A heat sink includes a thermally conductive layer comprising at least one of fullerenes and nanotubes disposed in a polymeric host. The thermally conductive layer may be disposed on a heat sink body, which may be thermally insulating and/or plastic, and may include surface area enhancing heat radiating structures, such as fins, with the thermally conductive layer being disposed over at least the surface area enhancing heat radiating structures. A light emitting diode (led)-based lamp embodiment includes the heat sink and an led module including one or more led devices secured with and in thermal communication with the heat sink. A method embodiment includes forming the heat sink body and disposing the thermally conductive layer on the heat sink body. The disposing may comprise spray coating. An external energy field may be applied during spray coating to impart a non-random orientation to nanotubes in the polymeric host.
|
1. An apparatus comprising an led-based lamp including:
a light emitting diode (led) module having one or more led devices;
a heat sink comprising a plurality of plastic fins including a thermally conductive layer comprising at least one of fullerenes and nanotubes disposed in a polymeric host, said thermally conductive layer disposed on said plastic fins;
wherein the led module is in thermal communication with the heat sink.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
10. The apparatus of
11. The apparatus of
12. The apparatus of
|
This application claims the benefit of U.S. Provisional Application No. 61/320,431 filed Apr. 2, 2010. U.S. Provisional Application No. 61/320,431 filed Apr. 2, 2010 is incorporated herein by reference in its entirety.
The following relates to the illumination arts, lighting arts, solid state lighting arts, thermal management arts, and related arts.
Incandescent, halogen, and high intensity discharge (HID) light sources have relatively high operating temperatures, and as a consequence heat egress is dominated by radiative and convective heat transfer pathways. For example, radiative heat egress goes with temperature raised to the fourth power, so that the radiative heat transfer pathway becomes superlinearly more dominant as operating temperature increases. Accordingly, thermal management for incandescent, halogen, and HID light sources typically amounts to providing adequate air space proximate to the lamp for efficient radiative and convective heat transfer. Typically, in these types of light sources, it is not necessary to increase or modify the surface area of the lamp to enhance the radiative or convective heat transfer in order to achieve the desired operating temperature of the lamp.
Light-emitting diode (LED)-based lamps, on the other hand, typically operate at substantially lower temperatures for device performance and reliability reasons. For example, the junction temperature for a typical LED device should be below 200° C., and in some LED devices should be below 100° C. or even lower. At these low operating temperatures, the radiative heat transfer pathway to the ambient is weak, so that convective and conductive heat transfer to ambient typically dominate. In LED light sources, the convective and radiative heat transfer from the outside surface area of the lamp or luminaire can be enhanced by the addition of a heat sink.
A heat sink is a component providing a large surface for radiating and convecting heat away from the LED devices. In a typical design, the heat sink is a relatively massive metal element having a large engineered surface area, for example by having fins or other heat dissipating structures on its outer surface. The large mass of the heat sink efficiently conducts heat from the LED devices to the heat fins, and the large area of the heat fins provides efficient heat egress by radiation and convection. For high power LED-based lamps it is also known to employ active cooling using fans or synthetic jets or heat pipes or thermo-electric coolers or pumped coolant fluid to enhance the heat removal.
In some embodiments disclosed herein as illustrative examples, a heat sink includes a thermally conductive layer comprising at least one of fullerenes and nanotubes disposed in a polymeric host. The heat sink may further include a heat sink body, which may be thermally insulating and/or plastic, on which the thermally conductive layer is disposed. The heat sink body may include surface area enhancing heat radiating structures, such as fins, with the thermally conductive layer being disposed over at least the surface area enhancing heat radiating structures.
In some embodiments disclosed herein as illustrative examples, a light emitting diode (LED)-based lamp includes a heat sink as set forth in the immediately preceding paragraph, and an LED module including one or more LED devices, wherein the LED module is secured with and in thermal communication with the heat sink to form the LED-based lamp, which may have an A-line bulb configuration. In other lamp embodiments, the heat sink body comprises a hollow generally conical heat sink body and the heat sink comprises a hollow generally conical heat sink in which the thermally conductive layer is disposed over at least an outer surface of the hollow generally conical heat sink body, and the LED-based lamp is an MR- or PAR-based lamp.
In some embodiments disclosed herein as illustrative examples, a method comprises forming a heat sink body and disposing a thermally conductive layer on the heat sink body, the thermally conductive layer comprising nanotubes disposed in a polymeric host. The forming may comprise molding the heat sink body as a molded plastic heat sink body. The disposing may comprise spray coating the thermally conductive layer on the heat sink body. Optionally, the disposing may further comprise applying an external energy field during the spray coating to impart a non-random orientation to the nanotubes disposed in the polymeric host.
In the case of incandescent, halogen, and HID light sources, all of which are thermal emitters of light, the heat transfer to the air space proximate to the lamp is managed by design of the radiative and convective thermal paths in order to achieve an elevated target temperature during operation of the light source. In contrast, in the case of LED light sources, photons are not thermally-excited, but rather are generated by recombination of electrons with holes at the p-n junction of a semiconductor. Both the performance and the life of the light source are optimized by minimizing the operating temperature of the p-n junction of the LED, rather than operating at an elevated target temperature. By providing a heat sink with fins or other surface area-increasing structures, the surface for convective and radiative heat transfer is enhanced.
With reference to
Thus, conventional heat sinking for LED-based lamps includes the heat sink MB comprising a block of metal (or metallic alloy) having the large-area heat sinking surface MF exposed to the proximate air space. The metal heat sink body provides a high thermal conductance pathway Rconductor between the LED devices and the heat sinking surface. The resistance Rconductor in
In addition to heat sinking into the ambient via the heat sinking surface (resistances Rconvection and RIR), there is typically also some thermal egress (i.e., heat sinking) through the Edison base or other lamp connector or lamp base LB (diagrammatically indicated in the model of
Such heat sinks have some disadvantages. For example, the heat sinks are heavy due to the large volume of metal or metal alloy comprising the heat sink MB. A heavy metal heat sink can put mechanical stress on the base and socket which can result in failure and, in some failure modes, an electrical hazard. Another issue with such heat sinks is manufacturing cost. Machining a bulk metal heat sink component can be expensive, and depending on the choice of metal the material cost can also be high. Moreover, the heat sink is sometimes also used as a housing for electronics, or as a mounting point for the Edison base, or as a support for the LED devices circuit board. These applications call for the heat sink to be machined with some precision, which again increases manufacturing cost.
The inventors have analyzed these problems using the simplified thermal model shown in
where: Rsink is the thermal resistance of heat passing through the Edison connector (or other lamp connector) to the “ambient” electrical wiring; Rconvection is the thermal resistance of heat passing from the heat sinking surface into the surrounding ambient by convective heat transfer; RIR is the thermal resistance of heat passing from the heat sinking surface into the surrounding ambient by radiative heat transfer; and Rspreader+Rconduction is the series thermal resistance of heat passing from the LED devices through the heat spreader (Rspreader) and through the metal heat sink body (Rconduction) to reach the heat sinking surface. It should be noted that for the term 1/Rsink, the corresponding series thermal resistance is not precisely Rspreader+Rconduction since the series thermal pathway is to the lamp connector rather than to the heat sinking surface—however, since the thermal conductance 1/Rsink through the base connector is small for a typical lamp this error is negligible. Indeed, a simplified model neglecting heat sinking through the base entirely can be written as
This simplified equation demonstrates that the series thermal resistance Rconduction through the heat sink body is a controlling parameter of the thermal model. Indeed, this is a justification for the conventional heat sink design employing the bulk metal heat sink MB—the heat sink body provides a very low value for the series thermal resistance Rconduction. In view of the foregoing, it is recognized that it would be desirable to achieve a heat sink that has a low series thermal resistance Rconduction, while simultaneously having reduced weight (and, preferably, reduced cost) as compared with a conventional heat sink.
One way this might be accomplished is to enhance thermal heat sinking Rsink through the base, so that this pathway can be enhanced to provide a heat sinking rate of 10 watts or higher. However, in retrofit light source applications in which an LED lamp is used to replace a conventional incandescent or halogen or fluorescent or HID lamp, the LED replacement lamp is mounted into a conventional base or socket or luminaire of the type originally designed for an incandescent, halogen, or HID lamp. For such a connection, the thermal resistance Rsink to the building infrastructure or to the remote ambient (e.g. earth ground) is large compared with Rconvection or RIR so that the thermal path to ambient by convection and radiation dominates.
Additionally, due to the relatively low steady state operating temperature of the LED assembly, the radiation path is typically dominated by the convection path (that is, Rconvection<<RIR). Therefore, the dominant thermal path for a typical LED-based lamp is the series thermal circuit comprising Rconduction and Rconvection. It is therefore desired to provide a low series thermal resistance Rconduction+Rconvection, while reducing the weight (and, preferably, cost) of the heat sink.
The present inventors have carefully considered from a first-principles viewpoint the problem of heat removal in an LED-based lamp. It is recognized herein that, of the parameters typically considered of significance (heat sink volume, heat sink mass to conductivity ratio, heat sink surface area, and conductive heat removal and sinking through the base), the two dominant design attributes are the thermal conductance of the pathway between the LEDs and the heat sink (that is, Rconduction), and the outside surface area of the heat sink for convective and radiative heat transfer to the ambient (which affects Rconvection and RIR).
Further analysis can proceed by a process of elimination. The heat sink volume is of importance only insofar as it affects heat sink mass and heat sink surface area. The heat sink mass is of importance in transient situations, but does not strongly affect steady-state heat removal performance, which is what is of interest in a continuously operating lamp, except to the extent that the metal heat sink body provides a low series resistance Rconduction. The heat sinking path through the base of a replacement lamp, such as a PAR or MR or reflector or A-line lamp, can be of significance for lower power lamps—however, the thermal conductance of an Edison base is only sufficient to provide about 1 watt of heat sinking to the ambient (and other base types such as pin-type bases are likely to have comparable or even less thermal conductance), and hence conductive heat sinking through the base to ambient is not expected to be of principle importance for commercially viable LED-based lamps which are expected to generate heating loads up to several orders of magnitude higher at steady state.
With reference to
The thermally conductive layer CL disposed over the lightweight heat sink body LB performs the functionality of the heat sinking surface, and its performance with respect to heat sinking into the surrounding ambient (quantified by the thermal resistances Rconvection and RIR) is substantially the same as in the conventional heat sink modeled in
In view of the foregoing, heat sink embodiments are disclosed herein which comprise a heat sink body and a thermally conductive layer disposed on the heat sink body at least over (and defining) the heat sinking surface of the heat sink. The material of the heat sink body has a lower thermal conductivity than the material of the thermally conductive layer. Indeed, the heat sink body can even be thermally insulating. On the other hand, the thermally conductive layer should have (i) an area and (ii) a thickness and (iii) be made of a material of sufficient thermal conductivity so that it provides radiative/convective heat sinking to the ambient that is sufficient to keep the p-n semiconductor junctions of the LED devices of the LED-based lamp at or below a specified maximum temperature, which is typically below 200° C. and sometimes below 100° C.
The thickness and material thermal conductivity of the thermally conductive layer together define a thermal sheet conductivity of the thermally conductive layer, which is analogous to an electrical sheet conductivity (or, in the inverse, an electrical sheet resistance). A thermal sheet resistance
may be defined, where ρ is the thermal resistivity of the material and σ is the thermal conductivity of the material, and d is the thickness of the thermally conductive layer. Inverting yields the thermal sheet conductance Ks=σ·d. Thus, a trade-off can be made between the thickness d and the material thermal conductivity σ of the thermally conductive layer. For high thermal conductivity materials, the thermally conductive layer can be made thin, which results in reduced weight, volume, and cost.
In embodiments disclosed herein, the thermally conductive layer is a carbon nanotube (CNT) layer which comprises carbon nanotubes disposed in a polymeric host. Some suitable CNT layers are disclosed, by way of illustrative example, in Elhard et al., Int'l Pat. Appl. WO 2009/052110 A2 published Apr. 23, 2009, which is incorporated herein by reference in its entirety, and in Heintz et al., Int'l. Pat. Appl. WO 2008/085550 A2 published Jul. 17, 2008, which is incorporated herein by reference in its entirety. A carbon nanotube is known to have very high thermal conductance along the tube and to have high electrical conductance along the tube. The CNT layers disclosed in the WO 2009/052110 A2 and WO 2008/085550 A2 comprise randomly oriented carbon nanotubes disposed in the polymer host, in which the carbon nanotubes are sufficiently close that electrical conduction across neighboring carbon nanotubes is also very high. Accordingly, the CNT layer material has a very high electrical conductivity.
To illustrate the very high thermal conductivity achievable in CNT configurations, reference is made to Berber et al., “Unusually High Thermal Conductivity of Carbon Nanotubes”, Physical Review Letters vol. 84 no. 20, pages 4613-16 (2000), which is incorporated herein by reference in its entirety. Data are reported in Berber et al. for various carbon nanotubes composite characteristics. By way of example, Berber et al.
A CNT layer constructed using CNT stock such as single wall nanotubes (SWNT) or graphitized multiwall nanotubes (MWNT) have very high thermal conductivity, for example up to σ=2000 W/m·K or higher when formed as a CNT mat (where the “mat” comprises CNT material strands). More generally, it contemplated to form the thermally conductive layer of a fullerene layer comprising fullerenes (i.e., carbon nanostructures such as carbon nanotubes, Buckminster fullerenes also known as “Buckyballs”, Icosahedral fullerenes, or so forth, or various mixtures of the aforementioned) in a polymer host, in which the fullerenes have a sufficiently high density in the polymer host to promote very efficient thermal conduction across neighboring fullerenes.
The heat sink body (that is, the heat sink not including the thermally conductive layer) does not strongly impact the heat removal, except insofar as it defines the shape of the thermally conductive layer that performs the heat spreading (quantified by the series resistance Rconduction in the thermal model of
In the following, some illustrative embodiments are described.
With reference to
As best seen in
With continuing reference to
As used herein, the term “LED device” is to be understood to encompass bare semiconductor chips of inorganic or organic LEDs, encapsulated semiconductor chips of inorganic or organic LEDs, LED chip “packages” in which the LED chip is mounted on one or more intermediate elements such as a sub-mount, a lead-frame, a surface mount support, or so forth, semiconductor chips of inorganic or organic LEDs that include a wavelength-converting phosphor coating with or without an encapsulant (for example, an ultra-violet or violet or blue LED chip coated with a yellow, white, amber, green, orange, red, or other phosphor designed to cooperatively produce white light), multi-chip inorganic or organic LED devices (for example, a white LED device including three LED chips emitting red, green, and blue, and possibly other colors of light, respectively, so as to collectively generate white light), or so forth. The one or more LED devices 32 may be configured to collectively emit a white light beam, a yellowish light beam, red light beam, or a light beam of substantially any other color of interest for a given lighting application. It is also contemplated for the one or more LED devices 32 to include LED devices emitting light of different colors, and for the electronics 42 to include suitable circuitry for independently operating LED devices of different colors to provide an adjustable color output.
The heat spreader 36 provides thermal communication from the LED devices 32 to the thermally conductive layer 14. Good thermal coupling between the heat spreader 36 and the thermally conductive layer 14 may be achieved in various ways, such as by soldering, thermally conductive adhesive, a tight mechanical fit optionally aided by high thermal conductivity pad between the LED module 30 and the vertex 26 of the heat sink 10, or so forth. Although not illustrated, it is contemplated to have the thermally conductive layer 14 be also disposed over the inner diameter surface of the vertex 26 to provide or enhance the thermal coupling between the heat spreader 36 and the thermally conductive layer 14.
With reference to
If it is desired to additionally dispose the thermally conductive coating 14 on the inside surfaces 20 (as shown by way of illustrative example by the heat sink 10 of
In general, in the thermally conductive coating 14 the fullerenes are randomly oriented in the polymeric host. This is the usual configuration, and is the case, by way of example, in the CNT layers disclosed in WO 2009/052110 A2 and WO 2008/085550 A2, both of which are incorporated herein by reference. However, in the case of anisotropic fullerenes such as carbon nanotubes, it is also contemplated to form the thermally conductive coating 14 as a CNT layer in which the carbon nanotubes are biased toward a selected orientation parallel with the plane of the thermally conductive layer 14. Such an orientation can enhance the lateral thermal conductivity as compared with the “through-layer” thermal conductivity. The thermal conductivity becomes a tensor with an in-plane value σ∥ and a “through-layer” value σ⊥. For a biasing toward the carbon nanotubes being oriented in the plane of the thermally conductive layer 14, σ∥>σ⊥ and the sheet conductivity becomes Ks=σ∥·d. If additionally the carbon nanotubes are biased toward a selected orientation parallel with the plane of the thermally conductive layer 14, then the tensor has further components (that is, the in-plane value σ∥ is broken into different values for different in-plane directions), and if the selected orientation is parallel with a desired direction of thermal flow then the efficiency of ultimate radiative/convective heat sinking can be still further enhanced. One way of achieving such preferential orientation of the carbon nanotubes is by applying an electric field E (diagrammatically shown by a large arrow drawn with dashed lines) during the spray coating. More generally, an external energy field is applied during the spray coating to impart a non-random orientation to the carbon nanotubes disposed in the polymeric host. Another way of achieving preferential orientation of the carbon nanotubes is to dispose the thermally conductive layer 14 on the heat sink body 12 using painting, with the paint strokes being drawn along the preferred orientation so as to mechanically bias the carbon nanotubes toward the preferred orientation.
In some embodiments, after the thermally conductive layer 14 is disposed on the heat sink body 12 it is suitably cured by heating, ultraviolet light exposure, or so forth. In such embodiments, application of an electric field, or mechanical polishing similar to the way polyimide “alignment layers” are formed in some liquid crystal devices, may be employed to impart the preferential orientation to the nanotubes.
With reference to
In general, the sheet thermal conductance of the thermally conductive layer 14 should be high enough to ensure the heat from the LED devices 32 is spread uniformly across the heat radiating/convecting surface area. In simulations performed by the inventors (such as that of
With reference to
Based on the foregoing, in some contemplated embodiments the thermally conductive layer 14 has a thickness of 500 micron or less and a thermal conductivity of 50 W/m·K or higher. However, because the CNT layer can have thermal conductivity exceeding 50 W/m·K by orders of magnitude (see, e.g., Berber et al. supra), a substantially thinner CNT layer can be used. For example, aluminum typically has a (bulk) thermal conductivity of about 100 W/m·K. From
With reference to
A lamp base section 66 is secured with the heat sink body 62 to form the lamp body. The lamp base section 66 includes a threaded Edison base 70 similar to the Edison base 40 of the MR/PAR lamp embodiments of
To provide a substantially omnidirectional light output over a large solid angle (e.g., at least 2π steradians) a diffuser 74 is disposed over the LED devices 72. In some embodiments the diffuser 74 may include (e.g., be coated with) a wavelength-converting phosphor. For LED devices 72 producing a substantially Lambertian light output, the illustrated arrangement in which the diffuser 74 is substantially spherical and the LED devices 72 are located at a periphery of the diffuser 74 enhances omnidirectionality of the output illumination.
With reference to
In the embodiment of
The preferred embodiments have been illustrated and described. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Allen, Gary R., Chowdhury, Ashfaqul I., Rintamaki, Joshua I.
Patent | Priority | Assignee | Title |
10422484, | Oct 02 2009 | Savant Technologies, LLC | LED lamp with uniform omnidirectional light intensity output |
Patent | Priority | Assignee | Title |
6965513, | Dec 20 2001 | Intel Corporation | Carbon nanotube thermal interface structures |
7569425, | Apr 02 2004 | Tsinghua University; Hon Hai Precision Industry Co., Ltd. | Method for manufacturing thermal interface material with carbon nanotubes |
20030117770, | |||
20030198021, | |||
20050116336, | |||
20080074871, | |||
KR20110008822, | |||
WO2005028549, | |||
WO2006117447, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 22 2010 | ALLEN, GARY R | GE LIGHTING SOLUTIONS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025542 | /0427 | |
Dec 22 2010 | CHOWDHURY, ASHFAQUL I | GE LIGHTING SOLUTIONS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025542 | /0427 | |
Dec 28 2010 | GE LIGHTING SOLUTIONS, LLC | (assignment on the face of the patent) | / | |||
Dec 28 2010 | RINTAMAKI, JOSHUA I | GE LIGHTING SOLUTIONS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025542 | /0427 | |
Apr 01 2019 | GE LIGHTING SOLUTIONS, LLC | CURRENT LIGHTING SOLUTIONS, LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 060390 | /0276 | |
Feb 24 2020 | CURRENT LIGHTING SOLUTIONS, LLC FKA - GE LIGHTING SOLUTIONS, LLC | Consumer Lighting, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 059582 | /0748 | |
Jun 30 2020 | CONSUMER LIGHTING U S , LLC | PNC Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053095 | /0001 | |
Jun 30 2020 | SAVANT SYSTEMS, INC | PNC Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053095 | /0001 | |
Sep 21 2020 | CONSUMER LIGHTING LLC | Savant Technologies, LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 059721 | /0943 | |
Mar 31 2022 | PNC Bank, National Association | Racepoint Energy, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059910 | /0312 | |
Mar 31 2022 | PNC Bank, National Association | SAVANT TECHNOLOGIES LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059910 | /0312 | |
Mar 31 2022 | PNC Bank, National Association | SAVANT SYSTEMS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059910 | /0312 |
Date | Maintenance Fee Events |
Mar 05 2014 | ASPN: Payor Number Assigned. |
Sep 11 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 21 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 11 2017 | 4 years fee payment window open |
Sep 11 2017 | 6 months grace period start (w surcharge) |
Mar 11 2018 | patent expiry (for year 4) |
Mar 11 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 11 2021 | 8 years fee payment window open |
Sep 11 2021 | 6 months grace period start (w surcharge) |
Mar 11 2022 | patent expiry (for year 8) |
Mar 11 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 11 2025 | 12 years fee payment window open |
Sep 11 2025 | 6 months grace period start (w surcharge) |
Mar 11 2026 | patent expiry (for year 12) |
Mar 11 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |