulted circuit indicator.
23. The system of claim 20, wherein the location information comprises a pole number.
24. The system of claim 1, wherein the status message further comprises fault history information from the faulted circuit indicator.
25. The system of claim 1, wherein the faulted circuit indicator further comprises a clock in communication with the processor, and the predetermined condition comprises a lapse of a predetermined time interval.
26. The system of claim 1, wherein the transceiver interface comprises a separate component of the system.
27. The system of claim 1, further comprising an intelligent electronic device in communication with the monitoring scheme and configured to acquire power system information, and comprising the transceiver interface.
28. The system of claim 1, wherein the monitoring scheme comprises one selected from the group consisting of: a supervisory control and data acquisition (SCADA) system, an outage management system, an automatic meter reading (AMR) system, an advanced metering infrastructure (AMI) system, a communications system, and combinations thereof.
29. The system of claim 1, wherein:
the faulted circuit indicator further comprises a clock in communication with the processor;
the processor is configured to record a time between the detection of the adverse event and receipt of an interrogation from the transceiver interface, and to write the time into the status message.
31. The transceiver interface of claim 30, further comprising a communications port in communication with the logic module, and configured to receive the other power system information from the second device comprising an intelligent electronic device.
32. The transceiver interface of claim 30, further comprising a communications port in communication with the logic module, and configured to receive the other power system information from the second device comprising power system equipment on the electric power system.
33. The transceiver interface of claim 30, further comprising a radio transmitter in communication with the logic module, and wherein the logic module is configured to cause the radio transmitter to send an interrogation message to the faulted circuit indicator causing the faulted circuit indicator to transmit the status message.
34. The transceiver interface of claim 30, wherein the logic module is further comprised to communicate the status message to the transceiver only if the status message correlates with the other power system information.
36. The method of claim 35, wherein the step of detecting an adverse power system event comprises one selected from the group consisting of: detecting a fault on the electric power system;
detecting a permanent fault on the electric power system; detecting a temporary fault on the electric power system; detecting an overcurrent condition; detecting an undervoltage condition; detecting an elevated temperature condition; detecting a passage of a predetermined amount of time; and combinations thereof.
37. The method of claim 35, wherein the step of transmitting the status message comprises transmitting location information of the faulted circuit indicator.
38. The method of claim 37, wherein the step of transmitting the location information comprises transmitting GPS coordinates of the faulted circuit indicator.
39. The method of claim 37, wherein the step of transmitting the location information comprises transmitting a serial number of the faulted circuit indicator.
40. The method of claim 37, wherein the step of transmitting the location information comprises transmitting a pole number.
41. The method of claim 35, wherein the step of verifying comprises comparing the adverse power system event against a status of an interrupting device on the electric power system.
42. The method of claim 35, wherein the step of verifying comprises comparing the adverse power system event against a status of an intelligent electronic device contact.

This disclosure relates to communications from faulted circuit indicators. More particularly, this disclosure relates to filtering the communications from faulted circuit indicators and sending only selected communications to a central monitoring system.

Non-limiting and non-exhaustive embodiments of the disclosure are described, including various embodiments of the disclosure with reference to the figures, in which:

FIG. 1 is a block diagram illustrating a system for filtering data from faulted circuit indicators;

FIG. 2 is a block diagram of a faulted circuit indicator;

FIG. 3 is a block diagram of a transceiver interface;

FIG. 4 illustrates a line diagram of a power system using the present disclosure;

FIG. 5 is a line diagram of a power system using the present disclosure;

FIG. 6 is a line diagram of a power system using the present disclosure; and,

FIG. 7 is a line diagram of a power system using the present disclosure.

Processes and distributed systems are often monitored, automated, controlled or protected by a central monitoring system. Some examples of central monitoring systems include supervisory control and data acquisition (SCADA) systems, outage management systems, automatic meter reading (AMR) systems, advanced metering infrastructure (AMI) systems, other communications systems, and the like. One such process or distributed system that is typically monitored and controlled by a monitoring system is electric power transmission and distribution. The monitoring system may be configured to receive data, events, and actions taken on the power system from various devices on the electric power transmission and distribution system. Accordingly, the supervisory control operations made at the monitoring system level are only as appropriate as the data received from the power system devices is timely and accurate. Thus, monitoring systems require that the data received from the various power system devices be timely and accurate.

As mentioned above, electric power protection, automation, control, and monitoring may involve the use of various devices intended to gather and/or process power system information from the electrical power system equipment. Faulted circuit indicators (FCIs) are one type of such device, and may be used to indicate the presence of a fault and/or other events on a conductor. Various types and functions of FCIs are described in U.S. Pat. Nos. 3,676,740, 3,906,477, 4,063,171, 4,234,847, 4,375,617, 4,438,403, 4,456,873, 4,458,198, 4,495,489, 4,974,329, 5,677,678, 5,990,674, 6,014,301, 6,016,105, 6,133,723, 6,133,724, 6,429,661, 6,433,698, 6,479,981, 6,734,662, 6,822,576, 6,894,478, 6,949,921, 6,963,197, 7,023,691, 7,053,601, 7,106,048, 7,271,580, and 7,315,169, each of which is herein incorporated by reference in its entirety.

FCIs often include means of detecting and processing various power system conditions. Among those are the current, voltage, and temperature. Temperature is typically measured using a diode that is part of a processor on the FCI. With these measured conditions, the FCI can perform various calculations to determine whether an event has occurred on the power system such as a permanent fault, a temporary fault, an overcurrent condition, an undervoltage condition, a high temperature condition, an inrush condition, a backfeed condition, direction of current flow, loss of potential, a switching transient, a system overload, an exceeded load profile, and the like.

FCIs may further include a means of communication to a monitoring system such as via radio frequency, fiber optics, copper wire, and the like. Typically, FCIs with the ability to communicate to the monitoring system are configured to communicate every event and/or at predetermined time intervals. This results in communication of vast amounts of data back to the monitoring system, leading to an overload of information for the system.

Further, though FCIs have been used for many years to assist electric utility personnel to locate faulted sections of power line more efficiently, FCIs may tend to false trip and/or false reset. These false tripping and false resetting events provide misleading information to linemen and reduce the perceived reliability of FCIs. Most of the sources of undesirable operation can be attributed to misapplication or human error. However, because most FCI events are a result of a detection of a peak current and FCIs have no inherent means of discriminating fault current from other overcurrent event, they may misoperate by indicating a fault when the line is not faulted. Further, FCIs typically have no inherent means of discriminating between load current and backfeed current, leading to similar misoperations. Consequently, due to the various possible misoperations, utility personnel may loose trust in the devices. Further, because misoperations may lead to communications of events back to the monitoring system (in schemes where the FCIs are capable of communicating events back to the monitoring system), misinformation concerning those events may cause improper reaction. Because of the many communications due to misoperations, the monitoring system may become overwhelmed with data provided by the FCIs.

The embodiments of the disclosure will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the disclosed embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of the systems and methods of the disclosure is not intended to limit the scope of the disclosure, as claimed, but is merely representative of possible embodiments of the disclosure. In addition, the steps of a method do not necessarily need to be executed in any specific order, or even sequentially, nor need the steps be executed only once, unless otherwise specified.

In some cases, well-known features, structures or operations are not shown or described in detail. Furthermore, the described features, structures, or operations may be combined in any suitable manner in one or more embodiments. It will also be readily understood that the components of the embodiments as generally described and illustrated in the figures herein could be arranged and designed in a wide variety of different configurations.

Several aspects of the embodiments described will be illustrated as software modules or components. As used herein, a software module or component may include any type of computer instruction or computer executable code located within a memory device and/or transmitted as electronic signals over a system bus or wired or wireless network. A software module or component may, for instance, comprise one or more physical or logical blocks of computer instructions, which may be organized as a routine, program, object, component, data structure, etc., that performs one or more tasks or implements particular abstract data types.

In certain embodiments, a particular software module or component may comprise disparate instructions stored in different locations of a memory device, which together implement the described functionality of the module. Indeed, a module or component may comprise a single instruction or many instructions, and may be distributed over several different code segments, among different programs, and across several memory devices. Some embodiments may be practiced in a distributed computing environment where tasks are performed by a remote processing device linked through a communications network. In a distributed computing environment, software modules or components may be located in local and/or remote memory storage devices. In addition, data being tied or rendered together in a database record may be resident in the same memory device, or across several memory devices, and may be linked together in fields of a record in a database across a network.

Embodiments may be provided as a computer program product including a machine-readable medium having stored thereon instructions that may be used to program a computer (or other electronic device) to perform processes described herein. The machine-readable medium may include, but is not limited to, hard drives, floppy diskettes, optical disks, CD-ROMs, DVD-ROMs, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, solid-state memory devices, or other types of media/machine-readable medium suitable for storing electronic instructions.

FIG. 1 is a block diagram illustrating a system 100 for communicating information from a faulted circuit indicator to a monitoring system. As can be seen, FIG. 1 illustrates a typical three-phase electric power distribution system 180, and a substation 110 that includes interrupting devices 112, 114, and 116 for each of the three phases. The interrupting devices may be any device configured to interrupt electric current on the system such as, for example, circuit breakers, reclosers, switches, fuses, and the like.

The interrupting devices and/or the phases may further be monitored, protected, controlled, and/or automated by various intelligent electronic devices (IEDs). IEDs are typically computer-based relays such as those sold by Schweitzer Engineering Laboratories, Inc. of Pullman Wash. Further, the IEDs may consist of remote terminal units (RTUs) configured to monitor the power system and communicate power system information back to a central computer, monitoring system, or the like. IEDs 122, 120 may further be configured to communicate power system information including, but not limited to, currents, voltages, resistances, reactances, distance to fault, phasors, synchrophasors, impedances, contact outputs, statuses (such as a circuit breaker status, for example), and the like.

As can be seen, FCIs 102, 104, and 106 are installed on the overhead conductors of the electric power distribution system 180. Each of the three FCIs 102, 104, and 106 are of the type that includes a means for radio communication and an antenna. The FCIs 102, 104, 106 may be configured to broadcast a status message upon detection of an event and/or following the passage of a predetermined amount of time (scheduled reporting).

As can be seen, the FCIs 102, 104, and 106 are configured to broadcast the status messages and the Transceiver interface (TI) 150 is configured to receive the status messages. TI 150 includes a means for receiving radio frequency messages such as an antenna and a transceiver. TI 150 may further be configured to receive power system information either directly from the power system or from IEDs connected to the power system. FIG. 1 illustrates one example where IED 122 receives power system information from sensor (in this example a current transformer) 118 and interrupting device status from interrupting device 116. IED 122 can then communicate power system information to the TI 150. Further, illustrated is IED 120, which receives interrupting device status from interrupting device 112, and may be configured to communicate this interrupting device status to TI 150. Further still, illustrated is a communications link between TI 150 and interrupting device 114 allowing TI 150 to gather interrupting device status information from interrupting device 114. Likewise, illustrated is sensor (in this example a current transformer) 124 in communication with TI 150 such that TI 150 may gather power system information therefrom.

It is contemplated that any such scheme for communicating power system information from the power system to TI may be used. As many interrupting devices and conductors are monitored by IEDs, it may be easiest for utilities to simply configure those IEDs to send power system information to the TI 150. Even so, it is contemplated that TI may employ known techniques for acquiring power system information directly from power system equipment and sensors as IEDs typically do.

Further illustrated is that IEDs 120 and 122 have a communications link to the monitoring system 160. Thus, the monitoring system is capable of receiving data directly from the IEDs. Though IEDs provide a great deal of information to the monitoring system 160, fault location on a distribution system is difficult to derive solely from such information. For example, though an IED may be capable of detecting a fault and calculating a distance to the fault, the distribution system may have several branches, resulting in several possible locations of a fault. Further, because there are typically several pieces of distribution equipment such as transformers, capacitor banks, voltage regulators, and the like on the distribution system, distance calculations may be flawed. Accordingly, power system information from FCIs installed on conductors throughout the electric power system may be of much value to the monitoring system 160 to better determine location of a fault.

According to the present disclosure, therefore, the monitoring system is also capable of receiving power system information from TI 150. TI 150 is configured, as described in more detail herein, to receive radio frequency communications from the FCIs 102, 104, and 106, and compare it against other power system information either received from the IEDs 120, and 122 or from the power system itself before communicating the power system information gathered from the FCIs 102, 103, and 106 to the monitoring system 160. The result is that the monitoring system 160 receives power system information from FCIs that has been verified with power system information from other sources, thus decreasing the degree to which power system information from the FCIs communicated to the monitoring system includes misinformation due to misoperation by the FCIs. A further result is a decrease in the overall communication of power system information from FCIs to the monitoring system. That is, the present disclosure describes a system of only transmitting filtered or validated data to the monitoring system instead of a system where all status messages from all FCIs are communicated to the monitoring system.

The monitoring system of the present disclosure may be any system configured to receive information from the IEDs, FCIs, and/or TIs. The monitoring system may be a stand-alone monitoring system, or part of a larger monitoring scheme. For example, the monitoring system may be or may be part of a larger outage management system configured to monitor and/or locate faults or outages on an electric power system. The monitoring system may include an existing communications infrastructure. The monitoring system may be a SCADA system or pass data along to a SCADA system. The monitoring system may be or pass data along to an AMR or AMI system. Other monitoring systems are also within the scope of this disclosure.

a. Faulted Circuit Indicator with RF Communications

As described in FIG. 1, the FCIs of the present disclosure are capable of communicating power system information to the TI. It is contemplated that any means of such communication is within the scope of this disclosure. Such means may include, for example, radio frequency, fiber optic, copper wire, and the like. Several examples are described herein where the communication from the FCI to the TI is over radio frequency, though other means of communication are contemplated.

FIG. 2 is a block diagram illustrating the electronic circuitry, generally designated 200, of a faulted circuit indicator that may be used with the present disclosure. A current acquisition circuit (not shown), which may include a current transformer, senses current in a monitored conductor including any fault currents. The acquired/monitored current 202 passes through a full wave rectifier 204, and into a pair of amplifiers 206 and 208. The output of amplifier 206 is routed to comparator 210, which generates a fault signal in the manner described below. The output of amplifier 206 is also routed through an averaging circuit 212, and then into an analog to digital converter (ADC) 214 which may be an inherent accessory of processor 216. Alternatively, averaging circuit 212 may not be present, and processor 216 will determine the instantaneous and average current using algorithms well known in the art. Based on the measured average current, processor 216 will program a digital to analog converter (DAC) 218 to generate an input signal to comparator 210.

The output from amplifier 206 is tied to the positive input terminal of comparator 210. The negative input terminal of comparator 210 is sourced by DAC 218, which is programmed by processor 216. In this way, processor 216 can control the threshold level of comparator 210. Adjusting the threshold of comparator 210 directly controls the fault current threshold (i.e.; the level of current in the monitored conductor that is considered a fault) and provides the means for auto-ranging.

The output of amplifier 208 is shown being passed through a second ADC 220. Note that a single ADC and a multi-position analog switch could be used as well. Processor 216 uses the input from this second ADC 220 to monitor the peak current detected by the current acquisition circuit approximately once every half-cycle period. If the monitored peak current is not sufficiently large, processor 216 will record the time. If the monitored peak current is of sufficiently small magnitude for a predetermined time period the processor 216 will place the fault indicator into system detect state, which is the method in which inrush lockout is accomplished. System detect state is discussed later in the application. The particular magnitude below which the current must fall before system detect state is triggered is determined by the value of the monitored average current. Additionally, the fault threshold that is determined from the monitored average current is saved in the processor non-volatile memory such that the re-energization level will be configured in the event that the processor loses power during an outage.

FIG. 2 also shows an optional battery 222, which can provide backup power to power supply circuit 224, processor 216, display control 226, RF link 280, or some subset thereof. Power supply circuit 224, which consists of one or more DC regulators and required support circuitry, provides regulated power to all circuits in the fault indicator. It receives unregulated power from either external battery 222 or full wave rectifier 204. Supply voltage supervisor 232 monitors the power quality of power supplied by power supply circuit 224 and forces processor 216 into reset if the quality of the supplied power is inadequate. In addition, FIG. 2 shows display controller 226, which is controlled by processor 216. The actual display could be, for example, LEDs or a mechanical rotor display. FIG. 2 also shows reset/test switch 228. Reset/test switch 228 allows maintenance personnel to manually reset the fault indicator and clear any faults, or, if no faults have been noted, to test the operation of the fault indicator and ensure that it can properly display the occurrence of any faults.

FIG. 2 also shows external LED 230 coupled to and controlled by processor 216. External LED 230 is a means to optically communicate with a remote computer or other device monitoring the battery level of the fault indicator. Such communications could take place over fiber-optic lines. In response to various circuit conditions, processor 216 activates display control 226 to indicate that a permanent or temporary fault has occurred. In addition, the fault indicator can optionally provide a monitoring system output signal (not shown), which would also be controlled by processor 216. If the fault indicator is of the targeted type processor 216 can set the target to the fault indicating condition, or it can reset the target to the normal condition after a timed reset interval. Processor 216 may optionally display information on a seven-segment display, such as the amount of elapsed time since a fault occurred. Processor 216 may also be optionally provided with a radio frequency (RF) link to communicate with the monitoring system via, for example, a transceiver interface.

In addition to the above, the FCI may be configured to detect other power system events using the available information and algorithms in the microprocessor. For example, the microprocessor may be programmed to detect for loss of voltage, compare a load against a load profile, count the number of events by event type (permanent faults, temporary faults, and the like), record the amount of time between events, record the amount of time between an event and sending a message, record the amount of time between detecting an event and being interrogated, and the like.

As for the exceeded load profile, the FCI may include a load profile defining acceptable load conditions over time and be configured to indicate that an event has occurred if the load exceeds the load profile. For example, the load profile may indicate acceptable conditions unless the total time in an overcurrent condition is over 10 hours. Thus, once the FCI detects that the total time spent in an overcurrent condition is greater than 10 hours, it indicates an event. Another possible load profile may be that an overcurrent condition must persist for a predetermined amount of time. As long as the overcurrent condition does not exceed the predetermined amount of time, no event is issued for that profile. If, however, an overcurrent condition exists for the predetermined amount of time, the FCI does issue an event for that load profile.

As described above, the FCI may be configured to only communicate to the TI under certain circumstances. For example the FCI may be configured to initiate a message to TI after the passage of a predetermined amount of time (scheduled reporting). In such a configuration, the FCI would also include a clock module configured to track the passage of time. The FCI may include a predetermined message configuration and simply populate the message with data and transmit the populated message upon a lapse of the predetermined amount of time or on a report schedule. For example, the FCI may be configured to populate and transmit a report every eight hours. The predetermined message configuration may include areas for populating the detected current, detected voltage, whether a permanent fault is detected, whether a temporary fault has been detected, detected temperature, the fault detection level, whether an inrush condition was detected, the number of previous faults detected, an expected remaining lifetime, identification information, and the like.

The FCI may be configured to send a message to TI upon receiving an interrogation from TI. In such a configuration, the FCI would be capable of receiving an instruction from TI to configure and send a status message containing either a preconfigured set of data, or a set of data required by TI. The existing RF link may be used to receive the message from TI, communicate it to the micro-controller 216, and communicate the resulting message from the micro-controller 216 to TI. The micro-controller 216 may be configured to populate data in a pre-configured message. For example, the pre-configured message may be the status message that the FCI transmits upon the passage of time or the occurrence of an event. As above, the pre-configured message may include data such as the detected current, detected voltage, whether a permanent fault is detected, whether a temporary fault has been detected, ambient temperature, the fault detection level, whether an inrush condition was detected, the number of previous faults detected, an expected remaining lifetime, identification information, and the like.

Further, the TI may interrogate for specific power system information, in which case the micro-controller 216 would populate a message with only the information required by the TI, and cause the message to be transmitted to the TI. In this configuration, the message may be preconfigured, and the FCI would only populate the fields corresponding with the information required by TI. Further, the message may be preconfigured with certain data that is required to be in each message such as FCI identification information. The message may be configured based on what was requested by the TI. After the message is populated, the FCI would cause the message to be communicated to TI using, for example, the RF link 280 used to receive the interrogation from the TI.

In an embodiment, the FCI may configure and transmit a status message upon the occurrence of an event. The event may be any event condition detectable by the FCI. For example, the event may be any of: detection of a permanent fault, detection of a temporary fault, detection of load current above a certain threshold and/or for a predetermined amount of time, an overcurrent condition, an undervoltage condition, a loss-of-voltage condition, a high-temperature alarm, a change in fault detection levels, lapse of a predetermined amount of time, expected FCI lifetime falling below a predetermined threshold, an exceeded load profile, and the like.

If an event is detected by the FCI, the micro-controller 216 is configured to either create or populate a status message and cause the RF link 280 to transmit the message to the TI. In the embodiment where the message configuration is predetermined, the microcontroller populates the fields of the message with the required information. In the configuration where the message configuration is not predetermined, the FCI may form a message with the event type, and may include FCI identification information as well. The FCI causes the message to be transmitted once the message is formed.

The FCI may further be configured to transmit a status message to TI upon occurrence of any of the message triggers described above.

The FCI may include a clock or other timing device and start a timer when an event is detected. The microcontroller may stop the timer upon receiving an interrogation and include the lapsed time in the status message.

In one embodiment, the FCI may be configured to transmit a status message only after a predetermined amount of time after the detection of an event if the FCI has not yet been interrogated by the TI. In this embodiment, the FCI would initiate a timer upon occurrence of an event (if the event is a fault and no current is flowing through the conductor, the battery may be necessary to run the timer). If the FCI were not interrogated by the TI for a status message before the timer runs out, then the FCI would initiate a status message to the TI. In one embodiment, once the FCI has been interrogated, it cancels the timer, and does not send a status message solely based on the lapse of the timer.

In one embodiment, the FCI is configured such that it does not send a status message to the TI unless it is interrogated thereby. This saves battery life of the FCI in that status messages are not sent unless they are needed by the TI.

In one embodiment, the TI may be capable of signaling the FCIs not to send a status report. Upon receipt of such a message, FCIs would not send a status message until the next time that the FCI is configured to send a status report (upon further interrogation, event occurrence, passage of time, or the like).

One field of information in the status message that the FCI may send to the TI that may help with fault location is FCI identification information. This identification information may include, for example, an FCI serial number, GPS coordinates of the FCI, or other FCI identification information. Another possible identification information may be a pole number of a power pole near where the FCI is installed. Several electric power utilities maintain maps of power distribution systems using power pole numbers. In this case, the pole number may give the best information as to the location of the FCI that detected the event. This identification information may be stored either in the micro-controller 216 or within a memory storage (not separately pictured). The FCI identification information may be preprogrammed into the FCI by the manufacturer (e.g. a serial number programmed into the FCI by the manufacturer) or writeable to the FCI by either the manufacturer or the end user. The RF link, or optical communication via the external LED 230 may be used to program the FCI identification information into the FCI.

One helpful type of FCI identification information that may be programmed into the FCI is GPS coordinates of the installed FCI. In this embodiment, when the FCI is installed, the GPS coordinates of the FCI may be calculated (using a GPS device), and programmed into the FCI using, for example, the RF link or the optical communication via the External LED 230.

Alternatively, the GPS coordinates may be calculated when the FCI is installed and associated with other FCI identification information in a database. For example, when the FCI is installed, the GPS coordinates may be calculated and recorded along with the installed FCI serial number. Thus, using the FCI serial number, the exact location of the FCI may be determined using the GPS coordinates and the database correlating the two types of information.

FCI location information may be useable by the SCADA scheme and/or the TI to determine the location of the FCI and for correlating status messages from the FCI with other power system information. The location of the FCI is helpful in determining the location of an event on the electric power system. For example, where two FCIs are adjacent on the same conductor, and one reports a fault and the other does not, then the fault is likely somewhere on the conductor between those two FCIs.

b. Transceiver Interface

Turning now to FIG. 3, a block diagram of the Transceiver interface (TI) 150 is illustrated in more detail. As is described above, the TI 150 is capable of receiving communications from FCIs, the power system (and/or IEDs connected to the power system), and transmitting information to the monitoring system. It is contemplated that the TI 150 may be a stand-alone device, or that it may be part of another intelligent device for automation, control, monitoring, or protection of the electric power system. For example, the TI may function on an IED capable of receiving power system data from FCIs and from the power system (or another IED, as needed). The TI may function as a unit within a monitoring system (such as SCADA), receiving IED and FCI communications, and filtering such as described herein before passing on the FCI information to the monitoring system.

Illustrated in FIG. 3 is a TI 150 receiving communications from the FCIs 102, 104, and 106, IEDs 120 and 122, and from the electric power system, specifically from interrupting device 114 and sensor (in this example, a current transformer) 124. The TI includes a transceiver module 356 for receiving and transmitting messages. The transceiver module 356 is in communication with various communications ports 362, and 364. The communications ports may be any known in the art such as, for example, fiber-optic, radio frequency, copper wire (9-pin, serial, RJ-45, USB, and the like), and so forth. There may be a plurality of communications ports, even one for each connected device.

TI 150 further includes a communications port 362 for communication with the monitoring system 160 for transmitting data to the monitoring system 160 and if needed for receiving data from the monitoring system 160. For example, when the TI is within an IED, it may receive commands from the monitoring system to open a line such as by opening the interrupting device 114.

TI also includes a RF communications port 360. The RF communications port 360 may be connected directly to the TI 150, or may be simply in communication with the TI 150. For example, the RF communications port 360 may be a cable leading to an RF antenna. Further, the RF communications port 360 may include an intermediate device such as a modem or external radio. One such intermediate device may be the SEL-3021-1 or SEL-3021-2 serial encrypting transceiver (available from Schweitzer Engineering Laboratories, Inc.) used to encrypt and/or decrypt data communicated with the FCIs. If the SEL 3021-1 or SEL 3021-2 is used, a separate RF transceiver is needed to transmit the communications over RF.

Another such intermediate device may be the SEL 3022 Wireless Encrypting Transceiver (available from Schweitzer Engineering Laboratories, Inc.) used to encrypt and/or decrypt data communicated with the FCIs and for wireless communication of such data.

The RF communications port 360 is configured to receive RF communications from the FCIs 102, 104, and 106 and communicate such to the transceiver module 356. In an embodiment, the RF communications port 360 is also configured to transmit communication from the TI 150 to the FCIs 102, 104, and 106 such as interrogation of the FCIs.

The TI further includes a processor 352 (which may be a device such as an application specific integrated circuit (ASIC), field programmable gate array (FPGA), microprocessor, or the like) in communication with the transceiver. The processor 352 includes a logic module 354 operating thereon. The logic module 354 is configured to receive power system information from various sources and verify such information through comparison. In an embodiment, the logic module 354 is configured to receive and parse status messages from FCIs 102, 104, and 106, and power system information from other sources (such as the power system itself or IEDs connected thereto, as described herein) and compare the power system information from status messages from the FCIs 102, 104, and 106 against the power system information from other sources. If the power system information from other sources agrees with the power system information from the FCIs, then the logic module 354 is further configured to have the power system information from the FCIs formatted into a format expected by the monitoring system 160 and transmitted to the monitoring system 160 using the transceiver module 356 and the communications port 362.

For example, if FCI 102 determines that there is a fault on the monitored conductor, it may be configured to send a status message containing such information and identification information to the TI via the RF communications port 360. The status message is then communicated to the logic module. Similarly, IED 122 is monitoring the same phase as FCI 102, and may be configured to constantly send status messages to TI 150 via the communications port 364. The logic module 354 is configured, in this example, to parse the message from FCI 102 to determine the identification information (including the monitored phase), and that the FCI 102 has determined that there is a fault on that phase. The logic module 354 is further configured to parse the status message from IED 122 to determine whether IED 122 has also detected a fault on the monitored phase. If the status message from the IED 122 also indicates the presence of a fault on the phase monitored by FCI 102, then the logic module is configured to have the processor transmit the status message from the FCI to the monitoring system 160.

As mentioned above, the monitoring system 160 may expect the message to be communicated according to a particular protocol (e.g. DNP, MODBUS, IEC-61850, and the like). The processor may be configured to format the status message according to the expected protocol before sending the status message to the monitoring system 160 via the transceiver module 356 and the communications port 362.

The logic module 354 is further configured to interrogate the IEDs 120 and 122 for status information in an effort to verify a status message received from an FCI 102, 104, and 106.

The transceiver module 356 may be in communication with the power system via a communications port 364. In this embodiment, the TI 150 may be capable of making calculations on the received power system data as an IED would do to derive power system information that may be used to verify status messages from FCIs. For example, if the received information is a current and breaker status (from interrupting device 114 and current transformer 124), the processor 352 may be configured to filter and process the current information as is known in the art to determine whether there is a fault on the conductor.

The logic module 354 may be configured to have an FCI interrogated so that the FCI sends, and the TI receives a status message from the FCI in an effort to verify power system information received from either the power system or an IED. The logic module 354 may be configured to have an FCI interrogated to receive a status message so that a location of an event may be determined when an event is either derived from the received power system information or received from an IED. The logic module 354 may trigger the processor 352 to configure and send an interrogation message to the FCIs requesting a status message from each FCI.

The logic module 354 may be configured to trigger the processor 352 to configure and send an interrogation message to a particular one of the FCIs requesting a status message from that particular FCI. In this case, the interrogation message may include the FCI identification information, and each FCI receiving the interrogation message would be configured to compare the received FCI identification information against its own FCI identification information and respond to the request only if the two match.

The processor 352 may be configured to request specific information in the interrogation message. Alternatively, the processor 352 may be configured to simply request a status message. In either case, the FCIs may be configured to respond to the particular request presented in the interrogation message as described above.

The logic module 354 may further be configured to use the received response to the interrogation message as is described above to either verify the power system information received from the power system and/or IEDs, and have the status message from the FCI communicated to the monitoring system 160.

As described above, the FCIs may be configured to record a time between detecting an event and receiving an interrogation from the TI. The time elapsed is written into the status message and sent to the TI. The TI may then use the elapsed time with the event detected to time align this event with events detected by other FCIs and reported to the TI. In an alternative embodiment, each FCI may include a clock and include the time of the event in the status message. However, as the time kept by the individual clocks may drift, these time stamps may not be as accurate. In one embodiment, each FCI also includes a clock with access to a common time source such as described below. Such FCIs could include a time stamp from the common time source for proper time alignment of status messages and/or events by the TI and or the monitoring system.

As is illustrated, the TI 150 may further be in communication with a local human-machine interface (HMI) 366. The local HMI 366 may be useful in operating the TI 150. The local HMI 366 may be in communication with the TI 150 to change and/or apply settings, set message configurations, set the monitoring system communications protocols, upload a database of FCI identification and location information, and the like.

TI 150 further includes a data storage module 358 that may be any medium capable of data storage known in the art. The processor 352 may be configured such that certain information may be written to and/or received from the data storage module 358. For example, a database of FCI identification and location information may be written to the data storage module 358. Further, certain events reports, FCI status messages, power system information, and the like may be written to the data storage module 358.

TI 150 may further be in communication with a common time source 368. The common time source 368 may be provided by various time sources including, but not limited to: a Global Positioning System (GPS); a radio time source, such as the short-wave WWV transmitter operated by the National Institute of Standards and Technology (NIST) at 2.5 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, or a low frequency transmitter, such as WWVB operated by NIST at 60 Hz; a cesium clock; an atomic clock; and the like. TI 150 may use time information from the common time source 368 to apply time stamps to certain data, and/or for comparing data from FCI status messages with other power system data. IEDs also often receive common time information, and are often capable of applying time stamps to the data.

FIGS. 4-7 illustrate specific examples of the use of the present disclosure on an electric power system. Each figure includes various monitored conductors, interrupting devices, FCIs, TIs, and the like. Each figure also includes a substation with an associated IED receiving radio communication from the TIs. It is contemplated that the substation IED may be an intelligent electronic device that is part of the monitoring system or communicates information to the monitoring system. Further, though several TIs are illustrated in each figure, it is contemplated that each TI may be combined into one TI and/or modules operating on a single device. Further, though RF communications are shown between the TIs and the substation IED, it is contemplated that such communication could be by other methods.

Turning now to FIG. 4, a line diagram of an electric power system 400 with associated FCIs 30, interrupting devices 410, 412, and 414, TIs 424, 426, and 428, conductors 416, 418, and 420 are shown along with its associated substation 402 and substation IED 404. FCIs 30 with communications capabilities are used in conjunction with IEDs for protection, automation, and control of an electric power system. As shown in FIG. 4, the portion of an electric power system 400 includes a substation 402 with a substation IED 404. The substation 402 includes a bus 422 with three phases of power lines 416, 418, and 420. Each phase includes a TI 424, 426, and 428 (either separate units or a single unit) capable of communication with the substation IED 404. Though RF communication is illustrated, the communication between the phase TIs 424, 426, and 428 and the substation IED 404 may be by any means such as, for example, RF, electrical contacts such as over wire cables, infrared, over fiber optics, and the like. Each line 416, 418, and 420 has various FCIs 30 associated therewith for indicating the presence of a fault on the line. The FCIs 30 are also capable of communication with the TI that is on the same line as the FCI. For example, the FCIs on the A phase line 416 are capable of communication with the TI 424 for the A phase line 416. Each line 416, 418, and 420 may also include another IED 408 on the line such as a recloser control. As in FIG. 1, though not illustrated, each line may also include one or more branches, reclosers, interrupting devices, and the like.

FIG. 4 also indicates the presence of a fault 406 on the B-phase line 418 after the first two FCIs 430 and 432 on the line. The first two FCIs 430 and 432 would experience an overcurrent situation, determine that a fault has occurred, and indicate that a fault has occurred on the line. The TI 426 associated with the B-phase line 418 would also detect the overcurrent situation using the other collected data (as discussed above). If TI 426 is also a protective device, it may trip an interrupting device and/or send a message that there has been a fault on the line.

The TI 426 (acting as a protective relay) may also attempt to calculate the distance to the fault 406 using conventional fault distance algorithms. However, because the line 416 may include branches, capacitor banks, voltage regulators, transformers or other equipment, the location of the fault may not be known or calculable by a distance-to-fault calculation. Further, certain conditions of the fault and the line make the calculation of the distance to the fault less accurate. For example, the duration of the fault affects the accuracy of the fault distance calculation.

The TI 426 could also use its communication capabilities with the FCIs on the line to narrow down the location of the fault occurred on the line. In one scenario, the FCIs would be programmed such that they would indicate a fault, but would not communicate to an TI that they sensed a fault until either a predetermined amount of time had passed or the TI interrogated the FCI about whether it detected a fault. For example, TI 426 in detected the fault 406. In order to determine where the fault 406 is (or verify the location of the fault with its calculation of the distance to the fault), the TI 426 would interrogate one of the FCIs to determine if the FCI also indicated the presence of the fault. The TI could interrogate the FCIs one at a time so that not all FCIs are interrogated, and not all FCIs would use up battery life on communication with the TI, thus saving battery life of the FCIs.

The TI 426 may start with interrogating the first FCI 430. When the first FCI 430 reports the fault, then the TI 426 will interrogate the next FCI 432, and so forth, until it gets to the first FCI that does not report the fault 434. The TI would then conclude that the fault is between the last FCI that reported a fault 432 and the first FCI that did not report the fault 434. If the FCIs are programmed to report a fault after a predetermined amount of time, then interrogation by the TI may set the FCIs to not report the presence of that fault.

The TI 426 may use its calculated distance to the fault 406 to intelligently interrogate the FCIs. Here, it may be helpful for the TI to have knowledge of the “line distance” (distance on the power line instead of a straight-line or “as the crow flies” distance) to each of the FCIs, and coordinate this information with the particular identification information of each FCI. This information can be calculated and stored in, for example, a lookup table within the TI 426. Other methods for calculating and/or coordinating FCI location with its line-distance from the TI 426 may be used. If the TI 426 calculates that the fault 30 is a certain distance down a particular line, and looks up the adjacent FCIs using the lookup table. Thus, the TI 426 may calculate that the fault would lie between FCIs 432 and 434, then the TI 426 may begin its interrogation with the FCI 432 it calculates as adjacent and previous to the fault 406. When that FCI 432 reports the fault, the TI 426 could then interrogate the FCI 434 that it calculates as immediately after the fault 406. When the FCI 432 immediately before the fault reports the presence of the fault, and the FCI 434 immediately after the fault reports no fault, then the TI 426 can confirm that the fault is on a portion of the line between the FCIs 432 and 434. The TI 426 may then signal the remaining FCIs on the line 418 to not report the presence or absence of a fault or loss of potential. The TI 426 may further communicate to the substation IED 404 that the fault 406 is on the feeder 418 associated with that TI 426, and may also communicate the location of and/or distance to the fault 406. The TI 426 may also communicate to the substation IED 404 that the location of and/or distance to the fault 406 have been checked by interrogating the FCIs. The substation TI 426 can use this information to communicate to a technician the presence of, distance to, and/or location of the fault 406. The substation IED 404 can further use this information to verify that it calculated the correct phase with the fault 406.

Illustrated in FIG. 5 is another example where the power system 500 may experience a fault 506 at the bus 422. The fault 506 may disrupt voltage and/or current in the lines 416, 418, and 420, and cause the FCIs 30 on the lines to experience a possible event such as a loss of potential. The TIs 424, 426, and 428 may include algorithms allowing for a calculation of the direction to the fault 506. When the TIs 424, 426, and 428 calculates that the fault 506 happened at a point upstream from their respective feeder lines, the TIs 424, 426, and 428 may signal the FCIs 30 on their respective lines to not report the event.

The FCIs 30 of the embodiments described herein may be programmed to signal the presence of a fault back to their respective TIs 424, 426, or 428 after a predetermined time period in a case that the TI 424, 426, or 428 fails to signal the FCIs 30 not to report the event. For example, in FIG. 6 a power system 600 is illustrated. FCI 636 experiences a loss of potential downstream from an IED 408 (such as a recloser control). TI 424 does not experience a fault, and so does not interrogate the FCIs 30. After a predetermined time (such as, for example, 5 minutes), the FCI 636 signals to the TI 424 that it has experienced the loss of potential. The TI 424 can then use this information in its typical protection algorithms, and/or communicate the message to the monitoring system and/or the substation IED 404. In this example, the loss of potential may be due to a high-impedance fault (e.g. downed conductor). The TI and/or a relay at the substation may be operating a high-impedance fault detection algorithm such as Arc Sense™ Technology (available from Schweitzer Engineering Laboratories, Inc., Pullman, Wash., and described in US Patent Application Publications 2008/0030199 and 2008/0031520) configured to detect the high-impedance fault. The TI and/or relay at the substation may work in conjunction with the FCIs as described to relate the loss-of-potential detection with the detection of a high-impedance fault.

The FCIs 30 of the present disclosure may be capable of storing event data. They may further be capable of time-stamping the event data as described above with a “time since event” or a common time. In this way the TI can better use the event data.

The FCIs may further be capable of storing and time stamping multiple events. For example, if the line experienced a fault and a recloser on the line attempted to reclose the line several times, the FCI would experience several loss-of-potential, overcurrent, inrush, and/or fault events. When later interrogated, the FCI can report each event with a time stamp, and the TI can use or transmit the event information.

As mentioned herein, the present disclosure may be used on electric power systems that include branches off of a feeder. One such embodiment is illustrated in FIG. 7, where an electric power system 700 with a TI 424 acting as or operating on an IED for protecting a feeder 716 that includes a first branch 702 and a second branch 704. The feeder 716 and branches 702 and 704 include several FCIs 30 as described herein. According to this embodiment, a fault 706 has occurred on the second branch 704. TI 424 includes logic allowing it to calculate a distance to the fault. However, because the feeder 716 includes two branches, a distance to the fault results in three possible locations: one location 714 on the first branch 702; a second location 712 on the feeder 716; and, a third location at the fault 720 on the second branch 704. Accordingly, to determine the location of the fault, the IED will rely on the FCIs 30.

As with other embodiments described herein, the IED can interrogate FCIs it suspects to be the FCI immediately before the fault. Accordingly, IED will interrogate FCIs 706, 708, and 711. When FCIs 706 and 708 report no fault detection, and FCI 711 does report the fault 720, then the IED can determine that the fault 706 is on the second branch 704. To confirm the distance to the fault, the TI 424 may interrogate FCI 718 as described above. To facilitate the IED in determining which FCIs 30 are on which branch or feeder, each FCI may include its FCI identification information as described above in its status message back to the TI 424. With this information, the TI, substation IED, and/or the monitoring system can determine which feeder or branch is associated with the FCI, and its location on the feeder or branch. Accordingly, in the embodiment described above, after interrogation of the FCIs 706, 708, and 711, the TI can report the distance to the fault, and the branch (or feeder) on which the fault occurred.

Alternatively, the IED may be configured to interrogate the first FCI on each branch to determine which is the faulted branch when its distance calculation algorithms indicate that the fault is present on one of several branches. Here, the FCI would interrogate FCIs 706, 708, and 710, with only 710 reporting a fault. The IED could then conclude that the fault is located on branch 704, and either continue to interrogate FCIs on that branch to determine fault location, and/or use its distance calculation algorithms to determine the location of the fault on branch 704.

While specific embodiments and applications of the disclosure have been illustrated and described, it is to be understood that the disclosure is not limited to the precise configuration and components disclosed herein. Various modifications, changes, and variations apparent to those of skill in the art may be made in the arrangement, operation, and details of the methods and systems of the disclosure without departing from the spirit and scope of the disclosure.

Feight, Laurence V., Salewske, Tyson J.

Patent Priority Assignee Title
10009063, Sep 16 2015 AT&T Intellectual Property I, L P Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
10009065, Dec 05 2012 AT&T Intellectual Property I, LP Backhaul link for distributed antenna system
10009067, Dec 04 2014 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP Method and apparatus for configuring a communication interface
10009901, Sep 16 2015 AT&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
10020587, Jul 31 2015 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP Radial antenna and methods for use therewith
10020844, Dec 06 2016 AT&T Intellectual Property I, LP Method and apparatus for broadcast communication via guided waves
10027397, Dec 07 2016 AT&T Intellectual Property I, L P Distributed antenna system and methods for use therewith
10027398, Jun 11 2015 AT&T Intellectual Property I, LP Repeater and methods for use therewith
10033107, Jul 14 2015 AT&T Intellectual Property I, LP Method and apparatus for coupling an antenna to a device
10033108, Jul 14 2015 AT&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
10044409, Jul 14 2015 AT&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
10050697, Jun 03 2015 AT&T Intellectual Property I, L.P. Host node device and methods for use therewith
10051483, Oct 16 2015 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP Method and apparatus for directing wireless signals
10051629, Sep 16 2015 AT&T Intellectual Property I, L P Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
10051630, May 31 2013 AT&T Intellectual Property I, L.P. Remote distributed antenna system
10063280, Sep 17 2014 AT&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
10069185, Jun 25 2015 AT&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
10069535, Dec 08 2016 AT&T Intellectual Property I, L P Apparatus and methods for launching electromagnetic waves having a certain electric field structure
10074886, Jul 23 2015 AT&T Intellectual Property I, L.P. Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration
10074890, Oct 02 2015 AT&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
10075212, Sep 17 2014 AT&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
10079661, Sep 16 2015 AT&T Intellectual Property I, L P Method and apparatus for use with a radio distributed antenna system having a clock reference
10090594, Nov 23 2016 AT&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
10090601, Jun 25 2015 AT&T Intellectual Property I, L.P. Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium
10090606, Jul 15 2015 AT&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
10091787, May 31 2013 AT&T Intellectual Property I, L.P. Remote distributed antenna system
10096881, Aug 26 2014 AT&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium
10103422, Dec 08 2016 AT&T Intellectual Property I, L P Method and apparatus for mounting network devices
10103801, Jun 03 2015 AT&T Intellectual Property I, LP Host node device and methods for use therewith
10135145, Dec 06 2016 AT&T Intellectual Property I, L P Apparatus and methods for generating an electromagnetic wave along a transmission medium
10135146, Oct 18 2016 AT&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
10135147, Oct 18 2016 AT&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
10135491, Sep 17 2014 AT&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
10136434, Sep 16 2015 AT&T Intellectual Property I, L P Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
10139820, Dec 07 2016 AT&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
10142010, Jun 11 2015 AT&T Intellectual Property I, L.P. Repeater and methods for use therewith
10142086, Jun 11 2015 AT&T Intellectual Property I, L P Repeater and methods for use therewith
10144036, Jan 30 2015 AT&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
10148016, Jul 14 2015 AT&T Intellectual Property I, L P Apparatus and methods for communicating utilizing an antenna array
10154493, Jun 03 2015 AT&T Intellectual Property I, LP Network termination and methods for use therewith
10168695, Dec 07 2016 AT&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
10170840, Jul 14 2015 AT&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
10178445, Nov 23 2016 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P Methods, devices, and systems for load balancing between a plurality of waveguides
10194437, Dec 05 2012 AT&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
10205655, Jul 14 2015 AT&T Intellectual Property I, L P Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
10224634, Nov 03 2016 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P Methods and apparatus for adjusting an operational characteristic of an antenna
10224981, Apr 24 2015 AT&T Intellectual Property I, LP Passive electrical coupling device and methods for use therewith
10225025, Nov 03 2016 AT&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
10225842, Sep 16 2015 AT&T Intellectual Property I, L.P. Method, device and storage medium for communications using a modulated signal and a reference signal
10243270, Dec 07 2016 AT&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
10243784, Nov 20 2014 AT&T Intellectual Property I, L.P. System for generating topology information and methods thereof
10264586, Dec 09 2016 AT&T Intellectual Property I, L P Cloud-based packet controller and methods for use therewith
10291311, Sep 09 2016 AT&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
10291334, Nov 03 2016 AT&T Intellectual Property I, L.P. System for detecting a fault in a communication system
10298293, Mar 13 2017 AT&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
10305190, Dec 01 2016 AT&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
10312567, Oct 26 2016 AT&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
10320586, Jul 14 2015 AT&T Intellectual Property I, L P Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
10326494, Dec 06 2016 AT&T Intellectual Property I, L P Apparatus for measurement de-embedding and methods for use therewith
10326689, Dec 08 2016 AT&T Intellectual Property I, LP Method and system for providing alternative communication paths
10340573, Oct 26 2016 AT&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
10340600, Oct 18 2016 AT&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
10340601, Nov 23 2016 AT&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
10340603, Nov 23 2016 AT&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
10340983, Dec 09 2016 AT&T Intellectual Property I, L P Method and apparatus for surveying remote sites via guided wave communications
10341142, Jul 14 2015 AT&T Intellectual Property I, L P Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
10348391, Jun 03 2015 AT&T Intellectual Property I, LP Client node device with frequency conversion and methods for use therewith
10349418, Sep 16 2015 AT&T Intellectual Property I, L.P. Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion
10355367, Oct 16 2015 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP Antenna structure for exchanging wireless signals
10359749, Dec 07 2016 AT&T Intellectual Property I, L P Method and apparatus for utilities management via guided wave communication
10361489, Dec 01 2016 AT&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
10361750, Sep 17 2014 AT&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
10374316, Oct 21 2016 AT&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
10382976, Dec 06 2016 AT&T Intellectual Property I, LP Method and apparatus for managing wireless communications based on communication paths and network device positions
10389029, Dec 07 2016 AT&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
10389037, Dec 08 2016 AT&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
10396887, Jun 03 2015 AT&T Intellectual Property I, L.P. Client node device and methods for use therewith
10411356, Dec 08 2016 AT&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
10439675, Dec 06 2016 AT&T Intellectual Property I, L P Method and apparatus for repeating guided wave communication signals
10446936, Dec 07 2016 AT&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
10459025, Apr 04 2018 Schweitzer Engineering Laboratories, Inc. System to reduce start-up times in line-mounted fault detectors
10461579, Aug 14 2014 Siemens Aktiengesellschaft Method and system for monitoring the operating status of an energy delivery network
10495674, Jan 29 2014 NEC Corporation Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium
10498044, Nov 03 2016 AT&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
10530505, Dec 08 2016 AT&T Intellectual Property I, L P Apparatus and methods for launching electromagnetic waves along a transmission medium
10535928, Nov 23 2016 AT&T Intellectual Property I, L.P. Antenna system and methods for use therewith
10547348, Dec 07 2016 AT&T Intellectual Property I, L P Method and apparatus for switching transmission mediums in a communication system
10601494, Dec 08 2016 AT&T Intellectual Property I, L P Dual-band communication device and method for use therewith
10613119, Jul 02 2015 Hubbell Incorporated Voltage measurement and wireless communication system
10637149, Dec 06 2016 AT&T Intellectual Property I, L P Injection molded dielectric antenna and methods for use therewith
10650940, May 15 2015 AT&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
10665942, Oct 16 2015 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP Method and apparatus for adjusting wireless communications
10679767, May 15 2015 AT&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
10694379, Dec 06 2016 AT&T Intellectual Property I, LP Waveguide system with device-based authentication and methods for use therewith
10719062, Aug 14 2014 Siemens Aktiengesellschaft Telecontrol arrangement, system and method for observing and/or controlling an installation
10727599, Dec 06 2016 AT&T Intellectual Property I, L P Launcher with slot antenna and methods for use therewith
10755542, Dec 06 2016 AT&T Intellectual Property I, L P Method and apparatus for surveillance via guided wave communication
10777873, Dec 08 2016 AT&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
10784670, Jul 23 2015 AT&T Intellectual Property I, L.P. Antenna support for aligning an antenna
10797781, Jun 03 2015 AT&T Intellectual Property I, L.P. Client node device and methods for use therewith
10811767, Oct 21 2016 AT&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
10812174, Jun 03 2015 AT&T Intellectual Property I, L.P. Client node device and methods for use therewith
10819035, Dec 06 2016 AT&T Intellectual Property I, L P Launcher with helical antenna and methods for use therewith
10916969, Dec 08 2016 AT&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
10938108, Dec 08 2016 AT&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
10962608, Oct 11 2019 Schweitzer Engineering Laboratories, Inc. High-impedance fault detection using wireless current transformers
11032819, Sep 15 2016 AT&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
11067612, Jan 29 2014 NEC Corporation Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium
11114858, Sep 16 2019 Schweitzer Engineering Laboratories, Inc. Bidirectional capacitor bank control
11372045, Jan 24 2020 Schweitzer Engineering Laboratories, Inc Predictive maintenance of protective devices using wireless line sensors and systems
11397198, Aug 23 2019 Schweitzer Engineering Laboratories, Inc. Wireless current sensor
11431161, Mar 06 2020 Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc Electric power distribution sectionalizing in high-risk areas using wireless fault sensors
11435403, Sep 19 2019 Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc Determining the size of a capacitor bank
11506546, Oct 11 2019 Schweitzer Engineering Laboratories, Inc. Systems and methods for measuring internal transformer temperatures
11549996, Nov 09 2021 Schweitzer Engineering Laboratories, Inc. Automatically determining the size of a capacitor bank using wireless current sensors (WCS)
11567109, Oct 11 2019 Schweitzer Engineering Laboratories, Inc. Capacitor bank control using wireless electrical measurement sensors away from capacitor bank
9042812, Nov 06 2013 AT&T Intellectual Property I, LP Surface-wave communications and methods thereof
9113347, Dec 05 2012 AT&T Intellectual Property I, LP; AT&T Intellectual Property I, L P Backhaul link for distributed antenna system
9119127, Dec 05 2012 AT&T Intellectual Property I, LP Backhaul link for distributed antenna system
9154966, Nov 06 2013 AT&T Intellectual Property I, LP Surface-wave communications and methods thereof
9209902, Dec 10 2013 AT&T Intellectual Property I, L.P. Quasi-optical coupler
9244114, Jan 08 2012 MEGGER GRID ANALYTICS LTD System and method for assessing faulty power-line insulator strings
9263915, Sep 05 2008 ITRON NETWORKED SOLUTIONS, INC Determining electric grid endpoint phase connectivity
9312919, Oct 21 2014 AT&T Intellectual Property I, LP Transmission device with impairment compensation and methods for use therewith
9461706, Jul 31 2015 AT&T Intellectual Property I, LP Method and apparatus for exchanging communication signals
9467870, Nov 06 2013 AT&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
9479266, Dec 10 2013 AT&T Intellectual Property I, L.P. Quasi-optical coupler
9490869, May 14 2015 AT&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
9503189, Oct 10 2014 AT&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
9509415, Jun 25 2015 AT&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
9520945, Oct 21 2014 AT&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
9525210, Oct 21 2014 AT&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
9525524, May 31 2013 AT&T Intellectual Property I, L.P. Remote distributed antenna system
9531427, Nov 20 2014 AT&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
9544006, Nov 20 2014 AT&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
9564947, Oct 21 2014 AT&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
9571209, Oct 21 2014 AT&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
9577306, Oct 21 2014 AT&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
9577307, Oct 21 2014 AT&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
9596001, Oct 21 2014 AT&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
9608692, Jun 11 2015 AT&T Intellectual Property I, L.P. Repeater and methods for use therewith
9608740, Jul 15 2015 AT&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
9615269, Oct 02 2014 AT&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
9627768, Oct 21 2014 AT&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
9628116, Jul 14 2015 AT&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
9628854, Sep 29 2014 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP Method and apparatus for distributing content in a communication network
9640850, Jun 25 2015 AT&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
9653770, Oct 21 2014 AT&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
9654173, Nov 20 2014 AT&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
9661505, Nov 06 2013 AT&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
9667317, Jun 15 2015 AT&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
9674711, Nov 06 2013 AT&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
9680670, Nov 20 2014 AT&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
9685992, Oct 03 2014 AT&T Intellectual Property I, L.P. Circuit panel network and methods thereof
9692101, Aug 26 2014 AT&T Intellectual Property I, LP Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
9699785, Dec 05 2012 AT&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
9705561, Apr 24 2015 AT&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
9705571, Sep 16 2015 AT&T Intellectual Property I, L P Method and apparatus for use with a radio distributed antenna system
9705610, Oct 21 2014 AT&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
9712350, Nov 20 2014 AT&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
9722318, Jul 14 2015 AT&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
9729197, Oct 01 2015 AT&T Intellectual Property I, LP Method and apparatus for communicating network management traffic over a network
9735833, Jul 31 2015 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP Method and apparatus for communications management in a neighborhood network
9742462, Dec 04 2014 AT&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
9742521, Nov 20 2014 AT&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
9748626, May 14 2015 AT&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
9749013, Mar 17 2015 AT&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
9749053, Jul 23 2015 AT&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
9749083, Nov 20 2014 AT&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
9755697, Sep 15 2014 AT&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
9762289, Oct 14 2014 AT&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
9768833, Sep 15 2014 AT&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
9769020, Oct 21 2014 AT&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
9769128, Sep 28 2015 AT&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
9780834, Oct 21 2014 AT&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
9787412, Jun 25 2015 AT&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
9788326, Dec 05 2012 AT&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
9793951, Jul 15 2015 AT&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
9793954, Apr 28 2015 AT&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
9793955, Apr 24 2015 AT&T Intellectual Property I, LP Passive electrical coupling device and methods for use therewith
9794003, Dec 10 2013 AT&T Intellectual Property I, L.P. Quasi-optical coupler
9800327, Nov 20 2014 AT&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
9806818, Jul 23 2015 AT&T Intellectual Property I, LP Node device, repeater and methods for use therewith
9820146, Jun 12 2015 AT&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
9831912, Apr 24 2015 AT&T Intellectual Property I, LP Directional coupling device and methods for use therewith
9836957, Jul 14 2015 AT&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
9838078, Jul 31 2015 AT&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
9838896, Dec 09 2016 AT&T Intellectual Property I, L P Method and apparatus for assessing network coverage
9847566, Jul 14 2015 AT&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
9847850, Oct 14 2014 AT&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
9853342, Jul 14 2015 AT&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
9860075, Aug 26 2016 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P Method and communication node for broadband distribution
9865911, Jun 25 2015 AT&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
9866276, Oct 10 2014 AT&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
9866309, Jun 03 2015 AT&T Intellectual Property I, LP Host node device and methods for use therewith
9871282, May 14 2015 AT&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
9871283, Jul 23 2015 AT&T Intellectual Property I, LP Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
9871558, Oct 21 2014 AT&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
9876264, Oct 02 2015 AT&T Intellectual Property I, LP Communication system, guided wave switch and methods for use therewith
9876570, Feb 20 2015 AT&T Intellectual Property I, LP Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
9876571, Feb 20 2015 AT&T Intellectual Property I, LP Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
9876584, Dec 10 2013 AT&T Intellectual Property I, L.P. Quasi-optical coupler
9876587, Oct 21 2014 AT&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
9876605, Oct 21 2016 AT&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
9882257, Jul 14 2015 AT&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
9882277, Oct 02 2015 AT&T Intellectual Property I, LP Communication device and antenna assembly with actuated gimbal mount
9882657, Jun 25 2015 AT&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
9887447, May 14 2015 AT&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
9893795, Dec 07 2016 AT&T Intellectual Property I, LP Method and repeater for broadband distribution
9904535, Sep 14 2015 AT&T Intellectual Property I, L.P. Method and apparatus for distributing software
9906269, Sep 17 2014 AT&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
9911020, Dec 08 2016 AT&T Intellectual Property I, L P Method and apparatus for tracking via a radio frequency identification device
9912027, Jul 23 2015 AT&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
9912033, Oct 21 2014 AT&T Intellectual Property I, LP Guided wave coupler, coupling module and methods for use therewith
9912381, Jun 03 2015 AT&T Intellectual Property I, LP Network termination and methods for use therewith
9912382, Jun 03 2015 AT&T Intellectual Property I, LP Network termination and methods for use therewith
9912419, Aug 24 2016 AT&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
9913139, Jun 09 2015 AT&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
9917341, May 27 2015 AT&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
9927517, Dec 06 2016 AT&T Intellectual Property I, L P Apparatus and methods for sensing rainfall
9929755, Jul 14 2015 AT&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
9930668, May 31 2013 AT&T Intellectual Property I, L.P. Remote distributed antenna system
9935703, Jun 03 2015 AT&T Intellectual Property I, L.P. Host node device and methods for use therewith
9947982, Jul 14 2015 AT&T Intellectual Property I, LP Dielectric transmission medium connector and methods for use therewith
9948333, Jul 23 2015 AT&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
9948354, Apr 28 2015 AT&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
9948355, Oct 21 2014 AT&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
9954286, Oct 21 2014 AT&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
9954287, Nov 20 2014 AT&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
9960808, Oct 21 2014 AT&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
9967002, Jun 03 2015 AT&T INTELLECTUAL I, LP Network termination and methods for use therewith
9967173, Jul 31 2015 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP Method and apparatus for authentication and identity management of communicating devices
9973299, Oct 14 2014 AT&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
9973416, Oct 02 2014 AT&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
9973940, Feb 27 2017 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P Apparatus and methods for dynamic impedance matching of a guided wave launcher
9991580, Oct 21 2016 AT&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
9997819, Jun 09 2015 AT&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
9998870, Dec 08 2016 AT&T Intellectual Property I, L P Method and apparatus for proximity sensing
9998932, Oct 02 2014 AT&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
9999038, May 31 2013 AT&T Intellectual Property I, L P Remote distributed antenna system
Patent Priority Assignee Title
2379664,
2928048,
2967267,
3292579,
3296493,
3476997,
3525903,
3621334,
3676740,
3702966,
3706930,
3708724,
3715742,
3781682,
3816816,
3866197,
3876911,
3906477,
3972581, Jul 04 1974 International Standard Electric Corporation Underwater electrical connector
3974446, Apr 10 1975 Polyphase fault current flow detecting and resetting means
4029951, Oct 21 1975 Westinghouse Electric Corporation Turbine power plant automatic control system
4034360, Aug 06 1976 System for disabling the reset circuit of fault indicating means
4038625, Jun 07 1976 General Electric Company Magnetic inductively-coupled connector
4045726, Jul 06 1976 Tool for manually tripping a fault indicator for high voltage electric power circuits and resetting same
4063171, Nov 04 1976 Fault indicator responsive to flow of fault current in a conductor when power flow is in one direction only
4086529, Jul 26 1976 Fault indicator and means for resetting the same
4112292, Aug 17 1976 JAMES HARDIE BUILDING Magnetic identification apparatus
4144485, Dec 03 1974 Nippon Soken, Inc. Contactless connector circuit
4165528, Jul 26 1976 Fault indicator and means for resetting same
4186986, Nov 16 1978 AMP Incorporated Sealed splice
4199741, Nov 05 1976 Moving magnet, rotary switch
4234847, Nov 06 1978 Fault indicator
4251770, Jun 25 1979 Combined fault and voltage indicator
4288743, Oct 10 1978 Fault indicator operable from a remote excitation source through a uniformly distributed impedance cable
4375617, Mar 20 1980 Fault indicator with flux concentrating means
4414543, Sep 25 1980 Ground fault indicator
4424512, Sep 25 1980 Fault indicator having increased sensitivity to fault currents
4438403, Aug 04 1981 Fault indicator with combined trip and reset winding
4456873, Aug 04 1981 Cable mounted magnetic core assembly
4458198, Dec 13 1979 Fault indicator having a remote test point at which fault occurrence is indicated by change in magnetic state
4495489, Jul 20 1982 Fault indicator with improved flag indicator assembly
4536758, Mar 10 1983 Fault indicator with push button reset
4599487, Apr 05 1984 Klein, Schanzlin & Becker Aktiengesellschaft Cable gland
4686518, Jul 29 1983 SCHWEITZER, JEAN E ; SCHWEITZER, EDMUND O III; SCHWEITZER, MARILYN L Fault indicator having trip inhibit circuit
4689752, Apr 13 1983 UNDERSGROUND SYSTEMS, INC System and apparatus for monitoring and control of a bulk electric power delivery system
4709339, Apr 13 1983 Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules
4794328, Apr 13 1983 UNDERSGROUND SYSTEMS, INC Tool for mounting a sensor module on a live power transmission line
4794329, Mar 28 1986 SCHWEITZER, JEAN E ; SCHWEITZER, III, EDMUND O ; SCHWEITZER, MARILYN L ; Schweitzer Engineering Laboratories, Inc Cable mounted capacitively-coupled circuit condition indicating device
4794332, Mar 28 1986 SCHWEITZER, JEAN E ; SCHWEITZER, III, EDMUND O ; SCHWEITZER, MARILYN L ; Schweitzer Engineering Laboratories, Inc Fault indicator having improved trip inhibit circuit
4795982, Apr 24 1987 SCHWEITZER, JEAN E ; SCHWEITZER, III, EDMUND O ; SCHWEITZER, MARILYN L ; Schweitzer Engineering Laboratories, Inc Fault indicator having delayed trip circuit
4829298, Apr 13 1983 Electrical power line monitoring systems, including harmonic value measurements and relaying communications
4940976, Feb 05 1988 UTILICOM INC , A CORP OF CALIFORNIA Automated remote water meter readout system
4996624, Sep 28 1989 SCHWEITZER, ENGINEERING LABORATORIES, INC Fault location method for radial transmission and distribution systems
5008651, Nov 08 1989 Schweitzer Engineering Laboratories, Inc Battery-powered fault indicator
5038246, Aug 31 1989 Square D Company Fault powered, processor controlled circuit breaker trip system having reliable tripping operation
5070301, Nov 08 1989 Schweitzer Engineering Laboratories, Inc Fault indicator having liquid crystal status display
5089928, Aug 31 1989 SQUARE D COMPANY, THE Processor controlled circuit breaker trip system having reliable status display
5136457, Aug 31 1989 Square D Company Processor controlled circuit breaker trip system having an intelligent rating plug
5136458, Aug 31 1989 SQUARE D COMPANY, THE Microcomputer based electronic trip system for circuit breakers
5140257, Jun 22 1984 System for rating electric power transmission lines and equipment
5150361, Jan 23 1989 MOTOROLA, INC , SCHAUMBURG, IL A CORP OF DE Energy saving protocol for a TDM radio
5153565, Aug 10 1988 Schweitzer Engineering Laboratories, Inc Fault indicator having electrostatically-actuated indicator flag
5168414, May 25 1990 Dipl.-ing. H.Horstmann GmbH Faulted circuit indicator
5196682, Jun 30 1986 Wang Laboratories, Inc. Infrared optical card having an opaque case for hiding internal components
5220311, Feb 19 1991 Schweitzer Engineering Laboratories, Inc Direction indicating fault indicators
5298894, Jun 17 1992 Badger Meter, Inc. Utility meter transponder/antenna assembly for underground installations
5343155, Dec 20 1991 Montana State University Fault detection and location system for power transmission and distribution lines
5420502, Dec 21 1992 Schweitzer Engineering Laboratories, Inc Fault indicator with optically-isolated remote readout circuit
5438329, Jun 04 1993 SENSUS USA INC Duplex bi-directional multi-mode remote instrument reading and telemetry system
5495239, Aug 02 1994 General Electric Company Method and apparatus for communicating with a plurality of electrical metering devices and a system control center with a mobile node
5519527, Jul 17 1992 Siemens Aktiengesellschaft Modem for communicating with enclosed electronic equipment
5542856, Apr 11 1994 INOVA LTD Field repairable electrical connector
5550476, Sep 29 1994 Pacific Gas and Electric Company Fault sensor device with radio transceiver
5565783, Sep 29 1994 Pacific Gas and Electric Company Fault sensor device with radio transceiver
5648726, Apr 21 1995 Thomas & Betts International LLC Remotely accessible electrical fault detection
5656931, Jan 20 1995 Pacific Gas and Electric Company Fault current sensor device with radio transceiver
5659300, Jan 30 1995 SILVER SPRING NETWORKS, INC Meter for measuring volumetric consumption of a commodity
5677623, Apr 08 1996 Schweitzer Engineering Laboratories, Inc Fault powered fault indicator having timed reset
5677678, Apr 08 1996 Schweitzer Engineering Laboratories, Inc Fault indicator having auxiliary fault sensing winding
5701121, Apr 11 1988 SATO VICINITY PTY LTD Transducer and interrogator device
5793214, Jun 30 1994 Agilent Technologies Inc Electromagnetic inductive probe
5808902, May 23 1996 Basic Measuring Instruments Power quality transducer for use with supervisory control systems
5821869, Feb 06 1997 Schweitzer Engineering Laboratories, Inc Fault indicator for use with load-break connector
5825303, Aug 30 1996 Badger Meter, Inc. Sealed housing and method of sealing for apparatus in meter pit enclosures
5862391, Apr 03 1996 General Electric Company Power management control system
5877703, Aug 12 1997 Badger Meter, Inc.; BADGER METER, INC Utility meter transmitter assembly for subsurface installations
5889399, Feb 06 1997 Schweitzer Engineering Laboratories, Inc Test-point mounted fault indicator having immunity to fault currents in adjacent conductors
5892430, Apr 25 1994 Foster-Miller, Inc. Self-powered powerline sensor
5990674, Jul 08 1996 Schweitzer Engineering Laboratories, Inc Clamping mechanism for mounting circuit condition monitoring devices on cables of various diameters
6002260, Sep 23 1997 Pacific Gas & Electric Company Fault sensor suitable for use in heterogenous power distribution systems
6014301, Apr 30 1998 Schweitzer Engineering Laboratories, Inc Fault indicator providing contact closure on fault detection
6016105, Apr 30 1998 Schweitzer Engineering Laboratories, Inc Fault indicator providing contact closure and light indication on fault detection
6029061, Mar 11 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Power saving scheme for a digital wireless communications terminal
6072405, Apr 13 1998 ACLARA TECHNOLOGIES LLC Meter transmission unit for use with a pit set utility meter
6078785, Oct 16 1995 Demand reporting of electricity consumption by radio in relays to a base station, and demand relays wattmeters so reporting over a wide area
6133723, Jun 29 1998 Schweitzer Engineering Laboratories, Inc Fault indicator having remote light indication of fault detection
6133724, Jun 29 1998 Schweitzer Engineering Laboratories, Inc Remote light indication fault indicator with a timed reset circuit and a manual reset circuit
6177883, Sep 02 1998 UBS AG, STAMFORD BRANCH, AS ADMINISTRATIVE AGENT Utility meter transponder exposed ground level antenna assembly
6188216, May 18 1998 CTS Corporation Low profile non-contacting position sensor
6239722, Oct 16 1997 ACOUSTIC TECHNOLOGY, INC System and method for communication between remote locations
6326905, Aug 10 1999 Detection Systems, Inc. Coded rotary switch with contacts at common radius
6349248, Oct 28 1999 General Electric Company Method and system for predicting failures in a power resistive grid of a vehicle
6366217, Sep 12 1997 INTERNET TELEMETRY CORP Wide area remote telemetry
6380733, Dec 11 1996 AB Elektronik GmbH Latched switching device
6414605, Sep 02 1998 UBS AG, STAMFORD BRANCH, AS ADMINISTRATIVE AGENT Utility meter pit lid mounted antenna assembly and method
6429661, Dec 09 1999 Schweitzer Engineering Laboratories, Inc Fault indicator for three-phase sheathed cable
6433698, Apr 30 1998 Schweitzer Engineering Laboratories, Inc Fault indicator providing light indication on fault detection
6479981, Jun 29 1998 Schweitzer Engineering Laboratories, Inc Remote light indication fault indicator with a timed reset circuit and a manual reset circuit
6522247, May 23 2000 Kabushiki Kaisha Toshiba Apparatus monitoring system and apparatus monitoring method
6525504, Nov 28 1997 ABB AB Method and device for controlling the magnetic flux in a rotating high voltage electric alternating current machine
6535797, Feb 01 2000 Spectrum Engineering Corporation Electrical distribution system and method of monitoring and/or controlling same
6573707, Aug 30 2000 Mitutoyo Corporation Displacement detecting device power supply and data communication device
6577608, Aug 17 1998 Samsung Electronics Co., Ltd. Communication control device and method for CDMA communication system
6617976, Sep 02 1998 Neptune Technology Group, Inc. Utility meter pit lid mounted antenna antenna assembly and method
6662124, Apr 17 2002 Schweitzer Engineering Laboratories, Inc Protective relay with synchronized phasor measurement capability for use in electric power systems
6671824, Apr 19 1999 Lakefield Technologies Group Cable network repair control system
6687574, Nov 01 2001 Intellectual Ventures II LLC System and method for surveying utility outages
6734662, Oct 26 2001 Schweitzer Engineering Laboratories, Inc Microprocessor controlled fault indicator having led fault indication circuit with battery conservation mode
6736646, May 31 2001 Yazaki Corporation Electromagnetic induction-type connector
6751562, Nov 28 2000 POWER MEASUREMENT LTD Communications architecture for intelligent electronic devices
6753792, Jan 09 2001 Distribution line capacitor monitoring and protection module
6759933, Jun 30 2000 AB Eletronik GmbH Position selector device
6792337, Dec 30 1994 Power Measurement Ltd. Method and system for master slave protocol communication in an intelligent electronic device
6796821, Jun 06 2002 TELEDYNE INSTRUMENTS, INC Field installable cable termination assembly
6798211, Oct 30 1997 Remote Monitoring Systems, Inc. Power line fault detector and analyzer
6822576, Oct 26 2001 Schweitzer Engineering Laboratories, Inc Microprocessor controlled fault detector with circuit overload condition detection
6828906, Mar 06 2003 International Business Machines Corporation Device for responding to state request on an open phone line
6892115, Feb 25 2002 ABB Schweiz AG Method and apparatus for optimized centralized critical control architecture for switchgear and power equipment
6892145, Feb 25 2002 ABB Schweiz AG Method and system for conditionally triggered system data capture
6894478, Oct 26 2001 Schweitzer Engineering Laboratories, Inc Fault indicator with automatically configured trip settings
6917888, May 06 2002 Arkados, Inc Method and system for power line network fault detection and quality monitoring
6944555, Dec 30 1994 POWER MEASUREMENT LTD Communications architecture for intelligent electronic devices
6949921, Oct 26 2001 Schweitzer Engineering Laboratories, Inc Auto-calibration of multiple trip settings in a fault indicator
6963197, May 31 2002 Schweitzer Engineering Laboratories, Inc Targeted timed reset fault indicator
7023691, Oct 26 2001 Schweitzer Engineering Laboratories, Inc Fault Indicator with permanent and temporary fault indication
7053601, Oct 26 2001 Schweitzer Engineering Laboratories, Inc Microprocessor controlled fault indicator having high visibility LED fault indication
7106048, Oct 26 2001 Schweitzer Engineering Laboratories, Inc Fault indicator with auto-configuration for overhead or underground application
7109699, May 19 2004 Long range alternating current phasing voltmeter
7132950, Aug 30 2002 Power management method and system
7254001, Feb 25 2002 ABB S P A Circuit protection system
7271580, Oct 26 2001 Schweitzer Engineering Laboratories, Inc Apparatus and method for programmable trip settings in a faulted circuit indicator
7315169, Oct 26 2001 Schweitzer Engineering Laboratories, Inc Microprocessor controlled fault indicator having inrush restraint circuit
7336202, Apr 17 2001 SANYO ELECTRIC CO , LTD Temperature monitoring device
7382272, Oct 19 2005 Schweitzer Engineering Laboratories, Inc System, a tool and method for communicating with a faulted circuit indicator using a remote display
7406536, Jul 23 2001 MAIN NET COMMUNICATIONS LTD Dynamic power line access connection
7430932, Oct 31 2002 Device for telemonitoring the state of aerial power lines(variants)
7646308, Oct 30 2007 EATON INTELLIGENT POWER LIMITED System for monitoring electrical equipment and providing predictive diagnostics therefor
7714735, Sep 13 2005 ACLARA TECHNOLOGIES LLC Monitoring electrical assets for fault and efficiency correction
7725295, Nov 01 2006 HITACHI ENERGY LTD Cable fault detection
8018337, Aug 03 2007 BELKIN INTERNATIONAL, INC Emergency notification device and system
8059006, May 18 2007 Schweitzer Engineering Laboratories, Inc.; Schweitzer Engineering Laboratories, Inc System and method for communicating power system information through a radio frequency device
8065099, Dec 20 2007 ACLARA TECHNOLOGIES LLC Power distribution monitoring system and method
8067946, Nov 02 2007 EATON INTELLIGENT POWER LIMITED Method for repairing a transmission line in an electrical power distribution system
20020089802,
20030020765,
20030119568,
20030153368,
20030174067,
20030178290,
20030179149,
20040005809,
20040032340,
20040036478,
20040067366,
20040113810,
20040214616,
20040233159,
20050040809,
20050068193,
20050068194,
20050079818,
20050087599,
20050110656,
20050132115,
20050151659,
20050163432,
20050205395,
20050215280,
20060084419,
20080077336,
20090115426,
20090119068,
20100013632,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 17 2008SALEWSKE, TYSON J Schweitzer Engineering Laboratories, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0212570151 pdf
Jul 17 2008FEIGHT, LAURENCE V Schweitzer Engineering Laboratories, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0212570151 pdf
Jul 18 2008Schweitzer Engineering Laboratories Inc(assignment on the face of the patent)
Jun 01 2018Schweitzer Engineering Laboratories, IncCITIBANK, N A , AS ADMINISTRATIVE AGENTNOTICE OF GRANT OF SECURITY INTEREST IN PATENTS0472310253 pdf
Date Maintenance Fee Events
Sep 05 2017M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 07 2021M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Mar 04 20174 years fee payment window open
Sep 04 20176 months grace period start (w surcharge)
Mar 04 2018patent expiry (for year 4)
Mar 04 20202 years to revive unintentionally abandoned end. (for year 4)
Mar 04 20218 years fee payment window open
Sep 04 20216 months grace period start (w surcharge)
Mar 04 2022patent expiry (for year 8)
Mar 04 20242 years to revive unintentionally abandoned end. (for year 8)
Mar 04 202512 years fee payment window open
Sep 04 20256 months grace period start (w surcharge)
Mar 04 2026patent expiry (for year 12)
Mar 04 20282 years to revive unintentionally abandoned end. (for year 12)