This invention generally relates to one or more computer networks having computers like personal computers or network servers with microprocessors linked by broadband transmission means and having hardware, software, firmware, and other means such that at least one parallel processing operation occurs that involve at least two computers in the network.
|
1. A personal computer configured for connection to a network of computers, said personal computer comprising:
one or more hardware network communications components; and
at least one internal hardware firewall that is both located between and separate from a protected hardware portion of the computer and an unprotected hardware portion of the computer;
said protected hardware portion of the computer not being connected to said network of computers and including at least one microprocessor,
said unprotected hardware portion of the computer being located between said internal hardware firewall and said network of computers and including three or more unprotected microprocessors and at least a volatile memory,
said unprotected hardware portion being connected to said network of computers;
said internal hardware firewall denying access by said network to said protected hardware portion of the computer;
said internal hardware firewall permitting unrestricted access by said network to the unprotected hardware portion of the computer, so that operations conducted by said computer with the network are conducted in said unprotected hardware portion using said unprotected microprocessors of the computer; and
each of said at least one internal hardware firewall, said microprocessors, and said one or more hardware network communications components are separate components from each other.
9. A personal computer configured for a connection to a network of computers, said computer comprising:
one or more hardware network communications components; and
a microchip comprising:
an internal hardware firewall that is both located between and separate from a protected hardware portion of the microchip and an unprotected hardware portion of the microchip;
said protected hardware portion of the microchip not being connected to said network of computers and including at least one microprocessor with at least a non-volatile memory,
said unprotected hardware portion of the microchip being located between said internal hardware firewall and said network of computers and including three or more microprocessors and at least a volatile memory;
said unprotected hardware portion being connected to said network of computers;
said internal hardware firewall denying access by said network to said protected hardware portion of the microchip;
said internal hardware firewall permitting unrestricted access by network to the unprotected hardware portion of the microchip, so that operations conducted by said microchip with the network are conducted in said unprotected hardware portion using said unprotected microprocessors of the microchip; and
each of said at least one internal hardware firewall, said microprocessors, said at least one non-volatile memory and said one or more hardware network communications components are separate components from each other.
2. The computer according to
3. The computer according to
4. The computer according to
5. The computer according to
6. The computer according to
7. The computer according to
10. The computer according to
11. The computer according to
12. The computer according to
13. The computer according to
14. The computer according to
15. The computer according to
16. The computer according to
17. The computer according to
18. The computer according to
|
This application is a continuation of U.S. patent application Ser. No. 11/329,423, filed Jan. 11, 2006, which is continuation of U.S. patent application Ser. No. 09/571,558 (now U.S. Pat. No. 7,035,906), filed May 16, 2000. U.S. patent application Ser. No. 09/571,558 receives the benefit of priority from provisional applications 60/134,552, filed May 17, 1999, 60/135,851, filed May 24, 1999, 60/136,759, filed May 28, 1999, and 60/135,852, filed May 24, 1999. U.S. patent application Ser. No. 09/571,558 is a continuation-in-part of U.S. patent application Ser. No. 09/315,026 (now U.S. Pat. No. 7,024,449), filed May 20, 1999, which receives the benefit of priority from provisional applications 60/134,552, filed May 17, 1999, 60/086,516, filed May 22, 1998, 60/086,588, filed May 22, 1998, 60/086,948, filed May 27, 1998, 60/087,587, filed Jun. 1, 1998, and 60/088,459, filed Jun. 8, 1998. U.S. patent application Ser. No. 09/315,026 is a continuation-in-part of U.S. patent application Ser. No. 09/213,875 (now U.S. Pat. No. 6,725,250), filed Dec. 17, 1998, which receives the benefit of priority of provisional application 60/068,366, filed Dec. 19, 1997, and which is a continuation-in-part of U.S. patent application Ser. No. 08/980,058 (now U.S. Pat. No. 6,732,141), filed Nov. 26, 1997, which receives the benefit of priority of provisional application 60/066,415, filed Nov. 24, 1997, provisional application 60/066,313, filed Nov. 21, 1997, provisional application 60/033,871, filed Dec. 20, 1996, provisional application 60/032,207, filed Dec. 2, 1996, and provisional application 60/031,855, filed Nov. 29, 1996. U.S. patent application Ser. No. 09/315,026 is also a continuation-in-part of PCT application PCT/US98/27058, filed Dec. 17, 1998, and designating the United States. PCT/US98/27058 receives the benefit of provisional application 60/068,366, filed Dec. 19, 1997. U.S. patent application Ser. No. 09/315,026 is also a continuation-in-part of PCT application PCT/US97/21812, filed Nov. 28, 1997, and designating the United States. PCT/US97/21812 receives the benefit of priority of provisional application 60/066,415, filed Nov. 24, 1997, provisional application 60/066,313, filed Nov. 21, 1997, provisional application 60/033,871, filed Dec. 20, 1996, provisional application 60/032,207, filed Dec. 2, 1996, and provisional application 60/031,855, filed Nov. 29, 1996. PCT/US97/21812 is a continuation-in-part of U.S. patent application Ser. No. 08/980,058 whose priority is discussed above. U.S. patent application Ser. No. 09/571,558 is also a continuation-in-part of U.S. patent application Ser. No. 09/085,755, filed May 27, 1998. All of the above applications are herein incorporated by reference.
This invention generally relates to one or more computer networks having computers like personal computers or network computers such as servers with microprocessors preferably linked by broadband transmission means and having hardware, software, firmware, and other means such that at least two parallel processing operations occur that involve at least two sets of computers in the network or in networks connected together, a form of metacomputing. More particularly, this invention relates to one or more large networks composed of smaller networks and large numbers of computers connected, like the Internet, wherein more than one separate parallel or massively parallel processing operation involving more than one different set of computers occurs simultaneously. Even more particularly, this invention relates to one or more such networks wherein more than one (or a very large number of) parallel or massively parallel microprocessing processing operations occur separately or in an interrelated fashion; and wherein ongoing network processing linkages are established between virtually any microprocessors of separate computers connected to the network.
Still more particularly, this invention relates generally to a network structure or architecture that enables the shared used of network microprocessors for parallel processing, including massive parallel processing, and other shared processing such as multitasking, wherein personal computer owners provide microprocessor processing power to a network, preferably for parallel or massively parallel processing or multitasking, in exchange for network linkage to other personal and other computers supplied by network providers such as Internet Service Providers (ISP's), including linkage to other microprocessors for parallel or other processing such as multitasking. The financial basis of the shared use between owners and providers being be whatever terms to which the parties agree, subject to governing laws, regulations, or rules, including payment from either party to the other based on periodic measurement of net use or provision of processing power like a deregulated electrical power grid or preferably involving no payment, with the network system, (software, hardware, etc) providing an essentially equivalent usage of computing resources by both users and providers (since any network computer operated by either entity is potentially both a user and provider of computing resources alternately (or even simultaneously, assuming multitasking), with potentially an override option by a user (exercised on the basis, for example, of user profile or user's credit line or through relatively instant payment).
Finally, this invention relates to a network system architecture including hardware and software that provides use of the Internet or its future equivalents or successors (and most other networks) without cost to most users of personal computers or most other computers, while also providing those users (and all other users, including of supercomputers) with computer processing performance that at least doubles every 18 months through metacomputing means. This metacomputing performance increase provided by the new MetaInternet (or Metanet for short) is in addition to all other performance increases, such as those already anticipated by Moore's Law.
By way of background, the computer industry has been governed over the last 30 years by Moore's Law, which holds that the circuitry of computer chips has been shrunk substantially each year, yielding a new generation of chips every 18 months with twice as many transistors, so that microprocessor computing power is effectively doubled every year and a half.
The long term trend in computer chip miniaturization is projected to continue unabated over the next few decades. For example, slightly more than a decade ago a 16 kilobit DRAM memory chip (storing 16,000 data bits) was typical; the standard in 1996 was the 16 megabit chip (16,000,000 data bits), which was introduced in 1993; and industry projections are for 16 gigabit memory chips (16,000,000,000 data bits) to be introduced in 2008 and 64 gigabit chips in 2011, with 16 terabit chips (16,000,000,000,000 data bits) conceivable by the mid-to-late 2020's. This is a thousand-fold increase regularly every fifteen years. Hard drive speed and capacity are also growing at a spectacular rate, even higher than that of semiconductor microchips in recent years.
Similarly regular and enormous improvements are anticipated to continue in microprocessor computing speeds, whether measured in simple clock speed or MIPS (millions of instructions for second) or numbers of transistors per chip. For example, performance has improved by four or five times every three years since Intel launched its X86 family of microprocessors used in the currently dominant “Winter standard personal computers. The initial Intel Pentium Pro microprocessor was introduced in 1995 and is a thousand times faster than the first IBM standard PC microprocessor, the Intel 8088, which was introduced in 1979. By 1996 the fastest of microprocessors, like Digital Equipment Corp.'s Alpha chip, is faster than the processor in the original Cray Y-MP supercomputer, as is even the Nintendo 64 video game system.
Both microprocessors and software (and firmware and other components) are also evolving from 8 bit and 16 bit systems into 32 bit systems that are becoming the standard today, with some 64 bit systems like the DEC Alpha already introduced and more coming, such as Intel's Merced microprocessor in 2000, with future increases to 128 bit likely some later.
A second major development trend in the past decade or so has been the rise of parallel processing, a computer architecture utilizing more than one CPU microprocessor (often many more, even thousands of relatively simple microprocessors, for massively parallel processing) linked together into a single computer with new operating systems having modifications that allow such an approach. The field of supercomputing has been taken over by this approach, including designs utilizing many identical standard personal computer microprocessors.
Hardware, firmware, software and other components specific to parallel processing are in a relatively early stage of development compared to that for single processor computing, and therefore much further design and development is expected in the future to better maximize the computing capacity made possible by parallel processing. Continued improvement is anticipated in system hardware, software, and architecture for parallel processing so that reliance is reduced on the multiple microprocessors having to share a common central memory, thereby allowing more independent operation of those microprocessors, each with their own discrete memory, like current personal computers, workstations and most other computer systems architecture; for unconstrained operation, each individual microprocessor must have rapid access to sufficient memory.
Several models of personal computers are now available with more than one microprocessor. It seems inevitable that in the future personal computers, broadly defined to include versions not currently in use, will also employ parallel computing utilizing multiple microprocessors or massively parallel computing with very large numbers of microprocessors. Future designs, such Intel's Merced chip; are expected to have a significant number of parallel processors on a single microprocessor chip.
A form of parallel processing called superscalar processing is also being employed within microprocessor design itself. The current generation of microprocessors such at the Intel Pentium have more than one data path within the microprocessor in which data is processed, with two to three paths being typical now and as many as eight in 1998 in IBM's new Power 3 microprocessor chip.
The third major development trend is the increasing size of bandwidth, which is a measure of communications power or transmission speed (in terms of units of data per second) between computers connected by a network. Before now, the local area networks and telephone lines typically linking computers including personal computers have operated at speeds much lower than the processing speeds of a personal computer. For example, a typical 1997 Intel Pentium operates at 100 MIPS (millions of instructions per second), whereas the most common current Ethernet connecting PC's is roughly 10 times slower at 10 megabits per second (Mbps), although some Ethernet connections are now 100 Mbps and telephone lines are very much slower, the highest typical speed in 1998 being about 56 kilobits (reached only during downloads, however).
Now, however, the situation is expected to change dramatically, with bandwidth or transmission speed being anticipated to expand from 5 to 100 times as fast as the rise of microprocessor speeds, due to the use of coaxial cable, wireless, and especially fiber optic cable and optical wireless, instead of old telephone twisted pair lines: Telecommunication providers are now making available fiber connections supporting bandwidth of 40 gigabits and higher.
Technical improvements are expected in the near term which will make it possible to carry over 2 gigahertz (billions of cycles per second) on each of 700 wavelength streams, adding up to more than 1,400 gigahertz on every single fiber thread. Experts currently estimate that the bandwidth of optical fiber has been utilized one million times less fully than the bandwidth of coaxial or twisted pair copper lines. Within a decade, 10,000 wavelength streams per fiber are expected and 20-80 wavelengths on a single fiber is already commercially available. And the use of thin mirrored hollow wires or tubes called omniguides should provide very substantial additional increases.
Other network connection developments such as asynchronous transfer mode (ATM) and digital signal processors, which are improving their price/performance tenfold every two years, are also supporting the rapid increase in bandwidth. The increase in bandwidth reduces the need for switching and switching speed will be greatly enhanced when practical optical switches are introduced in the fairly near future, potentially reducing costs substantially.
The result of this huge bandwidth increase is extraordinary: already it is technically possible to connect virtually any computer to a network with a bandwidth that equals or exceeds the computer's own internal system bus speed, even as that bus speed itself is increasing significantly. The principal constraint is the infrastructure, consisting mostly of connecting the “last mile” to personal computers with optical fiber or other broad bandwidth connection, which still needs to be built. The system bus of a computer is its internal network connecting many or most of its internal components such as microprocessor, random access memory (RAM), hard-drive, modem, floppy drive, and CD-ROM; for recent personal computers it has been only about 40 megabits per second, but is up to 133 megabits per second on Intel's Pentium PCI bus in 1995. IBM's 1998 Power3 microprocessor chip has a system bus of 1.6 gigabits per second and there is now up to a gigabit per second on Intel's Pentium PCI bus.
Despite these tremendous improvements anticipated in the future, the unfortunate present reality is that a typical personal computer (PC) is already so fast that its microprocessor is essentially idle during most of the time the PC is in actual use and that operating time itself is but a small fraction of those days the PC is even in any use at all. The reality is that nearly all PC's are essentially idle during roughly all of their useful life. A realistic estimate is that its microprocessor is in an idle state 99.9% of the time (disregarding current unnecessary microprocessor busywork like executing screen saver programs, which have been made essentially obsolete by power-saving CRT monitor technology, which is now standard in the PC industry).
Given the fact that the reliability of PC's is so exceptionally high now, with the mean time to failure of all components typically several hundred thousand hours or more, the huge idle time of PC's represents a total loss; given the high capital and operating costs of PC's, the economic loss is very high. PC idle time does not in effect store a PC, saving it for future use, since the principle limiting factor to continued use of today's PC's is obsolescence, not equipment failure from use.
Moreover, there is growing concern that Moore's Law, which as noted above holds that the constant miniaturization of circuits results in a doubling of computing power every 18 months, cannot continue to hold true much longer. Indeed, Moore's Law may now be nearing its limits for silicon-based devices, perhaps by as early as 2004, and no new technologies have yet emerged that currently seem with reasonable certainty to have the potential for development to a practical level by then, although many recent advances have the potential to maintain Moore's Law.
However, the confluence of all three of the established major trends summarized above—supercomputer-like personal computers, the spread of parallel processing using personal computer microprocessors (particularly massively parallel processing), and the enormous increase in network communications bandwidth—has made possible a surprising solution to the hugely excessive idleness problem of personal computers (and to the problematic possible end of Moore's Law), with very high potential economic savings once the basic infrastructure connecting personal computers with optical fiber is in place in the relatively near future.
The solution is use those mostly idle PC's (or their equivalents or successors) to build a parallel or massively parallel processing computer or computers utilizing a very large network like the Internet or, more specifically, like the World Wide Web (WWW), or their equivalents or eventual successors like the MetaInternet (and including Internet II and the Next Generation Internet, which are under development now and which will utilize much broader bandwidth and will coexist with the Internet, the structure of which is in ever constant hardware and software upgrade and including the SuperInternet based on essentially all optical fiber transmission) with extremely broad bandwidth connections and virtually unlimited data transmission speed.
The prime characteristic of the Internet is of course the very large number of computers of all sorts already linked to it, with the future potential for effectively universal connection; it is a network of networks of computers that provides nearly unrestricted access (other than cost) worldwide. The currently existing and soon-to-be widely available very broad bandwidth of network communications is used to link personal computers externally in a manner at least equivalent, and probably much faster, to the faster internal system buses of the personal computers, so that no external processing constraint will be imposed on linked personal computers by data input or output, or throughput; the speed of the microprocessor itself and the internal connections or buses of the PC are the only processing constraint of the system.
This makes efficient external parallel processing (and multitasking) possible, including massively parallel processing, in a manner paralleling more conventional internal parallel processing, call superscalar processing.
In one preferred embodiment, the World Wide Web (or its equivalents or successors) is transformed into a huge virtual massively parallel processing computer or computers, with potential through its established hyperlinks connections to operate in a manner at least somewhat like a neural network or neural networks, since the speed of transmission in the broadband linkages is so great that any linkage between two microprocessors is virtually equivalent to direct, physically close connections between those microprocessors.
With further development, digital signal processor-type microprocessors and/or analogue microprocessors may be particularly advantageous for this approach, either alone or in conjunction with conventional microprocessors and/or those new microprocessors described later in this application. Networks with WWW-type hyperlinks incorporating digital signal processor-type microprocessor (or successors or equivalents) could operate separately from networks of conventional microprocessors (or successors or equivalents) or with one or more connections between such differing networks or with relatively complete integration between such differing networks. Simultaneous operation across the same network connection structure should be possible, employing non-interfering transmission links.
Such extremely broad bandwidth networks of computers enable every PC within the network to be fully utilized or nearly so. Because of the extraordinary extent to which existing PC's are currently idle, at optimal performance this new system potentially results in a thousand-fold increase in computer power available to each and every PC user (and any other user); and, on demand, almost any desired level of increased power, limited mostly by the increased cost, which however is relatively far less than possible from any other conceivable computer network configuration. This revolutionary increase is on top of the extremely rapid, but evolutionary increases already occurring in the computer/network industry discussed above.
The metacomputing hardware and software means of the MetaInternet provides performance increases that is likely to at least double every eighteen months based on the doubling of personal computers shared in a typical parallel processing operation by a standard PC user, starting first with at least 2 PC's, then about 4, about 8, about 16, about 32, about 64, about 128, about 256, and about 512, for example. After about fifteen years, for example, it is anticipated that each standard PC user will likely be able to use a maximum of about 1024 personal computers for parallel processing or any other shared computing use, while generally using the Internet or its successors like the MetaInternet for free. At the other end of the performance spectrum, supercomputers experience a similar performance increase generally, but ultimately the performance increase is limited primarily by cost of adding network linkages to available PC's, so there is definite potential for a huge leap in supercomputer performance.
Network computer systems as described above offer almost limitless flexibility due to the abundant supply of heretofore idle connected microprocessors. This advantage allows “tightly coupled” computing problems (which normally are difficult to process in parallel) to be solved without knowing in advance (as is now necessary in relatively massively parallel processing) how many processors are available, what they are and their connection characteristics. A minimum number of equivalent processors (with equivalent other specs) are easily found nearby in a massive network like the Internet and assigned within the network from those multitudes available nearby. Moreover, the number of microprocessors used are almost completely flexible, depending on the complexity of the problem, and limited only by cost. The existing problem of time delay is solved largely by the widespread introduction of broad bandwidth connections between computers processing in parallel.
The state of the known art relating to this application is summarized in The Grid: Blueprint for a New Computing Infrastructure, edited by Ian Foster and Carl Kesselman, and published by Morgan Kaufman Publishers, Inc. in 1998. The state of the known art relating to this application is also summarized in: Scalable Parallel Computing by Kai Hwang and Zhiwei Xu, published by WCB McGraw-Hill in 1998; Parallel Programming by Barry Wilkinson and Michael. Allen, published by Prentice Hall in 1998; Computer Architecture: A Quantitative Approach (2nd Edition) by David Patterson and John Hennessy, published by Morgan Kaufmann in 1996; Parallel Computer Architecture by David Culler and Jaswinder Singh, published by Morgan Kaufman in 1998; and Computer Organization and Design by John Hennessy and David Patterson, published by Morgan Kaufman in 1998.
The new network computer utilizes PC's as providers of computing power to the network, not just users of network services. These connections between network and personal computer are enabled by a new form of computer/network financial structure that is rooted on the fact that economic resources being provided the network by PC owners (or leaser) are similar in value to those being provided by the network provider providing connectivity.
Unlike existing one way functional relationships between network providers such as internet service providers (often currently utilizing telecommunications networks for connectivity) and PC users, wherein the network provider provides access to a network like the Internet for a fee (much like cable TV services), this new relationship recognizes that the PC user is also providing the network access to the user's PC for parallel computing use, which has a similar value. The PC thus both provides and uses services on the network, alternatively or potentially even virtually simultaneously, in a multitasking mode.
This new network operates with a structural relationship that is roughly like that which presently exists between an electrical power utility and a small independent power generator connected to a deregulated utility's electrical power grid, wherein electrical power can flow in either direction between utility and independent generator depending on the operating decisions of both parties and at any particular point in time each party is in either a debt or credit position relative to the other based on the net direction of that flow for a given period, and is billed accordingly. In the increasingly deregulated electrical power industry, electrical power (both its creation and transmission) is becoming a commodity bought and sold in a competitive marketplace that crosses traditional borders. With the structural relationship proposed here for the new network, parallel free market structures can develop over time in a new computer power industry dominated by networks of personal computers in all their forms providing shared processing in a grid scaling almost seamlessly from local to national (and international) like an open market electrical power grid.
For this new network and its structural relationships, a network provider or Internet service provider (ISP) is defined in the broadest possible way as any entity (corporation or other business, government, not-for-profit, cooperative, consortium, committee, association, community, or other organization or individual) that provides personal computer users (very broadly defined below) with initial and continuing connection hardware and/or software and/or firmware and/or other components and/or services to any network, such as the Internet and WWW or Internet II or Next Generation Internet (NGr) or their present or future equivalents, coexistors or successors, like the herein proposed MetaInternet, including any of the current or future types of Internet access providers (ISP's) including telecommunication companies, television cable or broadcast companies, electrical power utilities or other related companies, satellite communications companies, or their present or future equivalents, coexistors or successors.
The connection means used in the networks of the network providers, including between personal computers or equivalents or successors, is preferably very broad bandwidth, including electromagnetic connections such as optical connection, including wired like fiber optic cable or wireless like optical wireless, for example, but not excluding any other electromagnetic or other means, including television coaxial cable and telephone twisted pair, as well as associated gateways, bridges, routers, and switches with all associated hardware and/or software and/or firmware and/or other components and their present or future equivalents or successors. The computers used by the Internet service providers include any current or future computers, including such current examples as mainframes, minicomputers, servers, and personal computers, and associated their associated hardware and/or software and/or firmware and/or other components, and their present or future equivalents or successors.
Other levels of network control beyond the Internet or other network service provider also exist to control any aspect of the parallel processing network structure and function, any one of which levels may or may not control and interact directly with the PC user. For example, at least one level of network control like the World Wide Web Consortium (W3C) or Internet Society (ISOC) or other ad hoc industry consortia establish and ensure compliance with any prescribed parallel processing network standards and/or protocols and/or industry standard agreements for any hardware and/or software and/or firmware and/or other component connected to the network. Under the consensus control of these consortia/societies, other levels of the parallel processing network control can deal with administration and operation of the network. These other levels of the parallel processing network control can potentially be constituted by any network entity, including those defined immediately above for network providers.
The principal defining characteristic of the parallel processing network herein described being communication connections (including hardware and/or software and/or firmware and/or other component) of any form, including electromagnetic (such as light and radio or microwaves) and electrochemical (and not excluding biochemical or biological), between PC users and their computers, with connection (either directly or indirectly) to the largest number possible of users and their computers and microprocessors being highly advantageous, such as networks like the Internet (and Internet II and the Next Generation Internet) and WWW and equivalents and successors, like the MetaInternet. Multiple levels of such networks will likely coexist with different technical capabilities, like Internet and Internet n, but have interconnection and therefore communicate freely between levels, for such standard network functions as electronic mail, for example.
And a personal computer (PC) user is defined in the broadest possible way as any individual or other entity routinely using a personal computer, which is defined as any computer, such as digital or analog or neural or quantum, particularly including personal use microprocessor-based personal computers having one or more microprocessors (each including one or more parallel processors) in their general current form, including hardware with fixed or reconfigurable circuitry (such as field-programmable gate array or FPGA) and/or electro-mechanical components (including micro or nano sized) and/or software and/or firmware and/or any other component and their present and future equivalents or successors, such as application-specific (or several application) computers, network computers, handheld personal digital assistants, personal communicators such as telephones and pagers, wearable computers, digital signal processors, neural-based computers (including PC's), entertainment devices such as televisions and associated cable digital set-top control boxes, video tape recorders, video electronic games, videocams, compact or digital video disk (CD or DVD) player/recorders, radios and cameras, other household electronic devices, business electronic devices such as printers, copiers, fax machines, footwear, automobile or other transportation equipment devices, robots, toys, and other current or successor devices incorporating one or more microprocessors (or functional or structural equivalents), especially those owned (or leased directly or indirectly) and used directly by individuals, utilizing one or more microprocessors, made of inorganic compounds such as silicon and/or other inorganic or organic (including biological, such as DNA) compounds. While not personal computers (due generally to high cost), current and future forms of mainframe computers, minicomputers, workstations, and even supercomputers are also be included with PCs in a parallel processing network, since they can be used functionally in the same general way in the network as a PC. Such personal computers as defined above have owners or leasers, which may or may not be the same as the computer users. Continuous connection of computers to the network, such as the Internet, WWW, or equivalents or successors, is preferred, but clearly not required, since connection can also be made at the initiation of a shared processing operation.
Parallel processing is defined as one form of shared processing involving two or more microprocessors used in solving the same computational problem or other task. Massively parallel microprocessor processing involves large numbers of microprocessors. In today's technology, massive parallel processing is probably to be considered to be about 64 microprocessors (referred to in this context as nodes) and over 7,000 nodes have been successfully tested in an Intel supercomputer design using PC microprocessors (Pentium Pros). It is anticipated that continued software improvements will make possible effective use of a much larger number of nodes, very possibly limited only by the number of microprocessors available for use on a given network, even an extraordinarily large one like the Internet or its equivalents and/or successors, like the MetaInternet. Shared processing also includes multitasking, which is unrelated processing in parallel.
Broadband wavelength or broad bandwidth network transmission is defined here to, mean a transmission speed (usually measured in bits per second) that is at least high enough (or roughly at least equivalent to the internal clock speed of the microprocessor or microprocessors times the number of microprocessor channels equaling instructions per second or operations per second or calculations per second) so that the processing input and output of the microprocessor is substantially unrestricted, particularly including at peak processing levels, by the bandwidth of the network connections between microprocessors that are performing some form of parallel processing, particularly including massive parallel processing. Since this definition is dependent on microprocessor speed, it increases as microprocessor speeds increase. For microchips with more than one processor, the network connection to the microchip is preferred to have bandwidth broad enough to ensure that all of the microprocessors are unrestricted by a bottleneck, at the connection during the microprocessors' peak processing levels.
However, a preferred connection means referenced above is a light wave or optical waveguide connection such as fiber optic cable, which in 1996 already provided multiple gigabit bandwidth on single fiber thread and is rapidly improving significantly on a continuing basis, so the currently preferred general use of optical waveguide connections such as fiber between PCs virtually assures broad bandwidth for data transmission that is far greater than microprocessor and associated internal bus speed to provide data to be transmitted. In addition, new wired optical connections or waveguide in the form of thin, mirrored hollow wires or tubes called omniguides offer even much greater bandwidth than optical fiber and without need of amplification when transmitting over distances, unlike optical fiber. The connection means to provide broad bandwidth transmission is either wired or wireless, with wireless (especially optical) generally preferred for mobile personal computers (or equivalents or successors) and as otherwise indicated below. Wireless connection bandwidth is also increasing rapidly and optical wireless bandwidth is considered to offer essentially the same benefit as fiber optic cable: data transmission speed that exceeds data processing speed.
The financial basis of the shared use between owners/leasers and providers is whatever terms to which the parties agree, subject to governing laws, regulations, or rules, including payment from either party to the other based on periodic measurement of net use or provision of processing power, in a manner like an deregulated or open market electrical power grid.
In one embodiment, as shown in
In another embodiment, as shown in
Alternately, as shown in
Preferably, the network involves no payment between users and providers, with the network system (software, hardware, etc) providing an essentially equivalent usage of computing resources by both users and providers (since any network computer operated by either entity can potentially be both a user and provider of computing resources (even simultaneously, assuming multitasking), with potentially an override option by a user (exercised on the basis, for example, of user profile or user's credit line or through relatively instant payment).
Preferably, as shown in
A specific category of PC user based, for example, on specific microprocessor hardware owned or leased, might have access to a set maximum number of parallel PC's or microprocessors, with smaller or basic users generally having less access and vice versa. Specific categories of users might also have different priorities for the execution of their processing by the network other than the simplest case of first come, first served (until complete). A very wide range of specific structural forms between user and provider are possible, both conventional and new, based on unique features of the new network computer system of shared processing resources.
For example, in the simplest case, in an initial system embodiment, as shown in
Preferably, for most standard PC users (including present and future equivalents and successors), connection to the Internet (or present or future equivalents or successors like the MetaInternet) can be at no cost to PC users, since in exchange for such Internet access the PC users can generally make their PC, when idle, available to the network for shared processing. Preferably, then, competition between Internet Service Providers (including present and future equivalents and successors) for PC user customers can be over such factors as the convenience and quality of the access service provided and of shared processing provided at no addition cost to standard PC users, or on such factors as the level of shared processing in terms, for example of number of slave PC's assigned on a standard basis to a master PC. The ISP's can also compete for parallel processing operations, from inside or outside the ISP Networks, to conduct over their networks.
In addition, as shown in
Or, more simply, as shown in
In a preferred embodiment, as shown in
Also, in another embodiment, as shown in
In one embodiment, as shown in
One of the primary capabilities of the Internet (or Internet II or successor, like the MetaInternet) or WWW network computer is to facilitate searches by the PC user or other user. As shown in
As a typical example, a single PC user might need 1,000 minutes of search time to find what is requested, whereas the network computer, using multiple PC processors, might be able to complete the search in 100 minutes using 10 processors, or 10 minutes using 100 processors or 1 minute using 1,000 processors (or even 1 second using 60,000 processors); assuming performance transparency, which should be achievable, at least over time, even for massive numbers of parallel processors. The parallel processing network's external parallel processing is optimally completely scalable, with virtually no theoretical limit.
The above examples also illustrates a tremendous potential benefit of network parallel processing. The same amount of network resources, 60,000 processor seconds, was expended in each of the equivalent examples. But by using relatively large multiples of processors, the network can provide the user with relatively immediate response with no difference in cost (or relatively little difference)—a major benefit. In effect, each PC user linked to the network providing external parallel processing becomes, in effect, a virtual supercomputer! As discussed below, supercomputers can experience a similar spectacular leap in performance by employing a thousand-fold (or more) increase in microprocessors above current levels.
Such power will likely be required for any effective searches in the World Wide Web (WWW). WWW is currently growing at a rate such that it is doubling every year, so that searching for information within the WWW will become geometrically more difficult in future years, particularly a decade hence, and it is already a very significant difficulty to find WWW sites of relevance to any given search and then to review and analyze the contents of the site.
In addition, many more large databases are being made Web accessible and the use of Extensible Markup Language (XML) will accelerate that trend. Moreover, existing search engine results list information from a prior general search and merely summarized on the web servers of search engine operators, whereas the applicant's invention allows a further contemporaneous specifically targeted search directed by the PC user utilizing search engine results only as a starting point for much greater depth and analysis allowed by the shared use of many other PC's in a parallel processing operation.
So the capability to search with massive parallel processing will be required to be effective and can dramatically enhance the capabilities of scientific, technological and medical researchers.
Such enhanced capabilities for searching (and analysis) can also fundamentally alter the relationship of buyers and sellers of any items and/or services. For the buyer, massive parallel network processing can make it possible to find the best price, worldwide, for any product or the most highly rated product or service (for performance, reliability, etc.) within a category or the best combination of price/performance or the highest rated product for a given price point and so on. The best price for the product can include best price for shipping within specific delivery time parameters acceptable to the buyer.
For the seller, such parallel processing can drastically enhance the search, worldwide, for customers potentially interested in a given product or service, providing very specific targets for advertisement. Sellers, even producers, can know their customers directly and interact with them directly for feedback on specific products and services to better assess customer satisfaction and survey for new product development.
Similarly, the vastly increased capability provided by the system's shared parallel processing can produce major improvements in complex simulations like modeling worldwide and local weather systems over time, as well as design and testing of any structure or product, from airliners and skyscrapers to new drugs and to the use of much more sophisticated artificial intelligence (AI) in medical treatment and in sorting through and organizing the PC users voluminous input of electronic data from “push” technologies. Improvements in games also result, especially in terms of realistic simulation and realtime interactivity.
As is clear from the examples, the Internet or WWW network computer system like the MetaInternet can potentially put into the hands of the PC user an extraordinary new level of computer power vastly greater than the most powerful supercomputer existing today. The World's total of microchips is already about 350 billion, of which about 15 billion are microprocessors of some kind (most are fairly simple “appliance” type running wrist watches, televisions, cameras, cars, telephones, etc). Assuming growth at its current rates, in a decade the Internet/Internet II/WWW could easily have a billion individual. PC users, each providing a average total of at least 10 highly sophisticated microprocessors (assuming PC's with at least 4 microprocessors (or more, such as 16 microprocessors or 32, for example) and, associated other handheld, home entertainment, and business devices with microprocessors or digital processing capability, like a digital signal processor or successor devices). That results in a global computer a decade from now made of at least 10 billion microprocessors, interconnected by broad bandwidth electromagnetic wave means at speeds approaching the speed of light.
In addition, it is preferred the exceptionally numerous special purpose “appliance” microprocessors noted above, especially those that operate now intermittently like personal computers, are designed to the same basic consensus industry standard as is preferred for parallel microprocessors for PC's (or equivalents or successors) or for PC “systems on a chip” discussed later in
Moreover, in a environment where all current intermittently operating microprocessors followed the same basic design standards as preferred so that all were homogeneous parallel processors, then although the cost per microprocessor increases somewhat, especially initially, the net cost of computing for all users falls drastically due to the general performance increase due to the use of billions of otherwise idle “appliance” microprocessors. Therefore, the overall system cost reduction compels a transformation of virtually all such microprocessors, which are currently specialty devices known as application-specific integrated circuits (ASICs), into general microprocessors (like PC's), with software and firmware providing most of their distinguishing functionality. As noted above, homogeneity of parallel (and multi-tasking) processing design standards for microprocessors and network, including local and Internet, is preferred, but heterogeneity is also a well established parallel processing alternative providing significant benefits compared to non-parallel processing.
To put this in context, a typical supercomputer today utilizing the latest PC microprocessors has less than a hundred. Using network linkage to all external parallel processing, a peak maximum of perhaps 1 billion microprocessors can be made available for a network supercomputer user, providing it with the power 10,000,000 times greater than is available using current conventional internal parallel processing supercomputers (assuming the same microprocessor technology). Because of it's virtually limitless scalability mentioned above, resources made available by the network to the supercomputer user or PC user can be capable of varying significantly during any computing function, so that peak computing loads can be met with effectively whatever level of resources are necessary.
In summary, regarding monitoring the net provision of power between PC and network,
Also, relative to maintaining a standard cost,
Browsing functions generally include functions like those standard functions provided by current Internet browsers, such as Microsoft Explorer 3.0 or 4.0 and Netscape Navigator 3.0 or 4.0, including at least access to searching World Wide Web or Internet sites, exchanging E-Mail worldwide, and worldwide conferencing; an intranet network uses the same browser software, but might not include access to the Internet or WWW. Shared processing includes parallel processing and multitasking processing involving more than two personal computers, as defined above. The network system is entirely scalar, with any number of PC microprocessors potentially possible.
As shown in
For example, as shown in
Other typical PC hardware components such as hard drive 61, floppy diskette drive 62, compact disk-read only memory (CD-ROM) 63, digital video disk (DVD) 64, Flash memory 65, random access memory (RAM) 66, video or other display 67, graphics card 68, and sound card 69, as well as digital signal processor or processors, together with the software and/or firmware stored on or for them, can be located on either side of the preferred internal firewall 50, but such devices as the display 67, graphics card 68 and sound card 69 and those devices that both read and write and have non-volatile memory (retain data without power and generally have to written over to erase), such as hard drive 61, Flash memory 65, floppy diskette drive 62, read/write CD-ROM 63 or DVD 64 are preferred to be located on the PC user side of the internal firewall 50, where the master microprocessor is also located, as shown in
Alternately, any or these devices that are duplicative (or for other exceptional needs) like a second hard drive 61′ can be located on the network side of the internal, firewall 50. RAM 66 or equivalent or successor memory, which typically is volatile (data is lost when power is interrupted), should generally be located on the network side of the internal firewall 50, however some can be located with the master microprocessor to facilitate its independent use.
However, read-only memory (ROM) devices including most current CD drives (CD-ROM's) 63′ or DVD's (DVD-ROM) drives 64′ or can be safely located on the network side of the internal firewall 50, since the data on those drives cannot be altered by network users; preemptive control of use preferably remains with the PC user.
However, at least a portion of RAM is can be kept on the Master 30 microprocessor side of the internal firewall 50, so that the PC user can use retain the ability to use a core of user PC 1 processing capability entirely separate from any network processing. If this capability is not desired, then the master 30 microprocessor can be moved to the network side of the internal firewall 50 and replaced with a simpler controller on the PC 1 user side, like the master remote controller 31 discussed below and shown in
And the master microprocessor 30 might also control the use of several or, all other processors 60 owned or leased by the PC user, such as home entertainment digital signal processors 70, especially if the design standards of such microprocessors in the future conforms to the requirements of network parallel processing as described above. In this general approach, the PC master processor uses the slave microprocessors or, if idle (or working on low priority, deferable processing), make them available to the network provider or others to use. Preferably, wireless connections 100, including optical wireless, are expected to be extensively used in home or business network systems, including use of a master remote controller 31 without (or with) microprocessing capability, with preferably broad bandwidth connections such as fiber optic cable connecting directly to at least one component such as a PC 1, shown in a slave configuration, of the home or business personal network system; that preferred connection links the home system to the network 2 such as the Internet 3, as shown in
A PC 1 user can remotely access his networked PC 1 by using another networked master microprocessor 30 on another PC 1 and using a password or other access control means for entry to his own PC 1 master microprocessor 30 and files, as is common now in Internet and other access. Alternately, a remote user can simply carry his own digitally stored files and his own master microprocessor or use another networked master microprocessor temporarily has his own.
In the simplest configuration, as shown in
Preferably, as shown in
Existing PC components with mechanical components like hard drive 61, floppy or other removable diskette 62, CD-ROM 63 and DVD 64, which are mass storage devices with mechanical features that will likely not become an integral part of a PC “system of a chip” would preferably, of course, still be capable of connection to a single PC micro chip 90 and control by a single PC master unit 93.
In the simplest multi-processor case, as shown in
As noted in the second paragraph of the introduction to the background of the invention, in the preferred network invention, any computer can potentially be both a user and provider, alternatively—a dual mode operating capability. Consequently, any PC 1 within the network 2, preferably connected to the Internet 3 (and successors like the MetaInternet), can be temporarily a master PC 30 at one time initiating a parallel or multitasking processing request to the network 2 for execution by at least one slave PC 40, as shown in
As shown in
In summary, as noted above relative to
Similarly,
In summary, relative to the use of master/slave computers,
The preferred use of the internal firewall 50, as described above in
In summary, regarding the use of internal firewalls,
In summary, regarding the use of controllers with internal firewalls,
In summary, regarding the use of internal firewalls that can be actively configured,
It is would clearly be advantageous for PC 1 or PC 90 microprocessors noted above be designed homogeneously to the same basic consensus industry standard as parallel microprocessors for PC's (or equivalents or successors) as in
By 1998, manufacturing technology improvements allow 20 million transistors to fit on a single chip (with circuits as thin as 0.25 microns) and, in the next cycle, 50 million transistors using 0.18 micron circuits. Preferably, that entire computer on a chip is linked, preferably directly, by fiber optic or wireless optic or other broad bandwidth connection means to the network so that the limiting factor on data throughput in the network system, or any part, is only the speed of the linked microprocessors themselves, not the transmission speed of the network linkage. Such direct fiber or wireless optic linkage and integration of RAM or equivalent on the microchip will obviate the need for an increasingly unwieldy number of microchip connection prongs, which is currently in the three to four hundred range in the Intel Pentium and Pentium Pro series and will reach over a thousand prongs in the 1998 IBM Power3 microprocessor. One or more digital signal processors 89 and one or more all optical switches 92 located on a microprocessor 90 (or 30 or 40), together with numerous channels and/or signal multiplexing (such as wave division) of the fiber optic signal can substitute for a vast multitude of microchip connection prongs.
For computers that are not reduced to a single chip, it is also preferred that the internal system bus or buses of any such PC's have a transmission speed that is at least high enough that the all processing operations of the PC microprocessor or microprocessors is unrestricted (and other PC components like RAM) and that the microprocessor chip or chips are directly linked by fiber optic or other broad bandwidth connection, as with the system chip described above, so that the limiting factor on data throughput in the network system, or any part, is only the speed of the linked microprocessors themselves, not the transmission speed of the linkage.
The individual user PC's can be connected to the Internet (via an Intranet)/Internet II/WWW or successor, like the MetaInternet (or other) network by any electromagnetic means, with the very high transmission speed provided by the broad bandwidth of optical connections like fiber optic cable being preferred, but hybrid systems using fiber optic cable for trunk lines and coaxial cable to individual users may be more cost effective initially, but less preferred unless cable can be made (through hardware and/or software and/or firmware and/or other component means) to provide sufficiently broad bandwidth connections to provide unrestricted throughput by connected microprocessors. Given the speed and bandwidth of transmission of fiber optic or equivalent or successor connections, conventional network architecture and structures should be acceptable for good system performance, making possible a virtual complete interconnection network between users.
However, the best speed for any parallel processing operation should be obtained, all other things being equal, by utilizing the available microprocessors that are physically the closest together. Consequently, as shown previously in
Network architecture that clusters PC's together should therefore be preferred, but not mandatory for substantial benefit, and can be constructed by wired means. However, as shown in
It would be advantageous, then, for those wireless PC connections to be PC resident and capable of communicating by wireless or wired (or mixed) means with all available PC's in the cluster or cell geographic area, both proximal and potentially out to the practical limits of the wireless transmission.
As shown in
Moreover, as shown in
As shown in
This same transponder approach also can be used between PC's 1″ connected by a wired 99 (or mixed wired/wireless) means, despite the fact that connection distances would generally be greater (since not line of sight, as is wireless), as shown in
As shown in
The
To improve response speed in shared processing involving a significant number of slave PC's 1, a virtual potential parallel processing network for PC's 1 in a cluster 101 preferably is established before a processing request begins. This is accomplished by the transponder device 120 in each idle PC 1, a potential slave, broadcasting by transponder 120 its available state when it becomes idle and/or periodically afterwards, so that each potential master PC 1 in the local cluster 101 is able to maintain relatively constantly its own directory 121 of the idle PC's 1 closest to it that are available to function as slaves. The directory 121 contains, for example, a list of about the standard use number of slave PC's 1 for the master PC (which initially probably is just one other PC 1″) or a higher number, preferably listed sequentially from the closest available PC to the farthest. The directory of available slave PC's 1 is preferably updated on a relatively up to date basis, either when a change occurs in the idle state of a potential slave PC in the directory 121 or periodically.
Such ad hoc clusters 101 should be more effective by being less arbitrary geographically, since each individual PC is effectively in the center of its own ad hoc cluster. Scaling up or down the number of microprocessors required by each PC at any given time is also more seamless.
The complete interconnection potentially provided optimally by such ad hoc wireless clusters is also remarkable because such clusters mimics the neural network structure of the animal brain, wherein each nerve cell, called a neuron, interconnects in a very complicated way with the neurons around it. By way of comparison, the global network computer described above that is expected in a decade can have at least about 10 times as many PC's as a human brain has neurons and they can be connected by electromagnetic waves traveling at close to the speed of light, which is about 300,000 times faster than the transmission speed of human neurons (which, however, are much closer together).
An added note: as individual PC's continue becoming much more sophisticated and more network oriented, compatibility issues, may decrease in importance, since all major types of PC's will be able to emulate each other and most software, particularly relative to parallel processing, may no longer be hardware specific. However, to achieve maximum speed and efficiency, it is beneficial to set compatible hardware, software, firmware, and other component standards to realize potential performance advantages attainable with homogeneous parallel processing components of the global network computer.
Until that compatibility or homogeneity is designed into the essential components of network system, the existing incompatibility or heterogeneity of current components increase the difficulty involved in parallel processing across large networks. Even so, the use of message passing interfaces (MPI) and parallel virtual machines (PVM), for example, has made massively parallel processing between heterogeneous personal computers fairly easy for uncoupled operations, as shown for example in the Beowulf operating system, Globus, and the Legion system, from which has been derived Applied Meta. Programming languages like Java is one approach provides a partial means for dealing with the heterogeneity problem, whereas Linux provides greater speed and efficiency. In addition, using similar configurations of existing standards, like using PC's available on the Internet (with its vast resources) with a specific Intel Pentium chip with other identical or nearly identical PC components is probably the best way in the current technology to eliminate many of the serious existing problems that can easily be designed around using available technologies by adopting reasonable consensus standards for homogeneous specification of all parallel processing system components, both networks and computers. The potential gains to all parties with an interest far outweigh the potential costs.
The above described global network computer system has an added benefit of reducing the serious and growing problem of the nearly immediate obsolescence of PC and other computer hardware, software, firmware, and other components. Since the preferred system above is the sum of its constituent parts used in parallel processing, each specific PC component becomes less critical. As long as access to the network utilizing sufficient bandwidth is possible, then all other technical inadequacies of the user's own PC can be completely compensated for by the network's access to a multitude of technically able PC's of which the user will have temporary use.
Although the global network computer will clearly cross the geographical boundaries of nations, its operation is not likely to be unduly bounded by inconsistent or arbitrary laws within those individual states. There will be considerable pressure on all nations to conform to reasonable system architecture and operational standards generally agreed upon, since the penalty of potential exclusion from a global network computer system like the Internet/WWW is potentially so high as to not be politically possible any in any country.
As shown in
Any number of individual PC's within local networks like that operated by an ISP can be grouped into clusters or cells, as is typical in the practice of the network industry. As is common in operating electrical power grids and telecommunications and computer networks, many such processing requests from many PC's and many networks could be so routed for remote processing, with the complexity of the system growing substantially over time in a natural progression.
Alternatively, for greater security or simplicity, nighttime parallel processing can remain within a relatively local area and emphasize relatively massively parallel processing by larger entities such as business, government, or universities for relatively complicated applications that benefit from comparatively long nightly periods of largely uninterrupted use of significant numbers of slave personal computers PC 1.
Any of the embodiments shown in
While the conventional approach to configuring a network of personal computers PC 1 for parallel processing is simply to string them together in a simple bus-type architecture; as shown previously in
Although the
First, as the number of personal computers PC 1 being used in the network grows, an increasingly greater deal of complex pre-operation planning and custom tailoring-type programming at the master PC 1 level is required to establish a means for allocating portions of the operation among the large number of available personal computers PC 1′.
Second, operations results coming back to PC 1 from personal computers PC 1′ are not synchronized, so that PC 1 frequently alternates between being idle and being overwhelmed. When the number of personal computers PC 1′ is very large, both problems can be significant; when the number is massive, the problems can be overwhelming and seriously degrade the operation of the network.
Third, generally there is no means established for personal computers PC 1′ to communicate or cooperate with each other during such network operations, so sharing operational results during processing between personal computers PC 1′ is usually not feasible, especially when large numbers of PC 1 are involved. Consequently, closely coupled problems are generally not amenable to solution by conventional parallel processing by computers using a simple bus-type network like
The new hierarchical network topology shown in
Similarly, in
Like
As shown in
The offloading capability of functional roles of master and slave personal computers PC 1 (and PC microprocessors 90) and microprocessors 30 (and 40) from unavailable to available PC 1, 30 and 40 as shown in
Note that the number of processing personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 doubles at each additional processing level and therefore can be represented by 2N, where N is the last or final processing level, for the simplest case, as shown above, which is splitting one given operation into two parts such as halfs between each level.
Note also that instead of subdividing one operation as above, two separate parallel processing operations can be multi-tasked on separate branches, such as S21 and S22 as shown, using the same network architecture described above. As is clear from this example, any practical mix of multi-tasking and/or parallel processing is possible using the above network architecture.
As
More specifically,
In the routing of operation results shown in
Such consolidation or additional processing can reduce or eliminate duplicative data from a search or other operation producing duplicative results and can also serve to buffer the originating master M1 from overloading caused by many sets of results arriving at M1 in the
Thus,
Such routing subdivision can also vary between processing levels or even within the same processing level, as shown in
A personal computer PC 1 (or PC microprocessor 90) or microprocessor 30 (or 40) located on a higher processing level in the network architecture such as S31 can process results as well as route them, as shown in
Together,
FIG. 16AA shows a useful embodiment in which each microprocessor 30 and 40 has, in addition to internal cache memory, its own random access memory (RAM) 66 or equivalent memory (volatile or non-volatile, like Flash or magnetic memory), integrated on chip or separate off chip. A significant amount of such RAM or other memory, significantly, greater than “cache” memory and other on chip memory used on microprocessor chips today, can be beneficial in improving the efficient operation of the microprocessor; if located off microprocessor chip, the size of such memory can substantially exceed the size of the associated microprocessor, but on microprocessor chip location like cache memory offers the best potential for improving microprocessor speed and efficiency. The design can also incorporate (or substitute) conventional shared memory or RAM 66′ (i.e. memory used by all, or some, of the microprocessors 30 or 40 (or 90) of the personal computer PC 1).
All
Also, except for
And, as noted initially in
Finally, the
The
Any of the embodiments shown in
The parallel processing network architecture shown in the preceding
Any of the embodiments shown in
The flexible network architecture shown earlier in
The
One potential related application of prior described network inventions is to simulating the unique “qubit” component necessary to construct a quantum computer, as well as a virtual quantum computer itself.
As shown in
Any of the embodiments shown in
Like personal computers located in the home or office, personal computers PC 1 in automobiles 170 (including other transportation vehicles or other conveyances) are in actual use only a very small percentage of the time, with the average dormant period of non-use totaling as much as 90 percent or more. Personal computers PC 1 are now being added to some automobiles and will likely become standard equipment over the next decade or so. In addition, automobiles already have a very large number of microcomputers onboard in the form of specialized microprocessors 35 which are likely to become general parallel processors in future designs, as discussed earlier in this application.
Automobiles therefore form a potentially large and otherwise unused resource for massive parallel processing through the Internet 3 and other networks, as described in earlier figures. However, when idle and thus generally available for network use, automobiles lack their usual power source, the engine, which of course is then off, since it is too large to efficiently provide electrical power to onboard computers except occasionally. As shown in
Alternately, the automobile 170 can be fitted with a very small auxiliary engine-power electrical power generator 177 to provide power to the automobile's computer network; the engine of the generator 177 can be fed by the main engine fuel tank and controlled as above.
Two solutions, not mutually exclusive, to alleviate (but not solve) the lack of power problem noted above are, first, adding an additional car battery 171′ for network use (at least primarily) or, second, using a single battery but adding a controller in the PC 1, for example, that prevents the existing battery 171 from being discharged to a level near or below that which is needed to start the automobile 170.
In addition, as shown in
Alternately, a connection device 174 such as a plug for an external electrical power source can be installed on or near the outer surface of the automobile. In addition, or independently, a connection device 175 for an optical fiber (or other wired) external connection to the Internet 3 or other net; an intermediate high transmission speed can also exist between the automobile network and a fiber optic connection to the Internet 3. Alternately, a wireless receiver 176 located near where the automobile is parked, such as in a garage, can provide connection from the automobile's personal computer or computers PC 1 directly to the Internet 3 or to a network in a home or business like that shown in
Any of the embodiments shown in
Note that PC microprocessor 901 is shown in detail including all slave microprocessors 94, while other PC microprocessors 90 at the second and third processing levels do not, for simplicity and conciseness of presentation. Note also that an additional processing level can be present, but is not shown for the sake of simplicity: personal computers PC 1 like
Any of the embodiments shown in
It is preferred that the additional communications linkages 141, 142, 143, and 144, as well as the original linkages 111, 112, 113, and 114 of
A major benefit of the embodiments shown in
Like
Another advantage of the embodiments shown in
Any of the embodiments shown in
Binary tree configurations of microprocessors shown in
It should be noted that the optical interconnect 99′ shown in
Any of the embodiments shown in
It is currently contemplated that commercial embodiments of the networks, computers, and other components of the MetaInternet described in this application in the preceding
It is also presently contemplated that the Linux programming language will take a central role in the MetaInternet, since a homogeneous system has an advantage as most efficient and effective, and Linux is among the most stable, efficient higher level software available, one that has already established a preemininent role in distributed parallel processing. A heterogeneous MetaInternet is certainly feasible too, but less advantageous, as is the Java programming language, which excels in heterogeneous environments. Although Linux is generally preferred over Java in keeping with the more effective homogeneous approach for parallel processing systems that can scale even to the massive numbers of PCs available on the Internet and WWW, either Java or principles employed in Java may be used with benefit, especially in certain cases like security, such as the use of “sandboxes” to provide secure execution environments for downloaded code (see page 39 of The Grid. Foster and Kesselman and associated bibliography references 238, 559, 555, and 370), although use of one or more internal firewalls as discussed earlier in
It is also contemplated currently that, like the Linux programming language, the MetaInternet described in this application can be developed into a commercial form using open source principles for Internet-like standards for software and hardware connections and other components. Such open source development is anticipated to be exceptionally successful, like Linux, because much of it can be freeware, although modified with one vital enhancement to provide equity for significant contributors: minimal licensing fees that to be paid only by medium to large commercial and governmental entities at progressive rates based on financial size; the resulting funding can be used for significant financial and other awards for special research and development efforts relating to the MetaInternet and its open source development, particularly outstanding achievements by individuals and teams, especially independent developers and virtual teams, the awards also being progressive in terms of importance of contribution and most being peer-selected. Open source commercial development of the MetaInternet should therefore, like Linux, attract the most interested and best qualified technical expertise on the planet, all linked by the Internet and WWW to collaborate virtually in realtime 24 hours a day and 7 days a week, creating a virtual entity extraordinarily skilled in the existing art.
It is also anticipated that the exclusive rights to the MetaInternet granted by patents issued on this application, particularly for the homogeneous embodiment of the MetaInternet—which is by far the most effective and efficient form—will ensure that the MetaInternet is homogeneous on critical hardware and software standards and protocols. That is because any heterogeneous systems cannot not compete commercially due to inherent inferiority in efficiency, while any competing homogeneous system would infringe the patents issuing from this and other applications and therefore be enjoined from operations. The open MetaInternet standards would thus be patent-protected.
As noted earlier, the Internet 3 and WWW (and successors or equivalents) are expected to ensure that any single design standard in widespread use, such as, the Wintel standard (software/hardware) and the Apple Macintosh standard (also both), are homogeneous as to MetaInternet parallel processing systems as outlined in this application, since the Internet and WWW and equivalents or successors make available such a large pool of homogeneous computers with the same standard, in ever increasingly close proximity as more and more PCs and other devices go online. The increasingly universal connection attribute of the Internet 3 and WWW and successors therefore create virtual homogeneity for most significant brands.
The term homogeneous as it is used here refers to functional design standards primarily, not physical structure, for example, when applied to hardware. In this sense, then, for example, the Intel Pentium II, the Advanced Micro Devices (AMD) K6-6, and the Cyrix MII microprocessor chips are functionally compatible and homogeneous with no need for special emulation software, although they are each structurally quite-different and use different microcode at the microchip level. The new Transmeta microprocessors are expected to be functionally compatible and homogeneous through elaborate and highly efficient emulation, potentially an ideal microprocessor for the MetaInternet. In contrast, for example, the Apple G3 processor is also structural different but in addition requires a different operating system and is therefore not functionally compatible and not homogeneous with the Pentium II, K6-6, and MII microprocessors discussed above. Similarly, the MS DOS and DR DOS are functionally compatible software PC operating systems and homogeneous, even though their codes are different, whereas Apple Macintosh operating systems are not functionally compatible or homogeneous with the two DOS systems, except with the addition of special emulation software, which is not efficient. Substantially interchangeable use therefore is a defining element of homogeneity as used in this application. An example of a heterogeneous parallel processing system distributed among many computers which can be of any sort is the University of Virginia's Legion system, in contrast to the preferred homogeneous systems discussed above.
This application encompasses all new apparatus and methods required to operate the above described network computer system or systems, including any associated computer or network hardware, software, or firmware (or other component), both apparatus and methods. Specifically included, but not limited to, are (in their present or future forms, equivalents, or successors): all enabling PC and network software, hardware, and firmware operating systems, user interfaces and application programs; all enabling PC and network hardware design and system architecture, including all PC and other computers, network Computers such as servers, microprocessors, nodes, gateways, bridges, routers, switches, and all other components; all enabling financial and legal transactions, arrangements and entities for network providers, PC users, and/or others, including purchase and sale of any items or services on the network or any other interactions or transactions between any such buyers and sellers; and all services by third parties, including to select, procure, set up, implement, integrate, operate and perform maintenance, for any or all parts of the foregoing for PC users, network providers, and/or others.
The combinations of the many elements the applicant's invention introduced in the preceding figures are shown because those embodiments are considered to be at least among the most useful possible, but many other useful combination embodiments exist but are not shown simply because of the impossibility of showing them all while maintaining a reasonable brevity in an unavoidably long description caused by the inherently highly interconnected nature of the inventions shown herein, which generally can operate all as part of one system or independently.
Therefore, any combination that is not explicitly described above is definitely implicit in the overall invention of this application and, consequently, any part of any of the preceding Figures and/or associated textual description can be combined with any part of any one or more other of the Figures and/or associated textual description of this application to create new and useful improvements over the existing art.
In addition, any unique new part of any of the preceding Figures and/or associated textual description can be considered by itself alone as an individual improvement over the existing art.
The forgoing embodiments meet the overall objectives of this invention as summarized above. However, it will be clearly understood by those skilled in the art that the foregoing description has been made in terms only of the most preferred specific embodiments. Therefore, many other changes and modifications clearly and easily can be made that are also useful improvements and definitely outside the existing art without departing from the scope of the present invention, indeed which remain within its very broad overall scope, and which invention is to be defined over the existing art by the appended claims.
Patent | Priority | Assignee | Title |
10057212, | Mar 15 2013 | Personal computer, smartphone, tablet, or server with a buffer zone without circuitry forming a boundary separating zones with circuitry | |
10375018, | Jan 26 2010 | Method of using a secure private network to actively configure the hardware of a computer or microchip | |
10965645, | Jan 26 2010 | Computer or microchip with a secure system bios having a separate private network connection to a separate private network | |
11683288, | Jan 26 2010 | Computer or microchip with a secure system bios having a separate private network connection to a separate private network | |
8892627, | Nov 29 1996 | Computers or microchips with a primary internal hardware firewall and with multiple internal harware compartments protected by multiple secondary interior hardware firewalls | |
8898768, | Jan 26 2010 | Computer or microchip with a secure control bus connecting a central controller to volatile RAM and the volatile RAM to a network-connected microprocessor | |
9003510, | Jan 26 2010 | Computer or microchip with a secure system bios having a separate private network connection to a separate private network | |
9009809, | Jan 26 2010 | Computer or microchip with a secure system BIOS and a secure control bus connecting a central controller to many network-connected microprocessors and volatile RAM | |
9172676, | Nov 29 1996 | Computer or microchip with its system bios protected by one or more internal hardware firewalls | |
9183410, | Nov 29 1996 | Computer or microchip with an internal hardware firewall and a master controlling device | |
9568946, | Nov 21 2007 | VARSGEN, LLC | Microchip with faraday cages and internal flexibility sipes |
Patent | Priority | Assignee | Title |
3539876, | |||
3835530, | |||
4245306, | Dec 21 1978 | Unisys Corporation | Selection of addressed processor in a multi-processor network |
4276594, | Jan 27 1978 | SCHNEIDER AUTOMATION INC | Digital computer with multi-processor capability utilizing intelligent composite memory and input/output modules and method for performing the same |
4278837, | Dec 13 1976 | Dallas Semiconductor Corporation | Crypto microprocessor for executing enciphered programs |
4467400, | Jan 16 1981 | Unisys Corporation | Wafer scale integrated circuit |
4489397, | Aug 21 1980 | Unisys Corporation | Chain configurable polycellular wafer scale integrated circuit |
4703436, | Feb 01 1984 | Inova Microelectronics Corporation | Wafer level integration technique |
4736317, | Jul 17 1985 | Syracuse University | Microprogram-coupled multiple-microprocessor module with 32-bit byte width formed of 8-bit byte width microprocessors |
4747139, | Aug 27 1984 | Software security method and systems | |
4827508, | Oct 14 1985 | ELECTRONIC PUBLISHING RESOURCES, INC | Database usage metering and protection system and method |
4855903, | Dec 20 1984 | State University of New York | Topologically-distributed-memory multiprocessor computer |
4893174, | Jul 08 1985 | Hitachi, Ltd. | High density integration of semiconductor circuit |
4907228, | Sep 04 1987 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Dual-rail processor with error checking at single rail interfaces |
4918596, | Jul 01 1985 | Hierarchical information processing system | |
4969092, | Sep 30 1988 | IBM Corp. | Method for scheduling execution of distributed application programs at preset times in an SNA LU 6.2 network environment |
5025369, | Aug 25 1988 | RWE-DEA Aktiengesellschaft fur Mineraloel und Chemie | Computer system |
5031089, | Dec 30 1988 | United States of America as represented by the Administrator, National | Dynamic resource allocation scheme for distributed heterogeneous computer systems |
5068780, | Aug 01 1989 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for controlling initiation of bootstrap loading of an operating system in a computer system having first and second discrete computing zones |
5103393, | Jun 29 1990 | COMPAQ INFORMATION TECHNOLOGIES GROUP, L P | Method of dynamically allocating processors in a massively parallel processing system |
5109329, | Feb 06 1987 | AT&T Bell Laboratories; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, 550 MADISON AVENUE, NEW YORK, NEW YORK 10022-3201, A CORP OF NEW YORK; AT&T INFORMATION SYSTEMS INC , 100 SOUTHGATE PARKWAY, MORRISTOWN, NEW JERSEY 07960, A CORP OF DE | Multiprocessing method and arrangement |
5109512, | May 31 1990 | International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY | Process for dispatching tasks among multiple information processors |
5136708, | Jun 09 1987 | OCE-NEDERLAND B V , ST URBANUSWEG 43 | Distributed office automation system with specific task assignment among workstations |
5155808, | Jul 11 1988 | NEC Corporation | System for cooperatively executing programs by sequentially sending a requesting message to serially connected computers |
5195031, | Oct 24 1988 | REUTERS LIMITED, 85 FLEET STREET LONDON EC4P, A CORP OF ENGLAND; REUTERS LIMITED, 85 FLEET ST , LONDON EC4P, A CORP OF ENGLAND | Trading system for providing real time context sensitive trading messages based on conversation analysis |
5212780, | May 09 1988 | Microchip Technology Incorporated | System for single cycle transfer of unmodified data to a next sequentially higher address in a semiconductor memory |
5214657, | Sep 21 1990 | Micron Technology, Inc. | Method for fabricating wafer-scale integration wafers and method for utilizing defective wafer-scale integration wafers |
5237507, | Dec 21 1990 | System for developing real time economic incentives to encourage efficient use of the resources of a regulated electric utility | |
5260943, | Jun 16 1992 | Motorola Mobility, Inc | TDM hand-off technique using time differences |
5282272, | Dec 21 1990 | Intel Corporation | Interrupt distribution scheme for a computer bus |
5283819, | Apr 25 1991 | Gateway 2000 | Computing and multimedia entertainment system |
5291494, | Aug 01 1989 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method of handling errors in software |
5291502, | Sep 04 1992 | BOARD OF TRUSTEES OF THE LELAND STANFORD, JR UNIVERSITY, THE | Electrostatically tunable optical device and optical interconnect for processors |
5291505, | Jan 21 1993 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Active energy control for diode pumped laser systems using pulsewidth modulation |
5341477, | Feb 24 1989 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Broker for computer network server selection |
5349682, | Jan 31 1992 | Parallel PCs, Inc.; PARALLEL PCS, INC A PA CORPORATION | Dynamic fault-tolerant parallel processing system for performing an application function with increased efficiency using heterogeneous processors |
5357404, | Nov 18 1991 | The Whitaker Corporation | EMI shield, and assembly using same |
5357632, | Jan 09 1990 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Dynamic task allocation in a multi-processor system employing distributed control processors and distributed arithmetic processors |
5361362, | Feb 24 1989 | AT&T Bell Laboratories | Adaptive job scheduling for multiprocessing systems with master and slave processors executing tasks with opposite anticipated execution times respectively |
5381534, | Jul 20 1990 | Temple University of the Commonwealth Systems of Higher Education | System for automatically generating efficient application - customized client/server operating environment for heterogeneous network computers and operating systems |
5388211, | Apr 18 1989 | SofTel, Inc. | Method and apparatus for remotely controlling and monitoring the use of computer software |
5392400, | Jul 02 1992 | International Business Machines Corporation; International Business Machines Corporation, | Collaborative computing system using pseudo server process to allow input from different server processes individually and sequence number map for maintaining received data sequence |
5410651, | Jan 29 1988 | Hitachi, Ltd. | Program loading method and system for distributed processing system |
5426741, | Feb 20 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Bus event monitor |
5428783, | Nov 28 1990 | MOTOROLA SOLUTIONS, INC | Lan based loosely coupled large grain parallel processing method |
5434998, | Apr 13 1988 | Yokogawa Electric Corporation | Dual computer system |
5446843, | Dec 20 1990 | Alcatel Italia SpA | Interface unit for dynamically configuring a buffer in different modes to store data transfers based upon different connection details of connected processing units |
5457797, | Aug 03 1993 | Sun Microsystems, Inc | Flexible multi-platform partitioning for computer applications |
5475606, | Mar 05 1993 | GLOBALFOUNDRIES Inc | Faraday cage for a printed circuit card |
5497465, | Mar 25 1992 | Nippon Sheet Glass Co., Ltd. | Parallel digital processing system using optical interconnection between control sections and data processing sections |
5515511, | Jun 06 1994 | International Business Machines Corporation | Hybrid digital/analog multimedia hub with dynamically allocated/released channels for video processing and distribution |
5522070, | Mar 19 1992 | Fujitsu Limited | Computer resource distributing method and system for distributing a multiplicity of processes to a plurality of computers connected in a network |
5530949, | Mar 19 1991 | Fujitsu Limited | Transmission equipment |
5535408, | May 31 1983 | RTPC CORPORATION; TM PATENTS, L P | Processor chip for parallel processing system |
5546594, | Nov 26 1991 | Kabushiki Kaisha Toshiba | Cooperative distributed problem solver |
5550984, | Dec 07 1994 | Panasonic Corporation of North America | Security system for preventing unauthorized communications between networks by translating communications received in ip protocol to non-ip protocol to remove address and routing services information |
5568375, | Jul 22 1994 | ALCATEL N V | Method for preventing an overload when starting a multicomputer system and multicomputer system for carrying out said method |
5570270, | Jun 03 1994 | Westinghouse Air Brake Company | Chassis and personal computer for severe environment embedded applications |
5572643, | Oct 19 1995 | INTERNETAD SYSTEMS LLC | Web browser with dynamic display of information objects during linking |
5576554, | Nov 05 1991 | MOSYS, INC | Wafer-scale integrated circuit interconnect structure architecture |
5586121, | Apr 21 1995 | Hybrid Patents Incorporated | Asymmetric hybrid access system and method |
5587928, | May 13 1994 | Intel Corporation | Computer teleconferencing method and apparatus |
5588003, | May 26 1993 | Fujitsu Limited | LAN-WAN-LAN communication method, and apparatus for LAN-WAN connection |
5590284, | Mar 24 1992 | FERMI RESEARCH ALLIANCE, LLC | Parallel processing data network of master and slave transputers controlled by a serial control network |
5592376, | Jun 17 1994 | Commonweal Incorporated | Currency and barter exchange debit card and system |
5592632, | Nov 05 1991 | MOSYS, INC | Defect tolerant integrated circuit subsystem for communication between a module and a bus controller in a wafer-scale integrated circuit system |
5594491, | Dec 29 1995 | VXL CAPITAL PARTNERS CORPORATION, LTD | Near-video-on-demand digital video distribution system utilizing asymmetric digital subscriber lines |
5600597, | May 02 1995 | XILINX, Inc. | Register protection structure for FPGA |
5604882, | Aug 27 1993 | International Business Machines Corporation | System and method for empty notification from peer cache units to global storage control unit in a multiprocessor data processing system |
5606615, | May 16 1995 | Computer security system | |
5608448, | Apr 10 1995 | Lockheed Martin Corp | Hybrid architecture for video on demand server |
5615127, | Nov 30 1994 | GLOBALFOUNDRIES Inc | Parallel execution of a complex task partitioned into a plurality of entities |
5627879, | Sep 17 1992 | ADC Telecommunications | Cellular communications system with centralized base stations and distributed antenna units |
5666484, | Sep 14 1988 | Hitachi, Ltd. | Control method for distributed processing system |
5678028, | Oct 25 1994 | Mitsubishi Electric Research Laboratories, Inc | Hardware-software debugger using simulation speed enhancing techniques including skipping unnecessary bus cycles, avoiding instruction fetch simulation, eliminating the need for explicit clock pulse generation and caching results of instruction decoding |
5680461, | Oct 26 1995 | Oracle America, Inc | Secure network protocol system and method |
5680548, | Dec 02 1994 | iAnywhere Solutions, Inc | Systems and methods for work assignment and distribution from a server to remote/mobile nodes |
5696902, | Oct 04 1993 | France Telecom; Telediffusion de France | System for management of the usage of data consultations in a telecommunication network |
5699528, | Oct 31 1995 | MASTERCARD INTERNATIONAL, INC | System and method for bill delivery and payment over a communications network |
5701507, | Jul 12 1994 | Texas Instruments Incorporated | Architecture of a chip having multiple processors and multiple memories |
5710884, | Mar 29 1995 | Intel Corporation | System for automatically updating personal profile server with updates to additional user information gathered from monitoring user's electronic consuming habits generated on computer during use |
5734913, | Dec 15 1989 | Hitachi, Ltd. | Low power consumption semiconductor integrated circuit device and microprocessor |
5748489, | Nov 30 1994 | GLOBALFOUNDRIES Inc | Parallel execution of a complex task partitioned into a plurality of entities |
5752067, | Nov 13 1990 | International Business Machines Corporation | Fully scalable parallel processing system having asynchronous SIMD processing |
5754766, | Apr 17 1991 | Integrated circuit system for direct document execution | |
5758077, | Aug 02 1996 | Hewlett Packard Enterprise Development LP | Service-centric monitoring system and method for monitoring of distributed services in a computing network |
5758345, | Nov 08 1995 | International Business Machines Corporation | Program and method for establishing a physical database layout on a distributed processor system |
5761507, | Mar 05 1996 | GLOBALFOUNDRIES Inc | Client/server architecture supporting concurrent servers within a server with a transaction manager providing server/connection decoupling |
5764889, | Sep 26 1996 | International Business Machines Corporation | Method and apparatus for creating a security environment for a user task in a client/server system |
5774337, | May 01 1995 | Apple Inc | Appliance having EMI shielding |
5774668, | Jun 07 1995 | Microsoft Technology Licensing, LLC | System for on-line service in which gateway computer uses service map which includes loading condition of servers broadcasted by application servers for load balancing |
5774721, | Sep 08 1995 | IQ NETSOLUTIONS CA, INC | Method of communication between processors in a distributed processing system having a host processor and at least one object oriented processor |
5784551, | Sep 30 1992 | Siemens Telecommunicazioni S.p.A. | Duplicate control and processing unit for telecommunications equipment |
5784628, | Mar 12 1996 | Microsoft Technology Licensing, LLC | Method and system for controlling power consumption in a computer system |
5790431, | Nov 20 1995 | International Business Machines Corporation | Method and system for measuring availability in a distributed network |
5793968, | Aug 19 1994 | Cisco Technology, Inc | Scalable distributed computing environment |
5794059, | Nov 13 1990 | International Business Machines Corporation | N-dimensional modified hypercube |
5802320, | May 18 1995 | Sun Microsystems, Inc | System for packet filtering of data packets at a computer network interface |
5809190, | Nov 13 1996 | Applied Fiber Optics, Inc. | Apparatus and method of making a fused dense wavelength-division multiplexer |
5815665, | Apr 03 1996 | Microsoft Technology Licensing, LLC | System and method for providing trusted brokering services over a distributed network |
5815793, | Oct 05 1995 | Microsoft Technology Licensing, LLC | Parallel computer |
5826014, | Feb 06 1996 | GraphOn Corporation | Firewall system for protecting network elements connected to a public network |
5826029, | Oct 31 1995 | TREND MICRO INCORPORATED | Secured gateway interface |
5828833, | Aug 15 1996 | Hewlett Packard Enterprise Development LP | Method and system for allowing remote procedure calls through a network firewall |
5835726, | Dec 15 1993 | Check Point Software Technologies Ltd | System for securing the flow of and selectively modifying packets in a computer network |
5838436, | Mar 26 1997 | The United States of America as represented by the Secretary of the Air | Multi-purpose quantum computing |
5838542, | Sep 30 1996 | Intel Corporation | Processor card assembly including a heat sink attachment plate and an EMI/ESD shielding cage |
5843799, | Nov 05 1991 | MOSYS, INC | Circuit module redundancy architecture process |
5844594, | Oct 05 1995 | Microsoft Technology Licensing, LLC | Method and apparatus for MPEG encoding |
5845074, | Nov 22 1996 | E-PARCEL CORPORATION | Smart internet information delivery system having a server automatically detects and schedules data transmission based on status of clients CPU |
5850449, | May 19 1997 | Oracle America, Inc | Secure network protocol system and method |
5861817, | Jul 02 1997 | Douglas A., Palmer | System for, and method of, displaying prices on tags in supermarkets |
5862357, | Jul 02 1996 | Oracle America, Inc | Hierarchical SMP computer system |
5864738, | Mar 13 1996 | Hewlett Packard Enterprise Development LP | Massively parallel processing system using two data paths: one connecting router circuit to the interconnect network and the other connecting router circuit to I/O controller |
5870721, | Aug 27 1993 | DECISIONING COM, INC | System and method for real time loan approval |
5872987, | Aug 07 1992 | Thinking Machines Corporation | Massively parallel computer including auxiliary vector processor |
5881284, | Oct 26 1995 | NEC Corporation | Method of scheduling a job in a clustered computer system and device therefor |
5889989, | Sep 16 1996 | The Research Foundation of State University of New York | Load sharing controller for optimizing monetary cost |
5896499, | Feb 21 1997 | International Business Machines Corporation | Embedded security processor |
5905429, | Apr 25 1997 | CITY OF LIGHTS, INC | Audio label |
5909052, | Mar 12 1986 | Renesas Electronics Corporation | Semiconductor device having plural chips with the sides of the chips in face-to-face contact with each other in the same crystal plane |
5909681, | Mar 25 1996 | International Business Machines Corporation | Computer system and computerized method for partitioning data for parallel processing |
5917629, | Oct 29 1990 | International Business Machines Corporation | Transceiver for extending a CSMA/CD network for wireless communication |
5919247, | Jul 24 1996 | BMC SOFTWARE, INC | Method for the distribution of code and data updates |
5930511, | Oct 30 1992 | Tao Group Limited | Operating system for use with computer networks incorporating one or more data processors linked together for parallel processing and incorporating improved dynamic binding and/or load-sharing techniques |
5943421, | Sep 11 1995 | Intermec IP CORP | Processor having compression and encryption circuitry |
5964832, | Apr 18 1997 | Intel Corporation | Using networked remote computers to execute computer processing tasks at a predetermined time |
5978829, | Nov 05 1996 | AT&T Corp; Lucent Technologies Inc | Apparatus and methods for sharing idle workstations |
6003133, | Nov 17 1997 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Data processor with a privileged state firewall and method therefore |
6052555, | Oct 05 1995 | Microsoft Technology Licensing, LLC | Method for speeding MPEG encoding using JPEG pre-processing |
6065118, | Aug 09 1996 | Citrix Systems, Inc | Mobile code isolation cage |
6067082, | Nov 09 1992 | ADC TECHNOLOGY INC | Portable communicator |
6073209, | Mar 31 1997 | NetApp, Inc | Data storage controller providing multiple hosts with access to multiple storage subsystems |
6078733, | Mar 08 1996 | HANGER SOLUTIONS, LLC | Network interface having support for message processing and an interface to a message coprocessor |
6093933, | Mar 16 1998 | Micron Technology, Inc. | Method and apparatus for fabricating electronic device |
6098091, | Dec 30 1996 | Intel Corporation | Method and system including a central computer that assigns tasks to idle workstations using availability schedules and computational capabilities |
6112225, | Mar 30 1998 | International Business Machines Corporation | Task distribution processing system and the method for subscribing computers to perform computing tasks during idle time |
6112243, | Dec 30 1996 | Intel Corporation | Method and apparatus for allocating tasks to remote networked processors |
6115698, | Aug 18 1995 | Acacia Research Group LLC | Apparatus and method for trading electric energy |
6167428, | Nov 29 1996 | Personal computer microprocessor firewalls for internet distributed processing | |
6202153, | Nov 22 1996 | Voltaire Advanced Data Security Ltd. | Security switching device |
6208634, | Mar 30 1998 | Ericsson AB | Methods and apparatus for CDMA wireless call setup time/service negotiation optimization |
6219627, | Dec 26 1991 | Texas Instruments Incorporated | Architecture of a chip having multiple processors and multiple memories |
6268788, | Nov 07 1996 | IMPRIVATA, INC | Apparatus and method for providing an authentication system based on biometrics |
6287949, | Jun 20 1994 | SOCIONEXT INC | Multi-chip semiconductor chip module |
6326245, | Mar 16 1998 | Micron Technology, Inc. | Method and apparatus for fabricating electronic device |
6366472, | Nov 29 1999 | Intel Corporation | Apparatus and method for inhibiting electromagnetic interference |
6440775, | Jun 19 2000 | Advantest Corporation | Method and apparatus for edge connection between elements of an integrated circuit |
6645832, | Feb 20 2002 | Intel Corporation | Etch stop layer for silicon (Si) via etch in three-dimensional (3-D) wafer-to-wafer vertical stack |
6725250, | Nov 29 1996 | Global network computers | |
6732141, | Nov 29 1996 | Commercial distributed processing by personal computers over the internet | |
6772347, | Apr 01 1999 | Juniper Networks, Inc | Method, apparatus and computer program product for a network firewall |
6797545, | Mar 16 1998 | Micron Technology, Inc. | Method and apparatus for fabricating electronic device |
6950947, | Jun 20 2000 | McAfee, Inc | System for sharing network state to enhance network throughput |
7024449, | Nov 29 1996 | Global network computers | |
7035906, | Nov 29 1996 | Global network computers | |
7047275, | Nov 29 1996 | Internal firewall for a personal computer to deny access by a network to a user's secure portion | |
7148565, | Feb 20 2002 | Intel Corporation | Etch stop layer for silicon (Si) via etch in three-dimensional (3-D) wafer-to-wafer vertical stack |
7161175, | Sep 30 1997 | Inter-dice signal transfer methods for integrated circuits | |
7412588, | Jul 25 2003 | Microsoft Technology Licensing, LLC | Network processor system on chip with bridge coupling protocol converting multiprocessor macro core local bus to peripheral interfaces coupled system bus |
7467406, | Aug 23 2002 | FUTURE LINK SYSTEMS | Embedded data set processing |
7506020, | Nov 02 1996 | Global network computers | |
7562211, | Oct 27 2005 | Microsoft Technology Licensing, LLC | Inspecting encrypted communications with end-to-end integrity |
7606854, | Nov 29 1996 | Internal hardware firewalls for microchips | |
7634529, | Nov 29 1996 | Personal and server computers having microchips with multiple processing units and internal firewalls | |
7805756, | Nov 29 1996 | Microchips with inner firewalls, faraday cages, and/or photovoltaic cells | |
7814233, | Nov 29 1996 | Computer and microprocessor control units that are inaccessible from the internet | |
7840997, | Mar 28 2002 | Broadlands Technologies LLC | Method and device for computer memory protection against unauthorized access |
7908650, | Nov 29 1996 | Computer or microchip protected from the internet by internal hardware | |
7926097, | Nov 29 1996 | Computer or microchip protected from the internet by internal hardware | |
7984301, | Aug 17 2006 | Rambus Inc | Bi-processor architecture for secure systems |
8010789, | Nov 13 2003 | Lantronix, Inc. | Secure data transfer using an embedded system |
8125796, | Nov 21 2007 | Frampton E., Ellis | Devices with faraday cages and internal flexibility sipes |
8164170, | Nov 21 2007 | Frampton E., Ellis | Devices with faraday cages and internal flexibility sipes |
8171537, | Jan 29 2010 | Method of securely controlling through one or more separate private networks an internet-connected computer having one or more hardware-based inner firewalls or access barriers | |
8209373, | Nov 29 1996 | Computers or microchips with a hardware side protected by a primary internal hardware firewall and an unprotected hardware side connected to a network, and with multiple internal hardware compartments protected by multiple secondary inner hardware firewalls | |
8255986, | Jan 26 2010 | Frampton E., Ellis | Methods of securely controlling through one or more separate private networks an internet-connected computer having one or more hardware-based inner firewalls or access barriers |
8291485, | Nov 29 1996 | Computers and microchips with a faraday cage, a side protected by an internal hardware firewall and an unprotected side connected to the internet for network operations, and with internal hardware compartments | |
8312529, | Nov 29 1996 | Global network computers | |
8378474, | Nov 21 2007 | Frampton E. Ellis | Devices with faraday cages and internal flexibility sipes |
20010011294, | |||
20010013049, | |||
20010046119, | |||
20010054159, | |||
20020059392, | |||
20020087886, | |||
20040073603, | |||
20040098621, | |||
20040158744, | |||
20040162992, | |||
20040215931, | |||
20050138169, | |||
20050180095, | |||
20060075001, | |||
20060095497, | |||
20060177226, | |||
20060190565, | |||
20060248749, | |||
20070162974, | |||
20070196948, | |||
20070300305, | |||
20080083976, | |||
20080134290, | |||
20090026524, | |||
20090031412, | |||
20090200661, | |||
20090254986, | |||
20090282092, | |||
20100011083, | |||
20100011803, | |||
20110004930, | |||
20110004931, | |||
20110225645, | |||
20110271339, | |||
20120030747, | |||
20120030748, | |||
20120042372, | |||
20120054849, | |||
20120096537, | |||
20120155002, | |||
20120175752, | |||
DE4008335, | |||
EP647052, | |||
EP840216, | |||
EP853279, | |||
EP1164766, | |||
WO2011094616, | |||
WO2011103299, | |||
WO9401964, | |||
WO9501060, | |||
WO9826366, | |||
WO9904561, | |||
WO9932972, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Aug 18 2017 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Nov 08 2021 | REM: Maintenance Fee Reminder Mailed. |
Apr 25 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 18 2017 | 4 years fee payment window open |
Sep 18 2017 | 6 months grace period start (w surcharge) |
Mar 18 2018 | patent expiry (for year 4) |
Mar 18 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 18 2021 | 8 years fee payment window open |
Sep 18 2021 | 6 months grace period start (w surcharge) |
Mar 18 2022 | patent expiry (for year 8) |
Mar 18 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 18 2025 | 12 years fee payment window open |
Sep 18 2025 | 6 months grace period start (w surcharge) |
Mar 18 2026 | patent expiry (for year 12) |
Mar 18 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |