A system and method for enabling communication concurrently over multiple access points and multiple physical media including but not limited to: cellular, network (e.g., Ethernet), broadband wireless, audio communication schemes.
|
1. A system for enabling concurrent use of multiple network access (NA) points for a single communications session, each said multiple NA points being encapsulated into a single network interface, said single network interface implemented at both a receiver device and a transmitter device for transmitting and receiving data respectively via at least one communications media, such that a communication policy is implemented to specify how to combine the use of the different available NA points via said single network interface, said communication policy specifying which of said multiple NA points are implemented for high availability purposes, wherein, messages may be sent and received without specifying which NA point to use.
12. A method for enabling concurrent use of multiple network access (NA) points for a single communications session comprising the steps of:
a. encapsulating each said multiple NA points into a single network interface, said single network interface implemented at both a receiver device and a transmitter device for respectively transmitting and receiving data via at least one communications media; and,
b. implementing a communication policy at both said single network interfaces to specify how to combine the use of the different available NA points via said single network interface, said communication policy specifying which of said multiple NA points are implemented for high availability purposes, wherein messages may be sent and received without specifying which NA point to use.
2. The system for enabling concurrent use of multiple network access (NA) points as claimed in
3. The system for enabling concurrent use of multiple network access (NA) points as claimed in
4. The system for enabling concurrent use of multiple network access (NA) points as claimed in
5. The system for enabling concurrent use of multiple network access (NA) points as claimed in
6. The system for enabling concurrent use of multiple network access (NA) points as claimed in
7. The system for enabling concurrent use of multiple network access (NA) points as claimed in
8. The system for enabling concurrent use of multiple network access (NA) points as claimed in
9. The system for enabling concurrent use of multiple network access (NA) points as claimed in
10. The system for enabling concurrent use of multiple network access (NA) points as claimed in
11. The system for enabling concurrent use of multiple network access (NA) points as claimed in
13. The method for enabling concurrent use of multiple network access (NA) points as claimed in
14. The method for enabling concurrent use of multiple network access (NA) points as claimed in
15. The method for enabling concurrent use of multiple network access (NA) points as claimed in
16. The method for enabling concurrent use of multiple network access (NA) points as claimed in
17. The method for enabling concurrent use of multiple network access (NA) points as claimed in
18. The method for enabling concurrent use of multiple network access (NA) points as claimed in
19. The method for enabling concurrent use of multiple network access (NA) points as claimed in
20. The method for enabling concurrent use of multiple network access (NA) points as claimed in
21. The method for enabling concurrent use of multiple network access (NA) points as claimed in
22. The method for enabling concurrent use of multiple network access (NA) points as claimed in
|
The present application is a continuation application of U.S. Ser. No. 12/197,740, filed Aug. 25, 2008; which is a continuation application of U.S. Ser. No. 10/950,031 filed Sep. 24, 2004, the entire contents of which are incorporated herein by reference.
1. Field
This invention relates generally to the field of computer communication, including data, voice, and video communications, and peer-to-peer communications; and, particularly, to novel features for simultaneously communicating over multiple access points and physical media.
2. Description of the Prior Art
Many computing devices currently have more than a single network access (NA) point installed. For example, a desktop PC may have an Ethernet port, a telephony modem, an audio connection, and a wireless LAN connection. A Personal Digital Assistant (PDA) may have infra red, cellular, and Ethernet connections. Currently each of these network interfaces may only be used separately in a single communications session.
By way of the following illustrative examples, potential problems may result when applications or systems that rely upon use of a single network media for communications, are rendered inoperable. In a first example, a communications system has been set-up whereby a hearing-impaired person uses a critical application like a stenographic transcription over Internet. In this example, a stenographer acts as an interpreter and transcribes a meeting for the hearing-impaired user. In a second example, a doctor performs a surgical procedure remotely using a robot that is controlled by communicating commands via the Internet. Even a temporary stoppage of these applications can seriously affect a process, i.e., a hearing-impaired user (in the first example) will be unable to follow the meeting or, the doctor (in the second example) unable to perform the operation. The likelihood of such interruption is more probable if only one media is used for conducting these processes over the Internet.
In a third example, a communications system utilizing a single network has been set-up in a building for emergencies. If there is a fire in a building and the single network is broken, it is possible that computers may not quickly transmit important information to an external backup server or, it is possible that emergency messages cannot be transmitted to all people in the building about the need to evacuate. Similarly, people who may be stuck in a building that is burning or destroyed by an earthquake, for example, and are trying to call or send messages about their situation may be unable to do so if the major communication media network for their devices is impaired or destroyed.
It would be highly desirable to provide a method, system and computer program product that enables a single computing device to communicate concurrently using multiple network access (NA) points for a single communications session.
It is thus an object of the present invention to provide computing devices functionality for concurrently utilizing multiple network access (NA) points for a single communications session and, particularly, a system, method and computer program product for enabling the concurrent use of multiple NA points for a single communications session.
According to the invention, all multiple NA points are encapsulated into a single generalized network interface, installed both at the receiver and transmitter ends. In practice, this is accomplished using a software layer that allows programmers and users to send and receive messages without specifying which NA point to use. A policy will be specified to dictate how to combine the use of the different available NA's (the communication “mode”). For example, a simple policy can be: “use only the Ethernet port” or “when both wireless and Ethernet are available use Ethernet”, etc. More complicated policies will allow trading off and enhancing security, reliability, and availability of the desired communication. Finally, the invention permits the introduction of different services using policies that optimize the use of the different NA's based on criteria such as speed, latency, BER (Bit Error Rate), dollar cost, etc.
In accordance with the present invention, there is provided a system and method for enabling concurrent use of multiple network access (NA) points for a single communications session, each of the multiple NA points being encapsulated into a single network interface, wherein the single network interface implemented at both a receiver device and a transmitter device transmits and receives data respectively via at least one communications media, such that a communication policy is implemented to specify how to combine the use of the different available NA points via said single network interface and wherein, messages may be sent and received without specifying which NA point to use.
Further features, aspects and advantages of the structures and methods of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
Devices A, B may communicate with other computers or networks of computers, for example via communications channels 18, e.g., modem, cable, or other wired media, or may communicate over a wireless network using a wireless media through an interface. Thus for example, a network 12 may comprise a local area network (LAN) or a wide area network (WAN), or can be a client in a client/server arrangement with another computer, etc. All of these configurations, as well as the appropriate communications hardware and software, are known in the art. Further, the devices A,B may connect to a wireless network using a networking protocol such as the Transmission Control Protocol/Internet Protocol (“TCP/IP”) or like IP protocol, over a number of alternative connection media, such as cellular phone, radio frequency links, e.g., Bluetooth, radio frequency networks, satellite networks, etc. The devices A, B may connect to a network via TCP or UDP (User Datagram Protocol) over IP, X.25, Frame Relay, ISDN (Integrated Services Digital Network), PSTN (Public Switched Telephone Network), etc.
In accordance with the invention, a user of device A, via a selected policy 15a, may implement multiple network media and, via a switching mechanism, enable switching from a primary media to a different media if the primary media is terminated or rendered inoperable. For example, referring back to the example described, if a user receives a stenographic transcription over a wired network and it is frozen because of Internet problems, then the automatic switching mechanism may be activated to switch the wired network connection to a cellular modem connection so that the hearing-impaired end user will continue to get the transcription over cellular network through the cellular modem.
Referring to
According to the invention, the set of rules that specify how to break down the message into packets, and which subset of NA's to use for every individual packet is referred to as the “policy” 15a, 15b. The policy may be viewed as a “shared secret” between the transmitter node (e.g., Device A) and the receiving node (e.g., Device B). A receiver node cannot correctly recombine the message sent to it by a transmitter node without knowledge of the policy. Thus, referring to communications system 10 of
As further shown in
Examples of possible policy types that may be implemented according to the invention are now described:
A first policy type includes a Security oriented policy that is useful for reducing the likelihood of eavesdropping and compromising secure transmitted information. Thus, a security oriented policy includes the software implemented at the receiver for multiplexing packets over different NA's; for example, breaking a message into several packet streams and transmitting each stream through a different NA.
The implementation of such a security oriented policy is now described with respect to an example scenario corresponding to a “Man In The Middle (MITM) attack” on a system that utilizes the security oriented policy of the invention. In order to carry out a successful MITM attack, a third party attempting to monitor the communication channel must implement the following: 1) a tapping device/equipment for all the media used; 2) a device that knows the composition/de-composition scheme, in order to reassemble packets. This scheme is the policy, and may be governed by a shared secret. Thus, for example, a policy may employ a “media hopping” technique that is analogous to frequency hopping communications technique used in RF/data communications. In the media hopping technique employed in a security policy, every consecutive packet or groups of packets are transmitted through a different NA, and the sequence of NA's is a shared secret.
A second policy type includes a Reliable communication policy that exploits the different physical properties of different NA's and is useful for reducing errors that may be caused in message transmission over a single channel. That is, according to the Reliable communication policy, errors that are caused by different channels (due to communication of messages over different NA's) will be statistically independent. This is because the physical phenomena that cause the channel errors vary significantly across channels. For example, channel fading effects caused by a transmission from a moving vehicle in a cellular network, such as network 12b in
A third policy type includes a High availability policy that exploits communication systems providing continuous network connectivity. For example, some mobile applications require a continuous connection to a network. Thus, a location-aware application may include a local Global Positioning System (GPS) system installed on the mobile device, that monitors the device's location and continuously transmits the location to a control center. Since this kind of an application should always be up and connected, the location information may be transmitted through all of the available media NAs/channels. An availability oriented policy may therefore include devices that continuously sense available NA's, and transmit messages through all channels. A receiver, receiving communications in accordance with such a High availability policy, possesses knowledge of how to ignore the redundancy in case more than one NA is connected. This is similar to a high reliability policy, except for the fact that the transmitting mode is not expected to be in an area that is covered by all NA's, and a single NA covering the node will be sufficient.
A fourth policy type includes an On demand services/Quality of service policy. A network/content provider that operates a multi-channel network may use the system of the invention to provide on demand communication and charge customers based on Quality Of Service (QOS). The content provider may offer users different policies to choose from with each policy optimizing a different objective function including, but not limited to the following: “cheapest communication”, “fastest communication”, “latency free communication”, “lowers Bit Error Rate (BER) communication”, etc. The transmitting device includes a device that will first negotiate with the different NA's and come up with the best combination scheme (i.e., a Best policy) for the requested communication session. For example, a user that would like to establish a voice call from his device may ask for the cheapest current connection that allows for full duplex low latency (but also low speed) connection. The device will query all the available NA's and will come up with a scheme that uses a public wireless LAN that is currently cheaper (e.g., because it is on a weekend day) combined with high BER cellular channel that is also available. The same use may ask to established a video-on-demand session, and therefore a different policy will be used, with the policy implementing the least expensive reliable fast downlink with potentially a slow unreliable (but lest costly) uplink, for example.
As further shown in the embodiment depicted in
Referring to the use of automobiles, it is understood that automobiles/mobiles are now equipped to function as a valid source and destination of communication. However, as automobiles suffer communication problems due to both being mobile and moving fast (e.g., RF channel fading), they need more reliable/available communication. Furthermore, as an automobile may exhibit several emergency situations (e.g., breakdown, accident), the prioritizing properties described herein would be extremely beneficial as they are equipped with multiple NA's such as radio, satellite, etc.
In another embodiment, different computers in the same location may communicate information via audio at the same time (e.g., choosing different frequencies or time intervals for broadcasting). Similarly, using images on screens and cameras in a building one can communicate encoded video data in an emergency situation. For example, in a further embodiment, an available media, i.e., a communication channel, may comprise a CRT and special sensor devices that monitor emitted radiation and which may be located both inside and outside building. As shown in
As further depicted in
In a further embodiment, the data in a computer is prioritized. For example, very important data (e.g., text files or notes that have just recently been created) can be encoded in voice. If computers receive information from smoke/heat sensors detecting an emergency situation (e.g., a fire) and the standard communications network at the building has failed, then speakers in the transmitting PC may generate audio data with encoded messages. These messages can be either repeated again and again or, voice communication can be established between computers and external backup devices that confirm receiving the data (this assumes that computers have also microphones that capable to receive external sounds). In a similar operation, other channels may be considered for communication. Additionally, computers with broken network communication channels inside the building can communicate with other computers in the same room whose network communication channels are working.
In a particular example shown in
While the invention has been particularly shown and described with respect to illustrative and preformed embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention which should be limited only by the scope of the appended claims.
Kanevsky, Dimitri, Zlatsin, Alexander, Zilca, Ran D., Chaar, Jarir K.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6643292, | Apr 28 1998 | Nortel Networks Limited | Efficient packet data transport mechanism and an interface therefor |
7046989, | Sep 12 2002 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Controlling and enhancing handoff between wireless access points |
7051083, | Oct 01 1999 | Telefonaktiebolaget LM Ericsson (publ) | Addressing in a communications network comprising call control level and bearer control level by utilizing network service access point (NSAP) addressing format |
7305474, | Mar 28 2002 | British Telecommunications public limited company | Method of data transfer in mobile and fixed telecommunications systems |
7346025, | Feb 28 2003 | Lucent Technologies Inc.; Lucent Technologies, INC | Portable wireless gateway |
20010012288, | |||
20050105552, | |||
20060094400, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 14 2012 | International Business Machines Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 30 2017 | REM: Maintenance Fee Reminder Mailed. |
Apr 16 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 18 2017 | 4 years fee payment window open |
Sep 18 2017 | 6 months grace period start (w surcharge) |
Mar 18 2018 | patent expiry (for year 4) |
Mar 18 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 18 2021 | 8 years fee payment window open |
Sep 18 2021 | 6 months grace period start (w surcharge) |
Mar 18 2022 | patent expiry (for year 8) |
Mar 18 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 18 2025 | 12 years fee payment window open |
Sep 18 2025 | 6 months grace period start (w surcharge) |
Mar 18 2026 | patent expiry (for year 12) |
Mar 18 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |