A load-bearing medical implant is disclosed that includes a load-bearing structure with a cavity extending into the outer surface of the structure. The cavity accommodates a sensor that is held in a fixed position within the cavity by an encapsulant. The cavity is covered by a plate that is welded over the cavity in close proximity to the sensor and encapsulant to provide a seal over the cavity and the electronic component without causing thermal damage to the encapsulant or sensor despite the close proximity of the encapsulant and sensor to the welded areas of the plate and structure. Methods for encapsulating the sensor in the cavity, methods for encapsulating a wire bus leading from the sensor through a channel in the implant and methods for pulsed laser welding of weld plate over the sensor and encapsulant with thermal damage to either are disclosed.
|
24. A method for hermetically sealing an electronic component in a load-bearing implant, the method comprising:
providing a load-bearing implant with a cavity for accommodating the electronic component, the cavity having a length, a width, and a depth, wherein the length is greater than the width and the depth;
providing a weld plate configured to cover the cavity with an offset margin extending around a periphery of the cavity;
encapsulating the electronic component in the cavity within a silicone encapsulant;
curing the silicone encapsulant at a first temperature;
heat treating the cured silicone encapsulant to a second temperature; and
welding the weld plate over the cavity at the offset margin in a direction along the length of the cavity to form a seal over the cavity.
1. A method for hermetically sealing an electronic component in a load-bearing implant, the method comprising:
providing a load-bearing implant with a cavity for accommodating the electronic component, the load-bearing implant defining an inner bore;
providing a weld plate configured to cover the cavity with an offset margin extending around a periphery of the cavity;
encapsulating the electronic component in the cavity within an encapsulant;
curing the encapsulant at a first temperature;
heat treating the cured encapsulant to a second temperature;
placing a heat sink in the inner bore of the load-bearing implant; and
while the heat sink is located in the inner bore of the load-bearing implant, welding the weld plate over the cavity along the offset margin so the weld plate provides a seal over the cavity.
25. A method for hermetically sealing an electronic component in a load-bearing implant, the method comprising:
providing a load-bearing implant with a cavity for accommodating the electronic component;
providing a weld plate configured to cover the cavity with an offset margin extending around a periphery of the cavity;
encapsulating the electronic component in the cavity within an encapsulant;
after encapsulating the electronic component in the cavity within the encapsulant, subjecting the load-bearing implant to (i) one or more vacuum cycles that expose the load-bearing implant to pressure below atmospheric pressure, or (ii) one or more pressurization cycles that expose the load-bearing implant to pressure above atmospheric pressure;
curing the encapsulant at a first temperature;
heat treating the cured encapsulant to a second temperature; and
welding the weld plate over the cavity along the offset margin so the weld plate provides a seal over the cavity.
2. The method of
wherein the encapsulating comprises forming a barrier that prevents body fluids from entering the cavity and reaching the electronic component; and
wherein the welding comprises welding the weld plate over at least a portion of the channel as well as the cavity without causing thermal damage to the encapsulant.
3. The method of
wherein the welding comprises welding the weld plate over the cavity and the channel such that the welding of the weld plate does not result in temperatures of the encapsulant reaching 150° C. or above.
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
16. The method of
18. The method of
wherein welding the weld plate over the cavity comprises welding the weld plate over the opening of the cavity.
19. The method of
wherein welding the weld plate comprises welding the weld plate over the opening of the cavity and a portion of the channel along the offset margin without causing substantial thermal damage to the encapsulant, the weld plate forming a seal over the cavity and the portion of the channel.
20. The method of
21. The method of
wherein curing the encapsulant comprises curing the encapsulant with the clamp located over the opening of the cavity.
22. The method of
placing the load-bearing implant in a pressurization chamber; and
performing one or more vacuum cycles that decrease the pressure in the pressurization chamber below atmospheric pressure.
23. The method of
placing the load-bearing implant in a pressurization chamber; and
performing one or more pressurization cycles that increase pressure in the pressurization chamber above atmospheric pressure.
26. The method of
wherein welding the weld plate over the cavity comprises welding along the offset margin at locations between the proximal opening and the distal opening.
27. The method of
wherein welding the weld plate over the cavity comprises applying pulsed laser energy along the offset margin according to the selected welding parameters to create a weld having a weld penetration within the predetermined range.
28. The method of
29. The method of
selecting a pulse energy between about 1 J to about 3 J;
selecting a pulse duration between about 2 milliseconds and about 8 milliseconds; and
selecting a weld overlap between about 35% and 80%.
30. The method of
31. The method of
|
This application claims the benefit of U.S. Provisional Application No. 61/148,283, filed 29 Jan. 2009. The disclosure of this prior application is incorporated by reference in its entirety.
1. Technical Field
This disclosure relates to various load-bearing medical implants with at least one electronic component that is sealed within a load-bearing structure of the implant to provide an impermeable barrier to protect the electronic component from body fluids. Various methods are disclosed for hermetically sealing the electronic component within a metallic load-bearing implant structure by welding a weld plate over the cavity that accommodates the electronic component without causing thermal damage to the encapsulant or electronic component. Various techniques are also disclosed for encapsulating an electronic component within a cavity of a load-bearing implant, such as an IM nail that includes one or more electronic sensors for landmark identification. The encapsulation and welding techniques disclosed herein address the problems associated with load-bearing implants having shallow cavities for sensor or other components and shallow channels for wiring, wherein the sensor and encapsulant can be damaged by welding a cover plate in close proximity to the enscapsulant and sensor.
2. Description of the Related Art
While most orthopedic implant developers are focused on improving current technologies, a handful are directed to developing “smart” or “intelligent” orthopedic implants equipped with implantable electronic components. Such electronically-equipped orthopedic implants provide real-time feedback to researchers, physicians or patients regarding how the implants are performing once they are placed inside a bone or joint. For example, orthopedic implants with electronic components can be used to detect poor bone in-growth, educate patients about safe post-operative activities, and improve surgical techniques.
The implantable electronic circuits and components must be small to minimize the size of the implant and designed to last in a physiological environment for an extended period of time. A reliable hermetic barrier must be used to preventingress of body fluids to the implantable electronic components and to assure long term biocompatibility. Generally used methods for protecting electronic circuits from the bodily fluids or other damaging environments include both hermetic sealing and polymer encapsulation.
Encapsulants, such as silicone elastomers, polyurethanes, silicone-urethane copolymer, polytetrafluoroethylene and epoxies have been used with implantable neuromuscular stimulators which rely on relatively simple circuits. However, polymers do not provide an impermeable barrier and therefore cannot be used for encapsulation of high density, high impedance electronic circuits. The moisture ingress will ultimately reach the electronic component resulting in electric shorting and degradation of leakage-sensitive circuitry.
For radio frequency powered electronic components disposed within a medical implant, a combination of hermetic packaging and polymer encapsulation are used. Hermetic packaging, using metals, ceramics or glasses, provides the implant electronic circuitry with a long term protection from the ingress of body fluids. The primary role of the encapsulant is to stabilize the electronic components by acting as stress-relieving shock and vibration absorbers and providing electrical insulation. Electrical signals, such as power and stimulation, enter and exit the implant through hermetic through-holes, which are hermetically welded into the implant walls. The through-hole assembly utilizes a ceramic or glass insulator to allow one or more wires to exit the implant.
In certain situations, electrical through-holes are not practical due to limited design space (e.g., <1 mm diameter) available for the parts in combination with the risk of fatigue failure of the connection due to cyclic loading of the implant. As a result, the role of the encapsulant as a secondary barrier to body fluid ingress becomes more important. Such devices include intramedullary (IM) nails, plates, rods and pedicle screws for orthopedic trauma application. In order to increase the body fluid barrier characteristics of the flexible impermeable encapsulant, the cavities that hold the electronic components need to be completely filled. This is difficult to achieve if the weld plate components have to be welded in close proximity with the encapsulant and the cavities are too long and narrow to allow adequate backfilling after hermetic sealing.
Currently available medical grade silicone encapsulants are only suitable for short-term (e.g., <30 days) implantable applications, referred to as “restricted grade.” However, some materials, such as MED3-4213 and ELAST-EON™ developed by NuSil Silicone Technology (www.nusil.com) and AorTech (www.AorTech.com) respectively are unrestricted grades of silicone for long term implantation. Given that the onset temperature of thermal degradation for these types of materials is approximately 230° C., standard welding techniques, which generate local temperatures in the 400° C.-600° C. range, are not appropriate without the risk of degradation of either mechanical or optical properties the silicone. When exposed to high temperature conditions, the silicone will degrade leading to unpredictable performance.
Scanning electron microscope (SEM) micrographs of cured MED3-4213 encapsulated in an implant before and after conventional welding techniques are shown in
There are no existing medical grade elastomers that can meet the high temperatures (400° C.-600° C.) needed for conventional welding which is used to provide a hermetic seal in the form of a weld plate over the cavity accommodating electronic component. As a result, a more cost-effective solution would be to optimize the existing methods of hermetic sealing. Consequently, there is a need for improved methods of packaging electronic components within an encapsulant that overcomes the thermal degradation issue caused by conventional welding techniques used to provide a hermetic seal. This need applies to medical implants and other unrelated applications.
A load-bearing medical implant is disclosed that comprises a metallic load-bearing structure. The load-bearing structure comprises an outer surface and a cavity extending into the outer surface. The cavity accommodates an electronic component that is held in a fixed position in the cavity by an encapsulant. The cavity is covered by a plate that is welded over the cavity in close proximity to the electronic component and encapsulant to provide a seal over the cavity and the electronic component.
In a refinement, the encapsulant is substantially free of thermal damage despite the close proximity of the encapsulant to the welded plate.
In another refinement, the barrier is a silicone encapsulant that is temperature stable below about 150°. In a further refinement of this concept, the silicone encapsulant fills the cavity without substantial void spaces.
In another refinement, the load-bearing structure may also include a channel that extends from the cavity and along the outer surface of the structure. In such a refinement, the channel can be used to accommodate a wire, wire bundle or wire bus connected to the electronic component. In such an embodiment, the wire may extend through the channel and outside the implant as the encapsulant is used to form a barrier that prevents body fluids from entering the cavity and reaching the electronic component.
In a refinement, a single plate is also welded over the channel and the cavity without damage to the encapsulant or electronic component.
In another refinement, the metallic load-bearing structure further comprises a landmark, such as a screw hole of an IM nail, and the electronic component is a spatial sensor used to identify a location of the landmark in a patient's body during installation of the IM nail.
In designing the IM nails and implants discussed above, special attention is paid to the issue of potential damage to the encapsulant and possibly the sensor for implants that have shallow cavities for the sensor and shallow channels for the wiring or wire bus. Damage to the encapsulant and possibly the sensor becomes an issue as the welding area is in close proximity to the encapsulant and sensor.
Therefore, techniques are disclosed for encapsulating an electronic component within a cavity of a load-bearing implant that must also be welded. The disclosed techniques may include one or more of the following concepts: (a) post-curing treatment of the encapsulant to minimize the thermal degradation of the encapsulant during the welding process; (b) encapsulation techniques that reduce or eliminate void spaces in the encapsulant or cavity for long-term protection of the electronic component from body fluids; (c) optimization of the laser welding conditions such as pulse energy, duration, and repetition rate, traverse speed, degree of overlap of the of the laser weld spots during pulse mode and penetration of the weld spots to limit the exposure of the encapsulant to heat; (d) improved designs of the weld plate geometry and cavity assembly; and (e) application of heat sinks to limit the heat transferred from the weld location to the encapsulant.
In one disclosed method, a hermetic seal is formed by a combination of: (i) potting or encapsulating the electronic component in a cavity of the implant with little or no void space; and (ii) pulsed laser welding of a weld plate over the cavity that provides a hermetic seal and that minimizes the thermal degradation of the encapsulant. Such a method may include: providing an implant and weld plate configured to provide offset weld lines around the periphery of the recess; injecting encapsulant at a first temperature and, prior to the welding of the weld plate to the device; exposing the cured encapsulant to an elevated second temperature; using pulsed laser welding parameters selected from the group consisting of: a pulse energy of in the range of from about 1 to about 3 J, a pulse duration in the range of from about 2 to about 8 msec, a pulse repetition in the range of from about 2 to about 8 Hz, a traverse speed in the range of from about 50 to about 150 mm/min, shield gas delivered at a rate ranging from about 10 to about 30 l/min at a pressure ranging from about 2 to about 4 bar, weld spot overlap ranging from about 35 to about 80%, weld penetration ranging from about 30 to about 85% and combinations thereof.
In a refinement, the welding parameters may be controlled to produce a desired overlap of the weld spots that can range from about 35 to about 80%, more preferably from about 70 to about 80%, while maintaining the temperature inside the cavity below about 150° C. to avoid thermal damage to the encapsulant.
In another refinement, the welding parameters may be controlled to produce a desired weld penetration that can range from about 30% to about 85%, more preferably from about 35% to about 50%, while maintaining the temperature inside the cavity below about 150° C. One specific, but non-limiting example, utilizes a pulse energy of about 2 J, a pulse duration of about 5 msec, a pulse repetition of about 5 Hz, a traverse speed of about 100 mm/min, argon shield gas delivered at a rate of about 20 l/min at 3 bar, weld overlap of greater than 50% and weld penetration of greater than 35%, while maintaining the temperature of the cavity below 150° C. Obviously, these parameters will vary depending upon the size, structure and materials of construction of the implant or device that will accommodate the electronic component(s) as well as the particular encapsulant used and the particular electronic component(s) that is being hermetically sealed in the implant.
In a refinement, the encapsulant is applied with a needle and pressurized syringe.
In another refinement, the encapsulant is also injected into the cavity of the implant that houses the electronic device or sensor using a sealed mold. In such a refinement, the silicone may be cured in the mold.
In a refinement, an implantable medical device is manufactured according to the disclosed methods. In a further refinement, improved IM nails are manufactured according to the disclosed methods.
The offset weld lines help minimize the amount of heat dissipated into the encapsulant during the welding step. A suitable offset for the weld lines ranges from about 250 to about 750 microns from the peripheral edges of the cavity. In one specific, but non-limiting example, the offset is about 500 microns. Obviously, this parameter will vary greatly, depending upon the particular implant.
Heat sinks can be located in the inner bore of the device and/or as an external sleeve with aperture to limit the heat transferred from the weld location to the encapsulant. The heat sinks can made from thermal conductors such as copper, silver or aluminum alloys.
To combine the advantages of aluminum and copper, heat sinks can be made of aluminum and copper bonded together. Thermally conductive grease may be used to ensure optimal thermal contact. If utilized, the thermally conductive grease may contain ceramic materials such as beryllium oxide and/or aluminum nitride, but may also or alternatively contain finely divided metal particles, e.g. colloidal silver. The heat sinks may be designed to have a substantial surface area with optional fins. In a refinement, a clamping mechanism, screws, or thermal adhesive may be used to hold the heat sink tightly onto the component to maximize thermal conductivity, without crushing or damaging the implant or electronic component. The heat sink can be modular in design enabling different size implants in terms of length and/or diameter to be fitted during the welding operation.
Silicone encapsulants may be typically cured at about 80° C. for a time period ranging from about 1 to about 2 hours or according to the manufacturer specifications. Post-curing of the encapsulant at an elevated temperature will enhance the physical and performance properties of the silicone by increasing cross-link density, mitigating out-gassing, removing volatile agents by diffusion and evaporation and allowing the material to become conditioned to the service temperature of the welding operation.
Following a normal cure cycle for a silicone, the silicone can be exposed to mild heat (from about 160 to about 180° C.) for a time period ranging from about 4 to about 8 hours. Lower temperature ranges can be used in a range of from about 100 to about 120° C. over longer periods (˜24 hours). Insufficient curing can result in bubbling and production of potentially toxic monomers. On the other hand, increasing the temperature above 180° C. has been shown to have an adverse effect on the encapsulated electronic components.
The disclosed methods are useful for devices in which electronic components may be in close proximity with the parts to be welded and require a sealed environment. For example, the disclosed methods are useful in fabricating orthopedic, dental and maxillofacial devices and implants as well as a host of other non-medical applications.
The disclosed low-temperature pulsed laser welding methods are compatible with many soft elastomers in combination with an electronics module. In a refinement, the encapsulant is a soft elastomer. In another refinement, particularly for the fabrication of medical implants, the encapsulant may be a medical grade silicone. In other refinements, conformable potting materials, such as a bio-inert polymer, e.g. polyurethane, epoxy resin, and polyetheretherketone (PEEK) can be used as an encapsulant material.
The encapsulant may be used in combination with a biocompatible primer to promote adhesion to the implant base metal minimizing void formation within the cavity.
Other advantages and features will be apparent from the following detailed description when read in conjunction with the attached drawings.
For a more complete understanding of the disclosed methods and apparatuses, reference should be made to the embodiments illustrated in greater detail in the accompanying drawings, wherein:
It should be understood that the drawings are not necessarily to scale and that the disclosed embodiments are sometimes illustrated diagrammatically and in partial views. In certain instances, details which are not necessary for an understanding of the disclosed methods and apparatuses or which render other details difficult to perceive may have been omitted. It should be understood, of course, that this disclosure is not limited to the particular embodiments illustrated herein.
As an example, the fabrication of an IM nail 30 with an electronic component 31 and wire bus 33 is shown and described. Turning to
The outer surface 28 of the load bearing structure 29 also includes a larger cavity 34 for accommodating the sensor 31, which is also shown in
A plan view of the IM nail 30 is illustrated in
Preparation of the Encapsulant
Suitable silicone encapsulants for the disclosed implants include, but are not limited to, MED3-4213 and related products, from NuSil Silicone Technology with an onset thermal degradation temperature of about 230° C. A two-component silicone may be less convenient to use than one-component silicone because of the mixing requirement. However, in contrast to one-component silicones, two-component silicones require no atmospheric moisture for curing, and thus are necessary for closed mold applications such as the IM nails 30 disclosed herein. A mixer may be used to mix the two parts on exit from the dual-syringes.
Encapsulation or Potting of the Sensor Unit
A perspective view of a sensor 31 is illustrated in
The potting or encapsulation of the sensor 31 may be conducted without primer. The polyimide tube or sleeve 36 that will accommodate the sensor 31 may be inserted into a mold, such as a PTFE mold (not shown), ensuring the exposed end is level with the top of the mold. Then, silicone may then injected into the tube 36 starting with a needle at the bottom of the tube 36, allowing the tube 36 to be filled before slowly retracting the needle ensuring there is more silicone being injected into the void created by the retracting needle to ensure the needle does not draw in any air.
The sensor 31 may then be dipped into a separate supply of mixed silicone, slowly wetting the surface particularly between the coil and circuit board thus removing air bubbles. The wetting procedure may be done under a stereo microscope with a pair of fine curved tweezers. The sensor 31 may then be slowly inserted into the previously filled tube 36 held in the PTFE mold leaving the tube 36 filled and flush with the top of the mold.
If utilized, a second sensor (not shown) may then be coated with silicone as the first and placed next to the first sensor 31 back to back in the mold avoiding air trapped in-between the first sensor 31 and the second sensor (not shown) or between the either sensor and the mold. For IM nails 30 requiring four sensors, the mold may be placed in a pressurized chamber at about 1 bar (gauge) for about 20 minutes, and then removed from the chamber.
The mold and sensor 31 may then be cured at about 75° C. for about one hour. The mold may then be removed from the oven and allowed to cool before separating the mold parts and examining the encapsulated sensor 31 under the microscope.
Encapsulation of the Sensor and Wire Bus Using Pressurized Syringes
Turning to
The sensor 31 and wire bus 33 encapsulation may be carried out using a pressurized syringe 37. The IM nail 30 is ultrasonically cleaned in propan-2-ol or any suitable degreasing solvent, as will be apparent to those skilled in the art. Any microscopic burrs or swarfs are preferably removed from the channel 32 and cavity 34 as they could damage the insulation on the wire bus 33. The IM nail 30 may then be wiped clean with acetone or another suitable solvent. An ultrasonic cleaning device may be employed. Lint-free tissue may be used and has been found to be adequate. The wire bus 33 is placed flat on a surface in a straight configuration to ensure that the wire lies straight or axially at the bottom of the channel 32. Some space between the channel 32 and sensor cavity 34 may prevent the wire bus 33 from snagging and shorting against the IM nail 30 body. A temporary domed end plug 41 (
A primer, such as MED6-161 (NuSil Silicone Technology—www.nusil.com), or other suitable material, is coated inside the channel 32, sensor cavity 34, and on the sensor 31. Because MED6-161 is viscous, only a microscopic amount may be needed at the bottom of the channel 32 where surface tension diffuses the primer across the channel 32. One drop using a 1 ml syringe with a MICROLANCE™ No. 18 (0.5×25 mm) syringe with squared off point was used in one successful procedure.
The syringe 38 may be dragged along the length of the channel 32 to wet the inside surface. Preferably, the primer is not allowed to run over the edge of the channel 32. If it does, a re-clean and restart is recommended. The sensor 31 may be primed easily by dipping it and wiping excess of with a lint-free tissue. All this was done under a stereo microscope with ×20 magnification. Dry time is about 30 minutes. An anti-adhesive pure soap solution is applied to adjacent external surfaces inclusive of flat recess where the weld plate 35, 135 is welded.
The silicone can be very difficult to remove or even see, and therefore an anti-adhesive surface coating may be used to coat all external surfaces where silicone coating is not required. One useful coating is a 50/50 mixture of liquid soap and de-ionized water applied to the recess in the same way as the primer in the channel 32 using a similar needle and syringe, and the remaining surface with slightly dampened cotton bud. The IM nail 30 may then be allowed to air dry.
Silicone is then applied inside the channel 32. A hand-held dispenser may be prepared with a flattened 0.65 mm ID, 0.9 mm OD needle (or other suitable needle, depending on the structure being filled) and the silicone may be applied in the sensor cavity 34 under the same microscope with ×20 magnification. Enough silicone be applied to the internal surfaces with a little excess to half-fill the channel 32. Silicone may then be applied at a steady rate along the channel 32, using a numerical control (NC) machine table 44 (
The silicone should be free of air bubbles to avoid any water vapor condensing at the interface with the electronics causing adverse effects such as current and corrosion. This can be achieved by holding the point of the needle 38 against the bottom of the channel 32 while traversing along the channel 32. The IM nails 30 may then placed in a chamber 46 as shown in
When the sensor 31 is in place in the cavity 34, tape 48 and tension to the wire bus 33 is applied at the end of the IM nail 30 as shown in
Vacuum/pressure cycling is performed in the chamber 46 shown in
The sensor 31 is then held in place using a PTFE clamp 50 (
Air should not be permitted to enter between the PTFE clamp 50 and the sensor cavity 34. The IM nail 30 is cured for a time period ranging from about ½ hour to about 1.5 hours, preferably about 1 hour, at room temperature followed by about ½ to 1.5 hour cure, preferably about 1 hour at a temperature ranging from 30 to about 55° C., more preferably from about 40 to about 45° C. The PTFE clamp 50 is removed with the other PTFE parts from the outer surface as shown in
A second layer of silicone is then applied to channel as shown in
The IM nail 30 is cured for about 1 hour at room temperature followed by another hour at a temperature ranging from 40 to about 45° C. Again a modified curing cycle may be used: 1 hour at room temperature followed by 1 hour at 40-45° C. After cooling the PTFE clamps 50 may be removed. Any excess silicone may be removed as described above. The IM nail 30 is then cleaned and examined. The IM nail 30 may be carefully washed under running warm water and rinsed in de-ionized water before wiping using lint free cloth. The IM nail 30 may then be checked under a stereo microscope with ×20 magnification for any residue of silicone on the adjoining surfaces in particularly, the weld area.
Further Encapsulation of the Sensor and Wire Bus Using a Sealed Mold
Turning to
To prevent the silicone from sticking to the mold 65, a layer of HAEMOSOL™ or other release fluid may be applied to the mold 65. The IM nail 30 may be cleaned with iso-propyl alcohol or another suitable solvent. The mold 65 is heated to a temperature ranging from about 45 to about 70° C. prior to injection of the silicone. The mold 65 is the assembled around the nail 30 with the gaskets 73 and o-rings 74 providing a seal between the mold 65 and IM nail 30. The threaded bolts 69 are tightened and silicone is injected through inlet port 71 which is in alignment with the sensor cavity 34 until the silicone flows through the outlet 72. A NYLON™ screw is used to plug the outlet 72. Pressure is applied with the silicone injector for about 5 minutes. The injector nozzle (not shown) is removed and the inlet port 71 is plugged with a NYLON™ screw. The mold 65 is then placed in a pressure chamber (not shown) to ensure a regulated pressure is achieved during a long cure at room temperature. The mold is then placed in an oven at a temperature of about 70° C. and for about 3 hours.
Post-Curing Conditioning of the Encapsulant
Silicone encapsulants may be typically cured at about 80° C. for about 1 to about 2 hours, or according to the manufacturer instructions. Post-curing treatment of the silicone at an elevated temperature (160-180° C.) for about 24 hours will increase cross-link density, remove volatile agents and allow the material to become conditioned to the service temperature of the welding operation. Increasing the post-cure temperature above 180° C. may have an adverse effect on the encapsulated electronic components.
Instead of a complete encapsulation of the sensor 31 in the silicone, a suitable silicone plug can be created in the channel 32 or in the cavity 34 of the implant to adequately protect the sensor 31 from body fluids.
Hermetic Sealing of the Encapsulated Sensor and Wire Bus
Temperature sensing experiments may be carried out to assess the in-line temperature during laser welding with and without the use of copper heat sinks. This is achieved using self adhesive indicators (temperature dots, RS products) which change color (i.e., blacken or darken) when the activation temperature is exceeded. The positions of the dots are illustrated schematically in
Temperature sensing data generated from three test IM nails 30 (HS1, HS2 and HS3) equipped with temperature sensing dots is summarized in Table 1. For sample HS1, the temperature at spots A and D exceeded 149° C. The pulse energy, pulse duration, pulse repetition rate and traverse speed were ˜2 J, ˜5 msec, ˜10 Hz and ˜100 mm/min respectively. The addition of copper heat sinks 55 (
TABLE 1
Laser
Sample
welding
ID
conditions
Sensor location
Result
Sample
2 J, 5 msec,
149° C.
TA >
HS1
10 Hz, 100 mm/min° C.,
Temperature
149° C.; TD >
with weld
dots applied at A
149° C.
plate, no heat
and D.
sinks
Sample
2 J, 5 msec,
149° C.
TA <
HS2
5 Hz, 100 mm/min° C.,
Temperature
149° C.; TD >
no
dots applied at A
149° C.
weld plate,
and D.
both heat
sinks added
Sample
2 J, 5 msec,
Temperature
TA <
HS3
5 Hz, 100 mm/min° C.,
dots applied: A =
149° C.; TB <
with weld
149° C.,
210° C.;
plate, both
B = 210° C.,
TC <
heat sinks
C = 204° C.,
204° C.; TD =>
added
D = 149° C.
149° C.
One exemplary procedure used to generate a low temperature weld procedure comprises: checking the IM nail and weld plate for a proper fit; mounting the IM nail in a rotary jig or chuck 56 (
The weld overlap can range from about 35% to about 80% and weld penetration can range from about 40% to about 85%. A reduced overlap of about 35% and a high penetration resulted in the cavity temperatures reported in Table 1. An increased overlap between about 70 and 80% and a reduced weld penetration between about 40 and 60% reduced the cavity temperature to about 135° C. With a 200-300 μm weld spot size, the weld spots are created at 40 μm intervals. Weld overlap above 80% may cause the cavity temperature to rise above 150° C., which may damage the silicone encapsulant or require a reduced or undesirably shallow weld penetration. Of course all of the above parameters may vary depending on the IM nail design and the particular sensors being protected. A partial sectional view of a final weld test part is illustrated in
While only certain embodiments have been set forth, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of this disclosure and the appended claims.
Ritchey, Nicholas S., Wilson, Darren James, Taylor, Stephen James Guy
Patent | Priority | Assignee | Title |
9511236, | Nov 04 2011 | Pacesetter, Inc | Leadless cardiac pacemaker with integral battery and redundant welds |
Patent | Priority | Assignee | Title |
4361153, | May 27 1980 | Pacesetter, Inc | Implant telemetry system |
4441498, | May 10 1982 | Cardio-Pace Medical, Inc. | Planar receiver antenna coil for programmable electromedical pulse generator |
4494545, | May 27 1980 | Pacesetter, Inc | Implant telemetry system |
4991582, | Sep 22 1989 | Alfred E. Mann Foundation for Scientific Research | Hermetically sealed ceramic and metal package for electronic devices implantable in living bodies |
5330477, | Jan 28 1992 | AMEI TECHNOLOGIES INC , A DELAWARE CORPORATION | Apparatus and method for bone fixation and fusion stimulation |
5423334, | Feb 01 1993 | C R BARD, INC | Implantable medical device characterization system |
5720746, | Nov 16 1994 | Device for displacing two bodies relative to each other | |
5735887, | Dec 10 1996 | Medtronic, Inc | Closed-loop, RF-coupled implanted medical device |
5833603, | Mar 13 1996 | Allergan, Inc | Implantable biosensing transponder |
5836989, | Dec 26 1996 | Medtronic, Inc. | Method and apparatus for controlling an implanted medical device in a time-dependent manner |
5944745, | Sep 25 1996 | Medtronic, Inc. | Implantable medical device capable of prioritizing diagnostic data and allocating memory for same |
6009878, | Feb 02 1998 | JARO, MICHAEL J | System for locating implantable medical device |
6011993, | Apr 30 1998 | Advanced Bionics AG | Method of making implanted ceramic case with enhanced ceramic case strength |
6034296, | Mar 11 1997 | EEG LTD | Implantable bone strain telemetry sensing system and method |
6051017, | Feb 20 1996 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator and systems employing the same |
6120502, | Jun 13 1988 | Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis | |
6200265, | Apr 16 1999 | Medtronic, Inc.; Medtronic, Inc | Peripheral memory patch and access method for use with an implantable medical device |
6201980, | Oct 05 1998 | Lawrence Livermore National Security LLC | Implantable medical sensor system |
6402689, | Sep 30 1998 | VTQ IP HOLDING CORPORATION | Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors |
6411854, | Apr 30 1998 | Advanced Bionics, LLC | Implanted ceramic case with enhanced ceramic case strength |
6447448, | Dec 31 1998 | BALL SEMICONDUCTOR, INC | Miniature implanted orthopedic sensors |
6449508, | Oct 21 1999 | Medtronic, Inc. | Accelerometer count calculation for activity signal for an implantable medical device |
6477424, | Jun 19 1998 | Medtronic, Inc | Medical management system integrated programming apparatus for communication with an implantable medical device |
6499488, | Oct 28 1999 | SURGICAL NAVIGATION TECHNOLOGIES, INC | Surgical sensor |
6535766, | Aug 26 2000 | Medtronic, Inc. | Implanted medical device telemetry using integrated microelectromechanical filtering |
6539253, | Aug 26 2000 | Medtronic, Inc. | Implantable medical device incorporating integrated circuit notch filters |
6567703, | Nov 08 2000 | Medtronic, Inc.; Medtronic, Inc | Implantable medical device incorporating miniaturized circuit module |
6636769, | Dec 18 2000 | Biosense, Inc | Telemetric medical system and method |
6638231, | Dec 18 2000 | Biosense, Inc | Implantable telemetric medical sensor and method |
6641540, | Dec 01 2000 | The Cleveland Clinic Foundation | Miniature ultrasound transducer |
6652464, | Dec 18 2000 | Biosense, Inc | Intracardiac pressure monitoring method |
6658300, | Dec 18 2000 | Biosense, Inc | Telemetric reader/charger device for medical sensor |
6682490, | Dec 03 2001 | The Cleveland Clinic Foundation | Apparatus and method for monitoring a condition inside a body cavity |
6706005, | Aug 24 2001 | CLEVELAND CLINIC FOUNDATION, THE | Apparatus and method for assessing loads on adjacent bones |
6712778, | Sep 30 1999 | The UAB Research Foundation | Implantable mechanical force sensor |
6749568, | Aug 21 2000 | Cleveland Clinic Foundation | Intraocular pressure measurement system including a sensor mounted in a contact lens |
6764446, | Oct 16 2000 | Remon Medical Technologies LTD | Implantable pressure sensors and methods for making and using them |
6766200, | Nov 01 2001 | Pacesetter, Inc | Magnetic coupling antennas for implantable medical devices |
6783499, | Dec 18 2000 | Biosense, Inc | Anchoring mechanism for implantable telemetric medical sensor |
6793659, | Oct 12 2001 | Regents of the University of Minnesota | Intramedullary rod for wrist fixation |
6804552, | Nov 03 2000 | MEDTRONICS, INC | MEMs switching circuit and method for an implantable medical device |
6810753, | Aug 29 2000 | CLEVELAND CLINIC FOUNDATION, THE | Displacement transducer |
6821299, | Jul 24 2002 | ZIMMER, INC | Implantable prosthesis for measuring six force components |
6855115, | Jan 22 2002 | ST JUDE MEDICAL LUXEMBOURG HOLDINGS II S A R L SJM LUX II | Implantable wireless sensor for pressure measurement within the heart |
6895280, | Jul 27 1999 | Boston Scientific Neuromodulation Corporation | Rechargeable spinal cord stimulator system |
6895281, | Mar 31 2000 | Cardiac Pacemakers, Inc | Inductive coil apparatus for bio-medical telemetry |
6926670, | Jan 22 2001 | UIM PRESSURE IMPLANT INC | Wireless MEMS capacitive sensor for physiologic parameter measurement |
6939299, | Dec 13 1999 | IOSENSOR LLC | Implantable continuous intraocular pressure sensor |
6968743, | Jan 22 2001 | UIM PRESSURE IMPLANT INC | Implantable sensing device for physiologic parameter measurement |
7027871, | Oct 31 2002 | Medtronic, Inc | Aggregation of data from external data sources within an implantable medical device |
7097662, | Aug 25 2004 | UT-Battelle, LLC | In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection |
7147604, | Aug 07 2002 | ST JUDE MEDICAL LUXEMBOURG HOLDINGS II S A R L SJM LUX II | High Q factor sensor |
7182736, | Aug 25 2000 | Cleveland Clinic Foundation | Apparatus and method for assessing loads on adjacent bones |
7190273, | Jul 11 2003 | DePuy Products, Inc. | Joint endoprosthesis with ambient condition sensing |
7195645, | Jul 11 2003 | DePuy Products, Inc.; DEPUY PRODUCTS, INC | In vivo joint space measurement device and method |
7209790, | Sep 30 2002 | Medtronic, Inc | Multi-mode programmer for medical device communication |
7212133, | Mar 15 2002 | Medtronic, Inc. | Telemetry module with configurable data layer for use with an implantable medical device |
7218232, | Jul 11 2003 | DePuy Products, Inc.; DEPUY PRODUCTS, INC | Orthopaedic components with data storage element |
7229415, | Dec 18 2000 | Biosense, Inc. | Method for anchoring a medical device between tissue |
7256695, | Sep 23 2002 | HOTTINGER BRUEL & KJAER INC | Remotely powered and remotely interrogated wireless digital sensor telemetry system |
7357037, | Jul 10 2002 | Globus Medical, Inc | Strain sensing system |
7358461, | Mar 22 2004 | Kabushiki Kaisha Toshiba; Toshiba Tec Kabushiki Kaisha | Fuser and heatfusing control method |
7381223, | Oct 05 2001 | NK BIOTECHNICAL CORPORATION | Dual-tray prosthesis |
7729758, | Nov 30 2005 | Boston Scientific Neuromodulation Corporation | Magnetically coupled microstimulators |
7756579, | Feb 22 2005 | DEPUY INTERNATIONAL, LTD | Implantable sensor |
20010039374, | |||
20020049394, | |||
20020151978, | |||
20030136417, | |||
20030143775, | |||
20030229381, | |||
20040073221, | |||
20040077073, | |||
20040094613, | |||
20040113790, | |||
20040176815, | |||
20050010299, | |||
20050010300, | |||
20050010301, | |||
20050012617, | |||
20050015014, | |||
20050061079, | |||
20050113932, | |||
20050131397, | |||
20050187482, | |||
20050194174, | |||
20060043178, | |||
20060084997, | |||
20060095135, | |||
20060111291, | |||
20060131302, | |||
20060142656, | |||
20060174712, | |||
20060177956, | |||
20060200030, | |||
20060200031, | |||
20060235310, | |||
20060241354, | |||
20060283007, | |||
20060287602, | |||
20060287700, | |||
20070090543, | |||
20070123938, | |||
20080161729, | |||
20080208516, | |||
20080300597, | |||
20090222050, | |||
20100152621, | |||
EP1366712, | |||
EP1704893, | |||
WO19888, | |||
WO30534, | |||
WO2056763, | |||
WO2058551, | |||
WO2061705, | |||
WO2004005872, | |||
WO2004014456, | |||
WO2004052453, | |||
WO2004052456, | |||
WO2005007025, | |||
WO2005013851, | |||
WO2005039440, | |||
WO2005084544, | |||
WO2006010037, | |||
WO2006052765, | |||
WO2006055547, | |||
WO2006063156, | |||
WO2006086113, | |||
WO2006086114, | |||
WO2006089069, | |||
WO2006094273, | |||
WO2006110798, | |||
WO2006131302, | |||
WO2007002185, | |||
WO2007002224, | |||
WO2007002225, | |||
WO2007009088, | |||
WO2007025191, | |||
WO2007061890, | |||
WO2008105874, | |||
WO9626678, | |||
WO9629007, | |||
WO9720512, | |||
WO9843701, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 06 2007 | TAYLOR, STEPHEN JAMES | UCL CONSULTANTS LTD | CONSULTANT AGREEMENT INCLUDING ASSIGNMENT | 032457 | /0568 | |
Jan 27 2010 | WILSON, DARREN JAMES | SMITH & NEPHEW UK LIMITED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031728 | /0807 | |
Jan 29 2010 | Smith & Nephew, Inc. | (assignment on the face of the patent) | / | |||
Jan 29 2010 | SMITH & NEPHEW UK LIMITED | Smith & Nephew, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031728 | /0915 | |
Mar 23 2012 | RITCHEY, NICHOLAS S | Smith & Nephew, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031728 | /0712 | |
Feb 28 2014 | UCL CONSULTANTS LIMITED | SMITH & NEPHEW UK LIMITED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032453 | /0046 | |
Mar 05 2014 | SMITH & NEPHEW UK LIMITED | Smith & Nephew, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032453 | /0090 |
Date | Maintenance Fee Events |
Oct 05 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 06 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 22 2017 | 4 years fee payment window open |
Oct 22 2017 | 6 months grace period start (w surcharge) |
Apr 22 2018 | patent expiry (for year 4) |
Apr 22 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 22 2021 | 8 years fee payment window open |
Oct 22 2021 | 6 months grace period start (w surcharge) |
Apr 22 2022 | patent expiry (for year 8) |
Apr 22 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 22 2025 | 12 years fee payment window open |
Oct 22 2025 | 6 months grace period start (w surcharge) |
Apr 22 2026 | patent expiry (for year 12) |
Apr 22 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |