earth-boring rotary drill bits may include a bit body attached to a shank assembly at a joint. The joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
|
1. An earth-boring rotary drill bit comprising:
a bit body having a connection portion attached to a shank assembly at a joint, the joint configured to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference between abutting surfaces of the connection portion and the shank assembly at the joint,
wherein at least a portion of the abutting surfaces is oriented at an acute angle relative to a longitudinal axis of the earth-boring rotary drill bit, the acute angle being less than or equal to the arc-cotangent of a static coefficient of friction exhibited between the abutting surfaces.
8. A method of attaching a shank assembly to a bit body of an earth-boring rotary drill bit, the method comprising:
orienting at least one surface of a connection portion of a bit body at a first acute angle relative to a longitudinal axis of the bit body, the first acute angle being less than or equal to the arc-cotangent of a static coefficient of friction exhibited between the connection portion of the bit body and a connection portion of a shank;
orienting at least one surface of the connection portion of the shank at a second acute angle relative to the longitudinal axis of the bit body, the second acute angle being less than or equal to the arc-cotangent of a static coefficient of friction exhibited between the connection portion of the bit body and the connection portion of the shank;
bringing the at least one surface of the connection portion of the shank proximate the at least one surface of the connection portion of the bit body such that a void is defined therebetween;
providing an intermediate material in the void between the at least one surface of the connection portion of the shank and the at least one surface of the connection portion of the bit body to form a threadless joint and attach the bit body to the shank; and
configuring the threadless joint to carry at least a portion of any tensile longitudinal load applied to the drill bit and at least a portion of any rotational load applied to the drill bit by mechanical interference between the bit body and the shank at the joint.
2. The earth-boring rotary drill bit of
3. The earth-boring rotary drill bit of
4. The earth-boring rotary drill bit of
5. The earth-boring rotary drill bit of
6. The earth-boring rotary drill bit of
7. The earth-boring rotary drill bit of
9. The method of
10. The method of
11. The method of
|
This is a national phase entry under 35 U.S.C. §371 of International Patent Application PCT/US2009/046092, filed Jun. 3, 2009, which claims the benefit under Article 8 of the Patent Cooperation Treaty to U.S. patent application Ser. No. 12/133,288, filed Jun. 4, 2008, now U.S. Pat. No. 7,703,556, issued Apr. 27, 2010, the entire disclosure of each of which is hereby incorporated herein by this reference.
The present invention generally relates to earth-boring drill bits and other tools that may be used to drill subterranean formations and to methods of manufacturing such drill bits and tools. More particularly, the present invention relates to methods for attaching a shank to a body of a drill bit or other tool for earth boring that includes a shank attached to a body and to resulting drill bits and tools.
Rotary drill bits are commonly used for drilling bore holes or wells in earth formations. One type of rotary drill bit is the fixed-cutter bit (often referred to as a “drag” bit), which typically includes a plurality of cutting elements secured to a face region of a bit body. The bit body of a rotary drill bit may be formed from steel. Alternatively, the bit body may be formed from a conventional particle-matrix composite material 15. A conventional earth-boring rotary drill bit 10 is shown in
The bit body 12 further includes wings or blades 30 that are separated by junk slots 32. Internal fluid passageways (not shown) extend between a face 18 of the bit body 12 and a longitudinal bore 40, which extends through the steel shank 20 and partially through the bit body 12. Nozzle inserts (not shown) also may be provided at the face 18 of the bit body 12 within the internal fluid passageways.
A plurality of cutting elements 34 is attached to the face 18 of the bit body 12. Generally, the cutting elements 34 of a fixed-cutter type drill bit have either a disk shape or a substantially cylindrical shape. A cutting surface 35 comprising a hard, super-abrasive material, such as mutually bound particles of polycrystalline diamond, may be provided on a substantially circular end surface of each cutting element 34. Such cutting elements 34 are often referred to as “polycrystalline diamond compact” (PDC) cutting elements 34. The PDC cutting elements 34 may be provided along the blades 30 within pockets 36 formed in the face 18 of the bit body 12, and may be supported from behind by buttresses 38, which may be integrally formed with the crown 14 of the bit body 12. Typically, the cutting elements 34 are fabricated separately from the bit body 12 and secured within the pockets 36 formed in the outer surface of the bit body 12. A bonding material such as an adhesive or, more typically, a braze alloy may be used to secure the cutting elements 34 to the bit body 12.
During drilling operations, the drill bit 10 is secured to the end of a drill string, which includes tubular pipe and equipment segments coupled end to end between the drill bit 10 and other drilling equipment at the surface. The drill bit 10 is positioned at the bottom of a well bore hole such that the cutting elements 34 are adjacent the earth formation to be drilled. Equipment such as a rotary table or top drive may be used for rotating the drill string and the drill bit 10 within the bore hole. Alternatively, the shank 20 of the drill bit 10 may be coupled directly to the drive shaft of a down-hole motor, which then may be used to rotate the drill bit 10. As the drill bit 10 is rotated, drilling fluid is pumped to the face 18 of the bit body 12 through the longitudinal bore 40 and the internal fluid passageways (not shown). Rotation of the drill bit 10 under weight applied through the drill string causes the cutting elements 34 to scrape across and shear away the surface of the underlying formation. The formation cuttings mix with and are suspended within the drilling fluid and pass through the junk slots 32 and the annular space between the well bore hole and the drill string to the surface of the earth formation.
Conventionally, bit bodies that include a particle-matrix composite material 15, such as the previously described bit body 12, have been fabricated in graphite molds using a so-called “infiltration” process. The cavities of the graphite molds are conventionally machined with a multi-axis machine tool. Fine features are then added to the cavity of the graphite mold using hand-held tools. Additional clay work also may be required to obtain the desired configuration of some features of the bit body. Where necessary, preform elements or displacements (which may comprise ceramic components, graphite components, or resin-coated sand compact components) may be positioned within the mold and used to define the internal passages, cutting element pockets 36, junk slots 32, and other external topographic features of the bit body 12. The cavity of the graphite mold is filled with hard particulate carbide material (such as tungsten carbide, titanium carbide, tantalum carbide, etc.). The preformed steel blank 16 may then be positioned in the mold at the appropriate location and orientation. The steel blank 16 typically is at least partially submerged in the particulate carbide material within the mold.
The mold then may be vibrated or the particles otherwise packed to decrease the amount of space between adjacent particles of the particulate carbide material. A matrix material (often referred to as a “binder” material), such as a copper-based alloy, may be melted, and caused or allowed to infiltrate the particulate carbide material within the mold cavity. The mold and bit body 12 are allowed to cool to solidify the matrix material. The steel blank 16 is bonded to the particle-matrix composite material 15 forming the crown 14 upon cooling of the bit body 12 and solidification of the matrix material. Once the bit body 12 has cooled, the bit body 12 is removed from the mold and any displacements are removed from the bit body 12. Destruction of the graphite mold typically is required to remove the bit body 12 therefrom.
The PDC cutting elements 34 may be bonded to the face 18 of the bit body 12 after the bit body 12 has been cast by, for example, brazing, mechanical, or adhesive affixation. Alternatively, the cutting elements 34 may be bonded to the face 18 of the bit body 12 during furnacing of the bit body if thermally stable synthetic or natural diamonds are employed in the cutting elements 34.
After the bit body 12 has been formed, the bit body 12 may be secured to the steel shank 20. As the particle-matrix composite materials 15 typically used to form the crown 14 are relatively hard and not easily machined, the steel blank 16 is used to secure the bit body 12 to the shank 20. Complementary threads may be machined on exposed surfaces of the steel blank 16 and the shank 20 to provide the threaded connection 22 therebetween. The steel shank 20 may be threaded onto the bit body 12, and the weld 24 then may be provided along the interface between the bit body 12 and the steel shank 20.
In one embodiment, the present invention includes an earth-boring rotary drill bit having a bit body attached to a shank assembly at a joint. The joint may be configured to carry at least a portion of any tensile longitudinal load applied to the earth-boring rotary drill bit and at least a portion of any rotational load applied to the earth-boring rotary drill bit by mechanical interference between the bit body and the shank assembly at the joint.
In another embodiment, the present invention includes an earth-boring rotary drill having a connection portion attached to a shank assembly at a joint. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference between abutting surfaces of the connection portion and the shank assembly at the joint.
In yet another embodiment, the present invention includes a method of attaching a shank assembly to a bit body of an earth-boring rotary drill bit by abutting at least one surface of the shank assembly against at least one surface of the bit body to form a joint and configuring the joint to carry at least a portion of any tensile longitudinal load applied to the drill bit and at least a portion of any rotational load applied to the drill bit by mechanical interference between the bit body and the shank assembly at the joint.
In yet an additional embodiment, the present invention includes a method of attaching a shank assembly to a bit body of an earth-boring rotary drill bit by abutting at least one surface of the bit body against at least one surface of a shank assembly to form a joint and configuring the joint to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference between the abutting surfaces of the bit body and the shank assembly.
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention may be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which:
The illustrations presented herein are not meant to be actual views of any particular material, apparatus, system, or method, but are merely idealized representations which are employed to describe the present invention. Additionally, elements common between figures may retain the same numerical designation. Furthermore, embodiments of the present invention include, without limitation, core bits, bi-center bits, eccentric bits, so-called “reamer wings” as well as drilling and other downhole tools that may employ a body having a shank secured thereto in accordance with the present invention. Therefore, as used herein, the terms “earth-boring drill bit” and “drill bit” encompass all such structures.
As previously discussed, it can be difficult to secure a metal shank, such as the previously described shank 20 (
In view of the above, the inventors of the present invention have developed methods for attaching a bit body to a shank assembly of an earth-boring rotary drill bit. Such methods and earth-boring rotary drill bits formed using such methods are described below with reference to
An embodiment of an earth-boring rotary drill bit 42 of the present invention is shown in a perspective view in
As shown in
In some embodiments, the bit body 44 may comprise a particle-matrix composite material 46. By way of example and not limitation, the particle-matrix composite material 46 may comprise a plurality of hard particles dispersed throughout a matrix material. In some embodiments, the hard particles may comprise a material selected from diamond, boron carbide, boron nitride, aluminum nitride, and carbides or borides of the group consisting of W, Ti, Mo, Nb, V, Hf, Zr, Si, Ta, and Cr, and the matrix material may be selected from the group consisting of iron-based alloys, nickel-based alloys, cobalt-based alloys, titanium-based alloys, aluminum-based alloys, iron and nickel-based alloys, iron and cobalt-based alloys, and nickel and cobalt-based alloys. As used herein, the term “[metal]-based alloy” (where [metal] is any metal) means commercially pure [metal] in addition to metal alloys wherein the weight percentage of [metal] in the alloy is greater than or equal to the weight percentage of all other components of the alloy individually.
In some embodiments, the bit body 44 may include a plurality of blades separated by junk slots (similar to the blades 30 and the junk slots 32 shown in
One or more surfaces 56 of the bit body 44 may be configured to abut against one or more complementary surfaces 58 of the extension 50. In some embodiments, a braze alloy 60 or other adhesive material may be provided between the abutting surfaces 56, 58 of the bit body 44 and the extension 50 to at least partially secure the bit body 44 to the extension 50, as shown in
For purposes of illustration, the thickness of the braze alloy 60 shown in
As shown in
The female connection portion 54 of the extension 50 is configured to receive the male connection portion 52 of the bit body 44 therein to form a joint between the extension 50 and the bit body 44. As discussed in further detail below, this joint between the extension 50 and the bit body 44 may be configured such that mechanical interference between the extension 50 and the bit body 44 at the joint carries at least a portion of any longitudinal load applied thereto during drilling operations. In particular, the joint may comprise a threadless joint configured to carry at least a portion of any tensile longitudinal load applied thereto, such as, for example, during back reaming or tripping the drill bit. The threadless joint may also be configured to carry at least a portion of any rotational load (i.e., torque) applied thereto during drilling operations, as described hereinabove. As used herein, the term “threadless joint” means any joint between members that is free of cooperating threads on the members that engage one another at the joint as the members are aligned and rotated relative to one another.
For example, the joint between the extension 50 and the bit body 44 may comprise an interlocking channel 66 and protrusion 68, which may be disposed in a plane oriented transverse to the longitudinal axis L42 of the drill bit 42. The interlocking channel 66 and protrusion 68 may extend at least partially around (e.g., entirely around) the longitudinal axis L42 of the drill bit 42. In the embodiment shown in the figures, the surfaces 56 of the bit body 44 may comprise or define the channel 66, which extends into the male connection portion 52 in a direction extending generally radially inward toward the longitudinal axis L42, and the surfaces 58 of the extension 50 may comprise or define the protrusion 68, which is disposed within the channel 66. The protrusion 68 may be configured to have a complementary size and shape to the channel 66, and the protrusion 68 and the channel 66 may be configured to longitudinally interlock with each other. In other words, the protrusion 68 may extend radially toward the longitudinally axis L42 and into the radially recessed channel 66 so that at least a portion of the protrusion 68 is positioned longitudinally beneath a flange 64 on the male connection portion 52 of the bit body 44, as shown in
As the joint between the extension 50 and the bit body 44 may be configured to carry a portion of any longitudinal load applied to the earth-boring rotary drill bit 42 during drilling operations, the channel 66 and protrusion 68 each may be configured to include abutting surface areas large enough to carry a substantial portion of any longitudinal load applied to the earth-boring rotary drill bit 42. By way of example and not limitation, the channel 66 may be configured to extend radially into the male connection portion 52 of the bit body 44 towards the longitudinal axis L42 a distance Y that is at least approximately five percent (5%) of the radius R of the shank 48, as shown in
In the above described configuration, mechanical interference between the extension 50 and the bit body 44 may prevent or hinder relative longitudinal movement between the extension 50 and the bit body 44 in directions parallel to the longitudinally axis L42. In other words, any longitudinal force applied to the shank 48 by a drill string (not shown) during a drilling operation, or a substantial portion thereof, may be carried by the longitudinally interlocking joint between the extension 50 and the bit body 44. In particular, when any tensile longitudinal force is applied to the drill bit 42, the mechanical interference at the joint will cause at least a portion or small volume of the extension 50 and at least a portion or small volume of the bit body 44 at the interface between the abutting surfaces 56, 58 to be in compression.
As the joint may be configured such that mechanical interference between the extension 50 and the bit body 44 carries at least a portion of the longitudinal forces or loads applied to the drill bit 42, the joint may be configured to reduce or prevent any longitudinal forces or loads from being applied to the braze alloy 60 and/or weld 62 that also may be used to secure the extension 50 to the bit body 44. As a result, the joint between the extension 50 and the bit body 44 may prevent failure of the braze alloy 60 and the weld 62 between the bit body 44 and the extension 50 during drilling.
In addition to carrying longitudinal loads, in some embodiments, mechanical interference between the extension 50 and the bit body 44 at the joint therebetween may be configured to carry at least a portion of any rotational or torsional loads applied to the drill bit 42 during drilling operations.
By forming or otherwise causing the abutting surfaces 56, 58 of the joint between the extension 50 and the bit body 44 to be concentric to the interface axis AI that is laterally offset or shifted from or relative to the longitudinal axis L42 of the earth-boring rotary drill bit 42, as shown in
In some situations, however, it may not be necessary or desired to form or otherwise cause the abutting surfaces 56, 58 of the joint to be concentric to an interface axis AI that is laterally offset or shifted from or relative to the longitudinal axis L42 of the rotary drill bit 42. In additional embodiments, the abutting surfaces 56, 58 may be concentric to the longitudinal axis L42 of the earth-boring rotary drill bit 42, as shown in
Thus, by configuring the earth-boring rotary drill bit 42 with a joint between the extension 50 and the bit body 44 that includes one or more longitudinally interlocking channels 66 and protrusions 68, and by configuring the abutting surfaces 56, 58 of the joint to be concentric to an interface axis AI that is laterally offset or shifted from or relative to the longitudinal axis L42, mechanical interference between the extension 50 and the bit body 44 at the joint may carry both longitudinal and torsional forces or loads applied to the drill bit 42 during drilling and may prevent failure of the braze alloy 60 and/or the weld 62 between the bit body 44 and the extension 50 due to such longitudinal and torsional forces.
As shown in
The earth-boring rotary drill bit 400 is similar to the drill bit 42 shown in
While the geometries of the interlocking channels 466, 66 and protrusions 468, 68 of the previously described drill bits 42, 400 are shown having a particular geometry, the embodiments of the present invention is not so limited and the interlocking channel and protrusion forming the load-bearing joint may comprise any complex or simple geometry that will carry at least a portion of any longitudinal and/or torsional load that may be applied to the drill bit during drilling operations.
The earth-boring rotary drill bit 500 illustrates another non-limiting geometry in which the interlocking channel and protrusion forming the load-bearing joint may be configured. In particular, as shown in
The earth-boring rotary drill bit 400 is similar to the drill bit 42 shown in
The earth-boring rotary drill bit 700 is similar to the drill bit 42 shown in
Each of the joints between the extensions 50 and the bit bodies 44 of the earth-boring rotary drill bits 400, 500, 600, 700 may be configured such that mechanical interference between the extension 50 and the bit body 44 carries all or a selected portion of any longitudinal and torsional loads applied to the drill bits 400, 500, 600, 700 during drilling operations. Thus, the channels 466, 566, 666, 766 and the protrusions 468, 568, 668, 768 may be configured to longitudinally interlock with one another, and the abutting surfaces 56, 58 may be concentric to (i.e., both approximately centered about) an interface axis AI that is not aligned with the longitudinal axes L400, L500, L600, L700 of the earth-boring rotary drill bits 400, 500, 600, 700, in a manner similar to that described above in reference to the earth-boring rotary drill bit 42.
Additionally, the bit body 44 and the extension 50 of the earth-boring rotary drill bits 400, 500, 600, 700 may be configured such that a transverse cross-sectional view of the earth-boring rotary drill bits 400, 500, 600, 700 taken along section lines F-F, G-G, H-H, I-I shown in
In additional embodiments of the present invention, the percentage of the longitudinal load applied to the drill bit 42 during drilling operations may be selectively apportioned between mechanical interference within the joint (mechanical interference between the extension 50 and the bit body 44) and the weld 62 (and/or braze alloy 60) at the joint to ensure that the weld 62 is not subjected to loads beyond its load-bearing capability.
The forces acting on the infinitesimally small portion 106 are shown on the free body diagram of
When the sliding force FS is greater than the frictional force Fμ (μ*FL*sine θ<FL*cosine θ (i.e., μ<cotangent θ)), longitudinal sliding will occur between the extension 100 and bit body 102. Thus, when μ>cotangent θ, no longitudinal sliding will occur regardless of the magnitude of the longitudinal force FL applied to the bit body 102 and the extension 100. Therefore, the critical angle θc at which no sliding will occur equals the arc-cotangent of μ. Thus, no sliding will occur if the angle θ is larger than the critical angle θc, but sliding may occur if the angle θ is smaller than the critical angle θc. In theory, the amount of the longitudinal load or force FL causing any slippage will be the difference between the sliding force FS and the friction force Fμ. Thus, the percentage P of any longitudinal load or force FL that will cause any slippage is equal to 100*(cosine θ−μ*sine θ).
Thus, for a given coefficient of friction μ between a bit body 102 and an extension 100, if the angle θ is greater than the critical angle θc (arc-cotangent μ), when a longitudinal load is applied to the extension 100 or bit body 102 during drilling, the bit body 102 may exhibit the tendency to slide relative to the extension 100, and a portion of the longitudinal load would be transferred to the weld 108 securing the bit body 102 and the extension 100 together. In theory, the percentage of any longitudinal load applied to the bit body 102 and the extension 100 that may be transferred to the weld 108 will be equal to 100*(cosine θ−μ*sine θ). Based on these calculations, the sizing of the angle θ may allow any longitudinal load applied to the bit body 102 and the extension 100 to be selectively apportioned between the weld 108 and the mechanical interference between the extension 100 and the bit body 102 at the joint therebetween. As the weld 108 may be robust, it may not be necessary to completely prevent any load from being carried by the weld 108. Therefore, in some embodiments, the angle θ may be calculated based on the strength of the weld 108 and manufacturing capabilities.
As a non-limiting example, when the extension 100 is formed from steel and the bit body 102 is formed from tungsten carbide, the coefficient of friction μ therebetween may be between approximately 0.4 and 0.6. When the coefficient of friction is between approximately 0.4 and 0.6, the critical angle θc at which no axial load may be carried by the weld 108 may be between approximately sixty-eight degrees (68°) and approximately fifty-nine degrees (59°). Therefore, the range of the angle θ at which a portion of any longitudinal load may be transferred to the weld 108 may be between approximately one degree (1°) and approximately seventy degrees (70°).
Each of the examples of ranges or particular angles described above in relation to the angle θ may be absolute angles. Thus, the plane 104 between the bit body 102 and the extension 100, which extends at the angle θ relative to the longitudinal axis L102, may extend radially outward and longitudinally upward relative to the longitudinal axis L102 or radially inward and longitudinally downward relative to the longitudinal axis L102.
As described above in relation to the angle θ shown in
In some embodiments, the angle 160 (
In some embodiments, the angle 160 may comprise an angle between approximately one degree (1°) and approximately seventy-five degrees (75°). In other embodiments, the angle 160 may comprise an angle between approximately ten degrees (10°) and approximately sixty degrees (60°). In the particular embodiment shown in
By orienting at least one surface, or portion thereof, 146, 148 of each of the channel 166 and the protrusion 168 at an angle 160 as shown in
The bit body 44 and the extension 50 of the earth-boring rotary drill bit 142 may be formed or otherwise provided in any number of different configurations that embody teachings of the present invention. For example, the bit body 44 and the extension 50 of the earth-boring rotary drill bit 142 may be formed or otherwise provided such that a transverse cross-sectional view of the earth-boring rotary drill bit 142, taken along section line B-B shown in
Furthermore, the extension 50 of the earth-boring rotary drill bit 142 may comprise two or more separate portions 70, 72, which may be secured together around the male connection portion 152 of the bit body 44 as described above in relation to the two or more separate portions 70, 72 of the earth-boring rotary drill bit 42 shown in
The angle 200 may be configured such that a portion of any longitudinal load applied to the earth-boring rotary drill bit 182 may be selectively apportioned between mechanical interference between the male connection portion 192 and the female connection portion 194 (at the joint between the extension 50 and the bit body 44) and the weld 62 (and/or the brazing alloy 60). In the particular, non-limiting example shown in
The bit body 44 and the extension 50 of the earth-boring rotary drill bit 182 may be formed or otherwise provided in any number of different configurations that embody teachings of the present invention. For example, the bit body 44 and the extension 50 of the earth-boring rotary drill bit 182 may be formed or otherwise provided such that a transverse cross-sectional view of the earth-boring rotary drill bit 182, taken along section line C-C shown in
In additional embodiments, the abutting surfaces 186, 188 of the joint of the earth-boring rotary drill bit 182, may be configured to be concentric to the longitudinal axis L182 of the earth-boring rotary drill bit 182, in a manner similar to that shown in
Furthermore, the extension 50 of the earth-boring rotary drill bit 182 may comprise two or more separate portions 70, 72 which may be secured together around the male connection portion 192 of the bit body 44 as described above in relation to the two separate portions 70, 72 of the earth-boring rotary drill bit 42 shown in
Similar to the channel 196 described above in relation to
By orienting the abutting surfaces 246, 248 of the channel 236 and the protrusion 238 at an angle 254, and orienting the abutting surfaces 248, 252 of each of the channel 240 and the protrusion 242 at an angle 256 as shown in
The bit body 44 and the extension 50 of the earth-boring rotary drill bit 230 may be formed or otherwise provided in any number of different configurations that embody teachings of the present invention. For example, the bit body 44 and the extension 50 of the earth-boring rotary drill bit 230 may be formed or otherwise provided such that a transverse cross-sectional view of the earth-boring rotary drill bit 230, taken along section line D-D shown in
Furthermore, the extension 50 of the earth-boring rotary drill bit 230 may comprise two or more separate portions 70, 72, which may be secured together around the male connection portion 192 of the bit body 44 as described above in relation to the two or more separate portions 70, 72 of the earth-boring rotary drill bit 42 shown in
Similar to the methods described above in relation to the orientation of the abutting surfaces of the channels and the protrusions of the earth-boring rotary drill bits 142, 182, 230 shown in
While the embodiments of drill bits described hereinabove each include a shank assembly comprising a shank 48 secured to an extension 50, the present invention is not so limited.
The earth-boring rotary drill bit 300 is similar to the drill bit 42 shown in
Additionally, as shown in
The joint between the shank 302 and the bit body 44 may be configured such that mechanical interference between the shank 302 and the bit body 44 carries all or a selected portion of any longitudinal and torsional loads applied to the drill bit 300 during drilling operations. Thus, the channel 66 and the protrusion 308 may be configured to longitudinally interlock with one another, and the abutting surfaces 56, 318 may be concentric to (i.e., both approximately centered about) an interface axis AI that is not aligned with the longitudinal axis L300 of the earth-boring rotary drill bit 300, in a manner similar to that described above in reference to the earth-boring rotary drill bit 42.
Additionally, the bit body 44 and the shank 302 of the earth-boring rotary drill bit 300 may be configured such that a transverse cross-sectional view of the earth-boring rotary drill bit 300 taken along section line E-E shown in
The shank 302 may comprise two or more separate members 310, 312, which may be secured together around the male connection portion 52 of the bit body 44 in a manner similar to the two or more separate portions 70, 72 of the extension 50 described above in relation to the earth-boring rotary drill bit 42 shown in
The joints of the present invention and the methods used to form such joints may find particular utility with drill bits including new particle-matrix composite materials. New particle-matrix composite materials are currently being investigated in an effort to improve the performance and durability of earth-boring rotary drill bits. Examples of such new particle-matrix composite materials are disclosed in, for example, U.S. patent application Ser. No. 11/272,439, filed Nov. 10, 2005, now U.S. Pat. No. 7,776,256, issued Aug. 17, 2010, pending U.S. patent application Ser. No. 11/540,912, filed Sep. 29, 2006, and U.S. patent application Ser. No. 11/593,437, filed Nov. 6, 2006, now U.S. Pat. No. 7,784,567, issued Aug. 31, 2010.
Such new particle-matrix composite materials may include matrix materials that have a melting point relatively higher than the melting point of conventional matrix materials used in infiltration processes. By way of example and not limitation, nickel-based alloys, cobalt-based alloys, cobalt and nickel-based alloys, aluminum-based alloys, and titanium-based alloys are being considered for use as matrix materials in new particle-matrix composite materials. Such new matrix materials may have a melting point that is proximate to or higher than the melting points of metal alloys (e.g., steel alloys) conventionally used to form a metal blank, and/or they may be chemically incompatible with such metal alloys conventionally used to form a metal blank, such as the previously described metal blank 16 (
Furthermore, bit bodies that comprise such new particle-matrix composite materials may be formed from methods other than the previously described infiltration processes. By way of example and not limitation, bit bodies that include such particle-matrix composite materials may be formed using powder compaction and sintering techniques. Examples of such techniques are disclosed in the above-mentioned U.S. patent application Ser. No. 11/272,439, filed Nov. 10, 2005, now U.S. Pat. No. 7,776,256, issued Aug. 17, 2010, and in U.S. patent application Ser. No. 11/271,153, also filed Nov. 10, 2005, now U.S. Pat. No. 7,802,495, issued Sep. 28, 2010. Such techniques may require sintering at temperatures proximate to or higher than the melting points of metal alloys (e.g., steel alloys) conventionally used to form a metal blank, such as the previously described metal blank 16 (
In view of the above, it may be difficult or impossible to provide a metal blank in bit bodies formed from or comprising such new particle-matrix composite materials. As a result, it may be relatively difficult to attach a drill bit comprising a bit body formed from such new particle-matrix materials to a shank or other component of a drill string. Furthermore, because of the difference in melting temperatures and possible chemical incompatibility between a bit body formed from a new particle-matrix composite material and a shank formed from a metal alloy, welds used to secure the bit body to the shank may be difficult to form and may not exhibit the strength and durability of conventional welds. Therefore, the methods of the present invention including forming a joint between a bit body and a shank assembly that exhibits mechanical interference between the bit body and the shank for bearing at least a portion of longitudinal and/or torsional loads applied to the joint and methods of selectively apportioning any longitudinal loads applied to a shank assembly to mechanical interference between the bit body and the shank assembly may be particularly useful for forming joints between bit bodies formed from new particle-matrix composite materials and a shank formed from a metal.
While the channels and protrusions described hereinabove in the different embodiments have been shown in the figures as including relatively sharp corners and edges, in additional embodiments, the relatively sharp corners and edges may be replaced with rounded or smoothly curved corners and edges to minimize any concentration of stress that might occur at such sharp corners and edges during drilling operations. Additionally, the channels and protrusions and the male and female connection portions may comprise a wide variety of geometries and are shown herein as having particular geometries set forth herein as non-limiting examples to facilitate description of the present invention.
Additionally, while several embodiments of the invention have been illustrated as comprising bit bodies having one or more protrusions thereon and extension members and/or shanks having one or more recesses therein that are complementary to the protrusions and configured to receive the protrusions therein, in additional embodiments of the invention, such recesses may be provided in the bit bodies and the protrusions may be provided on the extensions and/or shanks.
While the present invention has been described herein with respect to certain preferred embodiments, those of ordinary skill in the art will recognize and appreciate that it is not so limited. Rather, many additions, deletions and modifications to the preferred embodiments may be made without departing from the scope of the invention as hereinafter claimed. In addition, features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated by the inventors.
Smith, Redd H., Duggan, James L., Singh, Anupam K.
Patent | Priority | Assignee | Title |
11035175, | May 03 2017 | Schlumberger Technology Corporation | Drill bit body construction |
9163461, | Jun 04 2008 | Baker Hughes Incorporated | Methods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods |
Patent | Priority | Assignee | Title |
2819599, | |||
2819958, | |||
2906654, | |||
3368881, | |||
3660050, | |||
3757879, | |||
3987859, | Oct 24 1973 | Dresser Industries, Inc. | Unitized rotary rock bit |
4017480, | Aug 20 1974 | Permanence Corporation | High density composite structure of hard metallic material in a matrix |
4047828, | Mar 31 1976 | Core drill | |
4094709, | Feb 10 1977 | DOW CHEMICAL COMPANY, THE | Method of forming and subsequently heat treating articles of near net shaped from powder metal |
4128136, | Dec 09 1977 | Lamage Limited | Drill bit |
4198233, | May 17 1977 | Thyssen Edelstahlwerke AG | Method for the manufacture of tools, machines or parts thereof by composite sintering |
4221270, | Dec 18 1978 | Smith International, Inc. | Drag bit |
4229638, | Oct 24 1973 | Dresser Industries, Inc. | Unitized rotary rock bit |
4233720, | Nov 30 1978 | DOW CHEMICAL COMPANY, THE | Method of forming and ultrasonic testing articles of near net shape from powder metal |
4255165, | Dec 22 1978 | General Electric Company | Composite compact of interleaved polycrystalline particles and cemented carbide masses |
4306139, | Dec 28 1978 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Method for welding hard metal |
4341557, | Sep 10 1979 | DOW CHEMICAL COMPANY, THE | Method of hot consolidating powder with a recyclable container material |
4389952, | Jun 30 1980 | Fritz Gegauf Aktiengesellschaft Bernina-Machmaschinenfabrik | Needle bar operated trimmer |
4499048, | Feb 23 1983 | POWMET FORGINGS, LLC | Method of consolidating a metallic body |
4499795, | Sep 23 1983 | DIAMANT BOART-STRATABIT USA INC , A CORP OF DE | Method of drill bit manufacture |
4526748, | May 22 1980 | DOW CHEMICAL COMPANY, THE | Hot consolidation of powder metal-floating shaping inserts |
4547337, | Apr 28 1982 | DOW CHEMICAL COMPANY, THE | Pressure-transmitting medium and method for utilizing same to densify material |
4552232, | Jun 29 1984 | Spiral Drilling Systems, Inc. | Drill-bit with full offset cutter bodies |
4554130, | Oct 01 1984 | POWMET FORGINGS, LLC | Consolidation of a part from separate metallic components |
4562990, | Jun 06 1983 | Die venting apparatus in molding of thermoset plastic compounds | |
4596694, | Sep 20 1982 | DOW CHEMICAL COMPANY, THE | Method for hot consolidating materials |
4597730, | Sep 20 1982 | DOW CHEMICAL COMPANY, THE | Assembly for hot consolidating materials |
4630693, | Apr 15 1985 | Rotary cutter assembly | |
4656002, | Oct 03 1985 | DOW CHEMICAL COMPANY, THE | Self-sealing fluid die |
4667756, | May 23 1986 | Halliburton Energy Services, Inc | Matrix bit with extended blades |
4686080, | Nov 09 1981 | Sumitomo Electric Industries, Ltd. | Composite compact having a base of a hard-centered alloy in which the base is joined to a substrate through a joint layer and process for producing the same |
4694919, | Jan 23 1985 | NL Petroleum Products Limited | Rotary drill bits with nozzle former and method of manufacturing |
4743515, | Nov 13 1984 | Santrade Limited | Cemented carbide body used preferably for rock drilling and mineral cutting |
4744943, | Dec 08 1986 | The Dow Chemical Company | Process for the densification of material preforms |
4809903, | Nov 26 1986 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE | Method to produce metal matrix composite articles from rich metastable-beta titanium alloys |
4838366, | Aug 30 1988 | HARTWELL INDUSTRIES, INC A CORPORATION OF TX | Drill bit |
4871377, | Sep 29 1982 | DIAMOND INNOVATIONS, INC | Composite abrasive compact having high thermal stability and transverse rupture strength |
4919013, | Sep 14 1988 | Eastman Christensen Company | Preformed elements for a rotary drill bit |
4919221, | Apr 06 1989 | Numa Tool Company | Impact drill bit assembly and replaceable parts thereof |
4923512, | Apr 07 1989 | The Dow Chemical Company; DOW CHEMICAL COMPANY, THE, A CORP OF DE | Cobalt-bound tungsten carbide metal matrix composites and cutting tools formed therefrom |
4956012, | Oct 03 1988 | Newcomer Products, Inc. | Dispersion alloyed hard metal composites |
4968348, | Jul 29 1988 | Dynamet Technology, Inc. | Titanium diboride/titanium alloy metal matrix microcomposite material and process for powder metal cladding |
5000273, | Jan 05 1990 | Baker Hughes Incorporated | Low melting point copper-manganese-zinc alloy for infiltration binder in matrix body rock drill bits |
5030598, | Jun 22 1990 | MORGAN CRUCIBLE COMPANY PLC, THE | Silicon aluminum oxynitride material containing boron nitride |
5032352, | Sep 21 1990 | POWMET FORGINGS, LLC | Composite body formation of consolidated powder metal part |
5049450, | May 10 1990 | SULZER METCO US , INC | Aluminum and boron nitride thermal spray powder |
5161898, | Jul 05 1991 | REEDHYCALOG, L P | Aluminide coated bearing elements for roller cutter drill bits |
5232522, | Oct 17 1991 | The Dow Chemical Company; DOW CHEMICAL COMPANY, THE | Rapid omnidirectional compaction process for producing metal nitride, carbide, or carbonitride coating on ceramic substrate |
5281260, | Feb 28 1992 | HUGHES CHRISTENSEN COMPANY | High-strength tungsten carbide material for use in earth-boring bits |
5286685, | Oct 24 1990 | Savoie Refractaires | Refractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production |
5348806, | Sep 21 1991 | Hitachi Metals, Ltd | Cermet alloy and process for its production |
5443337, | Jul 02 1993 | Sintered diamond drill bits and method of making | |
5482670, | May 20 1994 | Cemented carbide | |
5484468, | Feb 05 1993 | Sandvik Intellectual Property Aktiebolag | Cemented carbide with binder phase enriched surface zone and enhanced edge toughness behavior and process for making same |
5506055, | Jul 08 1994 | SULZER METCO US , INC | Boron nitride and aluminum thermal spray powder |
5543235, | Apr 26 1994 | SinterMet | Multiple grade cemented carbide articles and a method of making the same |
5560440, | Feb 12 1993 | Baker Hughes Incorporated | Bit for subterranean drilling fabricated from separately-formed major components |
5593474, | Aug 04 1988 | Smith International, Inc. | Composite cemented carbide |
5611251, | Jul 02 1993 | Sintered diamond drill bits and method of making | |
5612264, | Apr 30 1993 | The Dow Chemical Company | Methods for making WC-containing bodies |
5641251, | Jul 14 1994 | Cerasiv GmbH Innovatives Keramik-Engineering | All-ceramic drill bit |
5641921, | Aug 22 1995 | Dennis Tool Company | Low temperature, low pressure, ductile, bonded cermet for enhanced abrasion and erosion performance |
5662183, | Aug 15 1995 | Smith International, Inc. | High strength matrix material for PDC drag bits |
5666864, | Dec 22 1993 | Earth boring drill bit with shell supporting an external drilling surface | |
5677042, | Dec 23 1994 | KENNAMETAL INC | Composite cermet articles and method of making |
5679445, | Dec 23 1994 | KENNAMETAL INC | Composite cermet articles and method of making |
5697046, | Dec 23 1994 | KENNAMETAL INC | Composite cermet articles and method of making |
5732783, | Jan 13 1995 | ReedHycalog UK Ltd | In or relating to rotary drill bits |
5733649, | Feb 01 1995 | KENNAMETAL INC | Matrix for a hard composite |
5733664, | Feb 01 1995 | KENNAMETAL INC | Matrix for a hard composite |
5753160, | Oct 19 1994 | NGK Insulators, Ltd. | Method for controlling firing shrinkage of ceramic green body |
5765095, | Aug 19 1996 | Smith International, Inc. | Polycrystalline diamond bit manufacturing |
5776593, | Dec 23 1994 | KENNAMETAL INC | Composite cermet articles and method of making |
5778301, | May 20 1994 | Cemented carbide | |
5789686, | Dec 23 1994 | KENNAMETAL INC | Composite cermet articles and method of making |
5792403, | Dec 23 1994 | KENNAMETAL INC | Method of molding green bodies |
5806934, | Dec 23 1994 | KENNAMETAL INC | Method of using composite cermet articles |
5830256, | May 11 1995 | LONGYEAR SOUTH AFRICA PTY LIMITED | Cemented carbide |
5856626, | Dec 22 1995 | Sandvik Intellectual Property Aktiebolag | Cemented carbide body with increased wear resistance |
5865571, | Jun 17 1997 | Norton Company | Non-metallic body cutting tools |
5880382, | Jul 31 1997 | Smith International, Inc. | Double cemented carbide composites |
5897830, | Dec 06 1996 | RMI TITANIUM CORPORATION | P/M titanium composite casting |
5957006, | Mar 16 1994 | Baker Hughes Incorporated | Fabrication method for rotary bits and bit components |
5963775, | Dec 05 1995 | Smith International, Inc. | Pressure molded powder metal milled tooth rock bit cone |
6029544, | Jul 02 1993 | Sintered diamond drill bits and method of making | |
6051171, | Oct 19 1994 | NGK Insulators, Ltd | Method for controlling firing shrinkage of ceramic green body |
6063333, | Oct 15 1996 | PENNSYLVANIA STATE RESEARCH FOUNDATION, THE; Dennis Tool Company | Method and apparatus for fabrication of cobalt alloy composite inserts |
6086980, | Dec 18 1997 | Sandvik Intellectual Property Aktiebolag | Metal working drill/endmill blank and its method of manufacture |
6089123, | Sep 24 1996 | Baker Hughes Incorporated | Structure for use in drilling a subterranean formation |
6148936, | Oct 22 1998 | ReedHycalog UK Ltd | Methods of manufacturing rotary drill bits |
6200514, | Feb 09 1999 | Baker Hughes Incorporated | Process of making a bit body and mold therefor |
6209420, | Mar 16 1994 | Baker Hughes Incorporated | Method of manufacturing bits, bit components and other articles of manufacture |
6214134, | Jul 24 1995 | AIR FORCE, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE | Method to produce high temperature oxidation resistant metal matrix composites by fiber density grading |
6214287, | Apr 06 1999 | Sandvik Intellectual Property Aktiebolag | Method of making a submicron cemented carbide with increased toughness |
6220117, | Aug 18 1998 | Baker Hughes Incorporated | Methods of high temperature infiltration of drill bits and infiltrating binder |
6227188, | Jun 17 1997 | Norton Company | Method for improving wear resistance of abrasive tools |
6228139, | May 05 1999 | Sandvik Intellectual Property Aktiebolag | Fine-grained WC-Co cemented carbide |
6241036, | Sep 16 1998 | Baker Hughes Incorporated | Reinforced abrasive-impregnated cutting elements, drill bits including same |
6254658, | Feb 24 1999 | Mitsubishi Materials Corporation | Cemented carbide cutting tool |
6287360, | Sep 18 1998 | Smith International, Inc | High-strength matrix body |
6290438, | Feb 19 1998 | AUGUST BECK GMBH & CO | Reaming tool and process for its production |
6293986, | Mar 10 1997 | Widia GmbH | Hard metal or cermet sintered body and method for the production thereof |
6325163, | Mar 21 1997 | Baker Hughes Incorporated | Bit torque limiting device |
6375706, | Aug 12 1999 | Smith International, Inc. | Composition for binder material particularly for drill bit bodies |
6453899, | Jun 07 1995 | ULTIMATE ABRASIVE SYSTEMS, L L C | Method for making a sintered article and products produced thereby |
6454025, | Mar 03 1999 | VERMEER MANUFACTURING | Apparatus for directional boring under mixed conditions |
6454030, | Jan 25 1999 | Baker Hughes Incorporated | Drill bits and other articles of manufacture including a layer-manufactured shell integrally secured to a cast structure and methods of fabricating same |
6458471, | Sep 16 1998 | Baker Hughes Incorporated | Reinforced abrasive-impregnated cutting elements, drill bits including same and methods |
6500226, | Oct 15 1996 | Dennis Tool Company | Method and apparatus for fabrication of cobalt alloy composite inserts |
6511265, | Dec 14 1999 | KENNAMETAL INC | Composite rotary tool and tool fabrication method |
6576182, | Mar 31 1995 | NASS, RUEDIGER | Process for producing shrinkage-matched ceramic composites |
6589640, | Sep 20 2000 | ReedHycalog UK Ltd | Polycrystalline diamond partially depleted of catalyzing material |
6599467, | Oct 29 1998 | Toyota Jidosha Kabushiki Kaisha; Aisan Kogyo Kabushiki Kaisha | Process for forging titanium-based material, process for producing engine valve, and engine valve |
6607693, | Jun 11 1999 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy and method for producing the same |
6655481, | Jan 25 1999 | Baker Hughes Incorporated | Methods for fabricating drill bits, including assembling a bit crown and a bit body material and integrally securing the bit crown and bit body material to one another |
6685880, | Nov 09 2001 | Sandvik Intellectual Property Aktiebolag | Multiple grade cemented carbide inserts for metal working and method of making the same |
6742608, | Oct 04 2002 | BETTER BIT 2011, LLC | Rotary mine drilling bit for making blast holes |
6742611, | Sep 16 1998 | Baker Hughes Incorporated | Laminated and composite impregnated cutting structures for drill bits |
6756009, | Dec 21 2001 | DOOSAN INFRACORE CO , LTD | Method of producing hardmetal-bonded metal component |
6849231, | Oct 22 2001 | Kobe Steel, Ltd. | α-β type titanium alloy |
6918942, | Jun 07 2002 | TOHO TITANIUM CO., LTD. | Process for production of titanium alloy |
7044243, | Jan 31 2003 | SMITH INTERNATIONAL, INC , A CALIFORNIA CORPORATION | High-strength/high-toughness alloy steel drill bit blank |
7048081, | May 28 2003 | BAKER HUGHES HOLDINGS LLC | Superabrasive cutting element having an asperital cutting face and drill bit so equipped |
7703556, | Jun 04 2008 | Baker Hughes Incorporated | Methods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods |
20030010409, | |||
20040013558, | |||
20040060742, | |||
20040243241, | |||
20040245024, | |||
20050072496, | |||
20050117984, | |||
20050126334, | |||
20050211475, | |||
20050247491, | |||
20050268746, | |||
20060016521, | |||
20060043648, | |||
20060057017, | |||
20060131081, | |||
20060278433, | |||
20070042217, | |||
20070102198, | |||
20070102199, | |||
20070102200, | |||
20070102202, | |||
20080135304, | |||
AU695583, | |||
CA2212197, | |||
EP453428, | |||
EP995876, | |||
EP1244531, | |||
GB2203774, | |||
GB2385350, | |||
GB2393449, | |||
GB945227, | |||
JP10219385, | |||
SU1773663, | |||
WO3049889, | |||
WO2004053197, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 03 2009 | Baker Hughes Incorporated | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 06 2014 | ASPN: Payor Number Assigned. |
Nov 23 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 31 2022 | REM: Maintenance Fee Reminder Mailed. |
Jul 18 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 10 2017 | 4 years fee payment window open |
Dec 10 2017 | 6 months grace period start (w surcharge) |
Jun 10 2018 | patent expiry (for year 4) |
Jun 10 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 10 2021 | 8 years fee payment window open |
Dec 10 2021 | 6 months grace period start (w surcharge) |
Jun 10 2022 | patent expiry (for year 8) |
Jun 10 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 10 2025 | 12 years fee payment window open |
Dec 10 2025 | 6 months grace period start (w surcharge) |
Jun 10 2026 | patent expiry (for year 12) |
Jun 10 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |