A laminated circuit board includes a first wiring board that has a first land formed on a surface thereof; a second wiring board that has a second land formed on a surface thereof; a bonding layer that is laid between the first wiring board and the second wiring board and electrically connects the first land and the second land via a conducting material; and a plate that has a through-hole through which the first land is connected to the second land, wherein a diameter of the through-hole of the plate is larger than a diameter of a component that is made by filling the conducting material.
|
1. A laminated circuit board comprising:
a first wiring board that has a first land formed on a surface thereof;
a second wiring board that has a second land formed on a surface thereof;
a bonding layer that is laid between the first wiring board and the second wiring board and electrically connects the first land and the second land via a conducting material and that has a first through-hole filled with the conducting material; and
a plate that has a second through-hole through which the first land is connected to the second land, wherein
a diameter of the second through-hole of the plate is larger than a diameter of the first through-hole of the bonding layer and is smaller than a diameter of each of the first and second lands.
2. The laminated circuit board according to
a volume of the second through-hole is larger than an excess part of the conducting material that is obtained when the first land is connected to the second land, the excess part being a part of the conducting material filling with the first through-hole and flowing onto the bonding layer when the laminated circuit board does not comprise the plate that has the second through-hole.
3. The laminated circuit board according to
the diameter of the second through-hole of the plate is 1.5 times larger than the diameter of the first through-hole of the bonding layer.
|
This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2010-132394, filed on Jun. 9, 2010, the entire contents of which are incorporated herein by reference.
The embodiments discussed herein are directed to a laminated circuit board and a board producing method.
Well-known build-up processes for producing a multi-layered printed circuit board include an additive process and a semi-additive process in which a conductor pattern is formed on an insulating plate. The above board producing methods use, as the number of layers increases, in order to decrease the processing steps and prevent a noticeable decrease in the yield ratio, a laminating technique of bonding separately produced board layers together with a conducting material or the like in one process.
How a conducting material is supplied and how board layers are stacked up are described with reference to
It is noted that an enough amount of the conducting material is supplied to the through-hole of the bonding layer such that, even if the boards that are layers of the laminated board are curved or bumpy, joint lands of the boards are connected to each other. In other words, the conducting material is supplied to the through-hole of the bonding layer with an amount enough even for a position where concave portions of the surfaces of the boards face to each other, and the bonding layer is configured to be thick enough to cancel out any curve and bumpiness on the surfaces of the boards.
Patent Document 1: Japanese Laid-open Patent Publication No. 2006-210766
Patent Document 2: Japanese Laid-open Patent Publication No. 2006-303245
However, since the above conducting-material supplying technique needs to supply a large amount of the conducting material to the through-hole of the bonding layer, it brings a problem in that an excess conducting material flows onto the interface of the bonding layer and this decreases both the isolation performance and the bonding reliability.
Because the bonding layer is thick enough to cancel out any curve and bumpiness on the surfaces of the boards, if there is a position where convex portions of the surfaces of the boards face to each other, the gap between the bonding layers at this position is small. If so, as illustrated in
According to an aspect of an embodiment of the invention, a laminated circuit board includes a first wiring board that has a first land formed on a surface thereof; a second wiring board that has a second land formed on a surface thereof; a bonding layer that is laid between the first wiring board and the second wiring board and electrically connects the first land and the second land via a conducting material; and a plate that has a through-hole through which the first land is connected to the second land, wherein a diameter of the through-hole of the plate is larger than a diameter of a component that is made by filling the conducting material.
The object and advantages of the embodiment will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the embodiment, as claimed.
Preferred embodiments of the present invention will be explained with reference to accompanying drawings.
In the following, the configuration of the laminated circuit board according to the first embodiment, then the method of producing the laminated circuit board, and finally the effects of the first embodiment are described.
Configuration of the Laminated Circuit Board
The configuration of a laminated circuit board 1 is described below with reference to
The laminated circuit board 1 is a multi-layered printed wiring board in which the joint lands 12 of the board 10A and the board 10B are connected to each other via the conducting material 13 and the two or more wiring patterns 11 are electrically connected to each other. The laminated circuit board 1 further includes the plate 30 between the board 10A and the board 10B, the plate 30 having the through-holes 31 into which the conducting material 13 is supplied.
The board 10A has the wiring patterns 11 printed thereon and the joint lands 12 formed on the surface thereof. Moreover, the joint lands 12 of the board 10A are connected to the respective joint lands 12 of the board 10B via the conducting material 13 and the wiring patterns 11 are electrically connected to each other.
The board 10B also has the wiring patterns 11 printed thereon and the joint lands 12 formed on the surface thereof. The joint lands 12 thereof are connected to the respective joint lands 12 of the board 10A via the conducting material 13 and the wiring patterns 11 are electrically connected to each other.
The bonding layer 20 is laid between the board 10A and the board 10B and electrically connects the joint lands 12 of the board 10A and the joint lands 12 of the board 10B via the conducting material 13. More particularly, the bonding layer 20 is laid on bonding surfaces of the two boards 10A and 10B on which bonding resin is stacked in such a manner that the bonding layer 20 covers the joint lands 12 and the wiring patterns 11.
As is described later with reference to
The plate 30 has the through-holes 31 at respective positions where the conducting material 13 is formed. The diameter of the through-holes 31 is larger than the diameter of components that are made by filling the conducting material 13. Moreover, the plate 30 can be made of a material used in a widely-used printed board. With this configuration, the properties and the reliability of the board are satisfied.
The plate 30 is, for example, made from an epoxy base material (prepreg) of a printed board. As a plate producing manner, the base material is produced by chemically etching a copper foil of a resin copper-covered plate that is produced by bonding copper foils to the front and rear surfaces of prepreg and then pressing the prepreg. It is noted that the present invention is not limited to the above means and the above material and it is allowable to use, for example, an organic film, such as a polyimide film, an inorganic plate, such as a ceramic plate, and even a metallic plate if the plate is subjected to insulating treatment after through-holes are formed thereon.
The diameter of the through-holes 31 of the plate 30 is larger than the diameter of the components that are made by filling the conducting material. For example, the through-holes 31 with φ300 μm are formed on the plate 30 having a thickness 100 μm by using a drill at positions where the conducting material 13 is formed.
Method of Producing the Laminated Circuit Board
The method of producing the laminated circuit board 1 is described below with reference to
First, the two boards 10A and 10B are prepared; their joint lands 12 will be electrically connected to each other. As illustrated in
Subsequently, the bonding layer 20 is bonded to the bonding planes of the two boards 10A and 10B on which bonding resin is stacked in such a manner that the bonding layer 20 covers the joint lands 12 and the wiring patterns 11 (see (3) of
Then, the two or more plates 30 are prepared. Each plate 30 has the through-holes 31 at positions that correspond to the respective joint lands 12. The diameter of the through-holes 31 is larger than the diameter of the through-holes 22 formed on the bonding layer 20. After that, the mylar film 21 is removed from the bonding layer 20 and then the position of the plate 30 is decided to a bonding plane where the boards 10A,10B and 10C are bonded together (see (5) of
Thereafter, layer stacking is performed by applying heat and pressure in vacuum, the pressure being in a direction perpendicular to the two or more plates 30 and the two position-decided boards 10A,10B and 10C (see (6) of
As a result, as illustrated in
Effects of the First Embodiment
As described above, the laminated circuit board 1 includes the boards 10A and 10B each having the joint lands 12 on the surface thereof; the bonding layer 20 that is laid between the board 10A and the board 10B and electrically contact the joint lands 12 to each other via the conducting material 13; and the plate 30 that has the through-holes 31 to accommodate the conducting material 13. The diameter of the through-holes 31 of the plate 30 is larger than the diameter of the components that are made by filling the conducting material 13. Therefore, in the laminated circuit board 1, the excess conducting material 13 cannot flow onto the bonding layer 20, which prevents both a decrease in the isolation performance of the bonding layer 20 and a decrease in the bonding reliability.
Moreover, the plate 30 of the laminated circuit board 1 has the through-holes 31 with a diameter larger than the diameter of the components that are made by filling the conducting material 13 and is large enough to accommodate the excess conducting material 13 when the joint lands 12 are connected to each other. With this configuration, the excess conducting material 13 is appropriately accommodated in the through-holes 31, which prevents both a decrease in the isolation performance of the bonding layer 20 and a decrease in the bonding reliability.
Moreover, the bonding layer 20 is formed between the bonding surfaces of the boards 10A and 10B to electrically connects the joint lands 12 of the boards 10A and 10B to each other and, the through-holes are formed on the bonding layer to accommodate the conducting material. Thereafter, the formed through-holes are filled with the conducting material and the plate 30 that has the through-holes 31 is decided to the bonding plane where the boards 10A and 10B are bonded together. The diameter of the through-holes 31 is larger than the diameter of the through-holes 22 formed on the bonding layer 20. After that, layer stacking is performed by applying heat and pressure, the pressure being in a direction perpendicular to the position-decided plate and the layers of the boards 10A and 10B. This enables producing the laminated circuit board 1, preventing the excess conducting material 13 from flowing onto the bonding layer 20.
Moreover, before the bonding layer 20 is formed on the bonding surface of the board, the through-holes 22 are formed on the bonding layer 20. The through-holes are thus formed before the bonding layer 20 is formed on the bonding surface of the board, which enables producing the laminated circuit board 1 efficiently.
Although, in the first embodiment, using a member with a hole, the bonding layer that has the through-holes at positions of the lands to be connected, the present invention is not limited thereto. It is possible to form the bonding layer on the board first and then form through-holes on the bonding layer by heating and sublimating the parts.
In the second embodiment, as described below, the bonding layer is formed on the surface of the board, first, and then thresh-holds are formed on the bonding layer by heating and sublimating the parts. The method of producing the laminated circuit board is described below with reference to
As illustrated in
Subsequently, the through-holes 31 are formed at positions on the bonding layer 20 that correspond to the respective joint lands 12 to accommodate the conducting material 13 and then connect the joint lands 12 (see (3) of
After that, by movement of the squeegee 40, a well-known conducting material is applied (printed) onto the board 10 and, thus, the through-holes 31 are filled with the conducting material 13 to connect the joint lands 12 (see (4) of
Thereafter, the two or more plates 30 are prepared. Each plate 30 has the through-holes 31 at positions that correspond to the respective joint lands 12. After that, the mylar film 21 is removed from the bonding layer 20 and then the position is decided between the plate 30 and the bonding plane on which the boards 10 are bonded (see (5) of
As described above, in the second embodiment, the bonding layer 20 is formed on the bonding surface of the board, and then the through-holes 22 are formed on the bonding layer 20. As described above, the bonding layer 20 is formed on the bonding surface of the board, and then the through-holes 22 are formed on the bonding layer 20, which enables forming the through-holes 22 appropriately.
The present invention is not limited to the first embodiment and the second embodiment and can be embodied variously. Other embodiments are described below as the third embodiment.
(1) Through-Hole
Any manner can be used to form the through-holes 31. It is allowable to separately process the bonding layer 20 and the plate 30 and then bond the processed bonding layer 20 and the processed plate 30 together. Moreover, it is allowable to bond the bonding layer 20 and the plate 30 together, and then process certain portions of the bonded member. Moreover, any processing method can be used. It is allowable to use a typical drill and a typical laser.
(2) Applicable Devices
In order to achieve the object, the technology disclosed herein can be used in various devices, such as large scale integrations (LSIs), interposers, mother boards, various semiconductor devices, various package boards, various relay devices, and various circuit boards.
According to an embodiment of the laminated circuit board disclosed in the subject application, an excess conducting material cannot flow onto a bonding layer, which prevents both a decrease in the isolation performance of the bonding layer and a decrease in the bonding reliability.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Yoshimura, Hideaki, Hondo, Asami
Patent | Priority | Assignee | Title |
10790222, | Oct 26 2016 | Invensas Corporation | Bonding of laminates with electrical interconnects |
Patent | Priority | Assignee | Title |
6326555, | Feb 26 1999 | Fujitsu Limited | Method and structure of z-connected laminated substrate for high density electronic packaging |
6706973, | Dec 13 1996 | Tessera, Inc. | Electrical connection with inwardly deformable contacts |
6742247, | Mar 14 2002 | General Dynamics Advanced Information Systems, Inc. | Process for manufacturing laminated high layer count printed circuit boards |
7547577, | Nov 14 2006 | TTM TECHNOLOGIES NORTH AMERICA, LLC | Method of making circuitized substrate with solder paste connections |
7943001, | Jun 16 2006 | FICT LIMITED | Process for producing multilayer board |
CN101090610, | |||
CN101707854, | |||
CN1722940, | |||
EP572232, | |||
JP2006210766, | |||
JP2006303245, | |||
JP3826651, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 09 2011 | YOSHIMURA, HIDEAKI | Fujitsu Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026042 | /0766 | |
Feb 09 2011 | HONDO, ASAMI | Fujitsu Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026042 | /0766 | |
Mar 29 2011 | Fujitsu Limited | (assignment on the face of the patent) | / | |||
Mar 27 2020 | Fujitsu Limited | FUJITSU INTERCONNECT TECHNOLOGIES LIMITED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052345 | /0603 | |
Jan 10 2022 | FUJITSU INTERCONNECT TECHNOLOGIES LIMITED | FICT LIMITED | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 063881 | /0638 |
Date | Maintenance Fee Events |
Mar 09 2015 | ASPN: Payor Number Assigned. |
Aug 31 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 01 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 11 2017 | 4 years fee payment window open |
Sep 11 2017 | 6 months grace period start (w surcharge) |
Mar 11 2018 | patent expiry (for year 4) |
Mar 11 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 11 2021 | 8 years fee payment window open |
Sep 11 2021 | 6 months grace period start (w surcharge) |
Mar 11 2022 | patent expiry (for year 8) |
Mar 11 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 11 2025 | 12 years fee payment window open |
Sep 11 2025 | 6 months grace period start (w surcharge) |
Mar 11 2026 | patent expiry (for year 12) |
Mar 11 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |