An electronic circuit (300) includes a signal processing circuit (310) including first and second signal processing blocks (310.1, 310.3) coupled in cascade, a memory circuit (320) coupled to and adjustable between the first and second signal processing blocks (310.1, 310.3), the memory circuit (320) having memory spaces, the memory circuit (320) configurable to establish a trade-off of the memory spaces between the first and second signal processing blocks (310.1, 310.3), and a configuring circuit (330) operable to configure the trade-off of the memory spaces of the memory circuit (320).
|
6. A digital video receiver comprising a configurable block comprising adjustable memory spaces and operable to trade off Doppler performance with multi- protocol encapsulation forward error correction (MPE-FEC) by trading off spaces in said adjustable memory spaces as between circuitry for providing a Doppler-related signal and circuitry for providing the MPE-FEC, the circuitry for providing the MPE-FEC for processing a plurality of substantially-concurrent signal streams, the streams being a varying n in number over time, the varying number n responsive to said trading off; and a microprocessor coupled to said configurable block.
15. A digital communication apparatus comprising a telecommunication signal chain having a channel estimation block (ce) taps for providing estimates of received data and a multi-protocol encapsulation forward error correction block (MPE-FEC); and an adjustable memory circuit having memory spaces configurably allocated for a tradeoff to the ce block and to the MPE-FEC block; and a configuring circuit operable to configure said memory circuit and said configuring circuit further having at least one tap selector line coupled to the ce block so that how many taps of said ce block are selected to couple to said memory circuit is coordinated with the tradeoff of the memory spaces in said memory circuit.
9. A digital communication apparatus comprising a telecommunication signal chain having a physical layer block (PHY) operable to perform automatic retransmission request (ARQ) of packets, and said telecommunication signal chain having a media access controller (MAC) block operable to perform ARQ of packets; and an adjustable memory having memory spaces configurably allocated to trade off space in said adjustable memory as between said PHY ARQ block and to said MAC ARQ block, and circuitry for providing an increased amount of space in the adjustable memory to said PHY ARQ block while providing a decreased amount of space in the adjustable memory to said, MAC ARQ block and alternatively for providing a decreased amount of space in the adjustable memory to said PHY ARQ block while providing an increased amount of space in the adjustable memory to said MAC ARQ block.
1. An electronic circuit comprising a signal processing circuit including a signal processing chain comprising first and second signal processing blocks; a memory circuit coupled to and adjustable between the first and second signal processing blocks, said memory circuit having memory spaces; and a control circuit responsive to at least one of said signal processing blocks to dynamically adjust said memory circuit between said first and second signal processing blocks; wherein said first signal processing block is coupled to provide a Doppler-related signal to said control circuit, and said control circuit is responsive said Doppler-related signal to dynamically establish the trade-off; and wherein said second signal processing block is operable to process a plurality of substantially-concurrent signal streams, the streams being a varying n in number over time, and said second signal processing block is operable to generate a stream number signal related to the varying number n to said control circuit responsive to said stream number signal to dynamically establish the trade-off.
17. A process of operation of an electronic circuit having first and second signal processing blocks and a memory having memory spaces, the process comprising: configuring a memory circuit to represent a trade-off of the memory spaces between said first and second signal processing blocks; adjusting the memory in response to the configuring to establish the trade-off of the memory spaces between the first and second signal processing blocks; wherein said first signal processing block is coupled to provide a Doppler-related signal and said adjusting step is responsive said Doppler-related signal to establish the trade-off; wherein said second signal processing block is operable to process a plurality of substantially-concurrent signal streams, the streams being a varying n in number over time, and said second signal processing block is operable to generate a stream number signal related to the varying number n to said adjust step is responsive to said stream number signal to establish the trade-off; and operating the signal processing blocks in accordance with the trade-off of the memory spaces.
3. A power management circuit comprising a signal processing circuit including first and second signal processing blocks coupled in cascade; a memory circuit coupled to and adjustable between the first and second signal processing blocks, the memory having memory spaces, said memory circuit controllable to establish a trade-off of the memory spaces between said first and second signal processing blocks; and a power control circuit operable to control the trade-off of the memory spaces of said memory circuit and to control the power used by said memory circuit; and wherein said first signal processing block is coupled to provide a Doppler-related signal to said power control circuit, and said power control circuit is responsive said Doppler-related signal to dynamically establish the trade-off; and wherein said second signal processing block is operable to process a plurality of substantially-concurrent signal streams, the streams being a varying n in number over time, and said second signal processing block is operable to generate a stream number signal related to the varying number n to said control circuit responsive to said stream number signal to dynamically establish the trade-off.
12. A process of manufacturing an electronic device comprising providing an integrated circuit including a signal processing circuit including first and second signal processing blocks coupled in cascade, a memory circuit coupled to and adjustable between the first and second signal processing blocks and configurable to allocate a trade-off spaces for said first and second signal processing blocks, and a configuring circuit for configuring the trade-off of the memory spaces of said memory circuit; wherein said first signal processing block is coupled to provide a Doppler-related signal to said configuring circuit, and said configuring circuit is responsive said Doppler-related signal to dynamically establish the trade-off; and wherein said second signal processing block is operable to process a plurality of substantially-concurrent signal streams, the streams being a varying n in number over time, and said second signal processing block is operable to generate a stream number signal related to the varying number n to said configuring circuit responsive to said stream number signal to dynamically establish the trade-off; and coupling said integrated circuit with a storage circuit having configuration data representing a trade-off for use by the configuring circuit.
2. The electronic circuit claimed in
4. The power management circuit claimed in
5. The power management circuit claimed in
7. The digital video receiver claimed in
8. The digital video receiver claimed in
10. The digital communication apparatus claimed in
11. The digital communication apparatus claimed in
13. The process claimed in
14. The process claimed in
16. The digital communication apparatus claimed in
18. The process claimed in
19. The electronic circuit claimed in
20. The electronic circuit claimed in
21. The electronic circuit claimed in
22. The electronic circuit claimed in
23. The electronic circuit claimed in
24. The electronic circuit claimed in
25. The power management circuit claimed in
26. The power management circuit claimed in
wherein said memory circuit includes a multiplexing circuit for selectively coupling said first and second signal processing blocks to said memory spaces, said multiplexing circuit responsive to said power control circuit to establish the trade-off; and
having a first clock line and a second clock line wherein said memory circuit includes a second multiplexing circuit selectively coupling said first clock line and said second clock line to said memory spaces, said second multiplexing circuit responsive to said power control circuit to establish the selective coupling of the first and second clock lines to said memory spaces.
27. The power management circuit claimed in
28. The power management circuit claimed in
29. The power management circuit claimed in
30. The power management circuit claimed in
31. The power management circuit claimed in
32. The digital video receiver claimed in
33. The digital video receiver claimed in
34. The digital video receiver claimed in
35. The digital video receiver claimed in
36. The digital video receiver claimed in
37. The process claimed in
38. The process claimed in
39. The process claimed in
40. The digital communication apparatus claimed in
41. The digital communication apparatus claimed in
42. The digital communication apparatus claimed in
43. The digital communication apparatus claimed in
|
This application is related to provisional U.S. Patent Application No. 60/745,237, filed Apr. 20, 2006, titled “Flexible and Efficient Memory Utilization for a DVB-H Receiver System,” and priority under 35 U.S.C. 119(e)(1) is hereby claimed for said provisional U.S. Patent Application.
Not applicable.
Portions of this patent application contain materials that are subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document, or the patent disclosure, as it appears in the United States Patent and Trademark Office, but otherwise reserves all copyright rights whatsoever.
This invention is in the field of electronic computing hardware and software and communications, and is more specifically directed to improved processes, circuits, devices, and systems for information and communication processing purposes, and processes of making them. Without limitation, the background is further described in connection with communications processing.
Wireline and wireless communications, of many types, have gained increasing popularity in recent years. The personal computer with a wireline modem such as DSL (digital subscriber line) modem or cable modem communicates with other computers over networks. The mobile wireless (or “cellular”) telephone has become ubiquitous around the world. Mobile telephony has recently begun to communicate video and digital data, and voice over packet (VoP or VoIP), in addition to cellular voice. Wireless modems for communicating computer data over a wide area network are also available.
Mobile video on cellular telephones and other mobile platforms is increasing in popularity. It is desirable that many streams of information such as video, voice and data should be flexibly handled by such mobile devices and platforms. Precisely because of their mobility, the streams are subject to a distorting process called Doppler effect when moved at speeds commonly encountered in daily life relative to a wireless base station or other wireless transmitter carrying a stream of information to be received. Because of human visual acuity and auditory acuity, the video clarity and audible signal clarity of signals subjected to the Doppler effect distortion can be noticeable unless measures can somehow be taken to minimize the Doppler effect distortion. These considerations would appear to call for added computing power and hardware.
Wireless data communications in wireless mesh networks, such as those operating according to the IEEE 802.16 standard or “WiMax,” are increasing over a widening installed base of installations. The wireless mesh networks offer wideband multi-media transmission and reception that also appear to call for substantial computing power and hardware. Numerous other wireless technologies exist and are emerging about which various burdens and demands exist and will arise.
Security techniques are used to improve the security of retail and other business commercial transactions in electronic commerce and to improve the security of communications wherever personal and/or commercial privacy is desirable. Security is important in both wireline and wireless communications and apparently imposes still further demands for computing power and hardware.
Processors of various types, including DSP (digital signal processing) chips, RISC (reduced instruction set computing), information storage memories and/or other integrated circuit devices are important to these systems and applications. Containing or reducing the cost of manufacture and providing a variety of circuit and system products with performance features for different market segments are important goals in DSPs, integrated circuits generally and system-on-a-chip (SOC) design.
Further advantageous solutions and alternative solutions would, accordingly, be desirable in the art.
Generally and in one form of the invention, an electronic circuit includes a signal processing circuit including first and second signal processing blocks coupled in cascade, a memory circuit coupled to and adjustable between the first and second signal processing blocks, the memory circuit having memory spaces, the memory circuit configurable to establish a trade-off of the memory spaces between the first and second signal processing block, and a configuring circuit operable to configure the trade-off of the memory spaces of the memory circuit.
Generally and in another form of the invention, a signal processing device includes a signal processing circuit including first and second signal processing blocks, a memory circuit coupled to and adjustable between the first and second signal processing blocks, the memory circuit having memory spaces, the memory circuit configurable to establish a trade-off of the memory spaces between the first and second signal processing blocks, at least one the signal processing block including taps that couple to the memory circuit, and a configuring circuit operable to configure the memory circuit and the configuring circuit further having at least one tap selector line coupled to the at least one the signal processing block so that how many taps are selected to couple to the memory circuit is coordinated with the trade-off of the memory spaces in the memory circuit.
Generally and in a further form of the invention, an electronic circuit includes a signal processing circuit including first and second signal processing blocks, a memory circuit coupled to and adjustable between the first and second signal processing blocks, the memory circuit having memory spaces, and a control circuit responsive to at least one of the signal processing blocks to dynamically adjust the memory circuit between the first and second signal processing blocks.
Generally and in another further form of the invention, a power management circuit includes a signal processing circuit including first and second signal processing blocks coupled in cascade, a memory circuit coupled to and adjustable between the first and second signal processing blocks, the memory having memory spaces, the memory circuit controllable to establish a trade-off of the memory spaces between the first and second signal processing blocks, and a power control circuit operable to control the trade-off of the memory spaces of the memory circuit and to control the power used by the memory circuit.
Generally and in yet another form of the invention, a digital video receiver includes a configurable block operable to trade off Doppler performance with multi-protocol encapsulation forward error correction (MPE-FEC), and a microprocessor coupled to the configurable block.
Generally and in still another form of the invention, a digital communication apparatus includes a telecommunication signal chain having a physical layer block (PHY) operable to perform automatic retransmission request (ARQ) of packets, and the telecommunication signal chain having a media access controller (MAC) block operable to perform ARQ of packets, and an adjustable memory having memory spaces configurably allocated to the PHY ARQ block and to the MAC ARQ block.
Generally and in another yet further form of the invention, a process of manufacturing an electronic device includes providing an integrated circuit including a signal processing circuit including first and second signal processing blocks coupled in cascade, a memory circuit coupled to and adjustable between the first and second signal processing blocks and configurable to allocate spaces for the first and second signal processing blocks, and a configuring circuit for configuring the trade-off of the memory spaces of the memory circuit; and coupling the integrated circuit with a storage circuit having configuration data representing a trade-off for use by the configuring circuit.
Generally and in another still further form of the invention, a digital communication apparatus includes a telecommunication signal chain having a channel estimation block (CE) and a multi-protocol encapsulation forward error correction block (MPE-FEC); and the apparatus includes an adjustable memory circuit having memory spaces configurably allocated to the CE block and to the MPE-FEC block.
Generally and in another process form of the invention, a process is provided for use by a business to resolve conflicting requirement sets pertaining to level of Doppler performance and to number of elementary streams of information for video reception. The process includes providing a video receiver architecture; and configuring the video receiver architecture to establish different product types wherein the same architecture from product-to-product has a product-specific configuration established therein respective to the particular product to which the configuration pertains, the configuration establishing a product-specific trade-off of memory between the level of Doppler performance and the number of elementary streams of information for video reception; and selling units of at least two of the different product types to customers, whereby the conflicting requirement sets are resolved.
Generally, a further process form of the invention involves a process of operation of an electronic circuit having first and second signal processing blocks and a memory. The process includes configuring a memory circuit to represent a trade-off of the memory spaces between first and second signal processing blocks, adjusting the memory in response to the configuring to establish the trade-off of the memory spaces between the first and second signal processing blocks, and operating the signal processing blocks in accordance with the trade-off of the memory spaces.
These and other circuit, device, system, apparatus, process, and other forms of the invention are disclosed and claimed.
Corresponding numerals in different figures indicate corresponding parts except where the context indicates otherwise.
In
In
Further in
MPU 150 is coupled via a DTV Request interface 170 to Application Processor and Digital Baseband block 130 and ABB/PM block 125 to request activation in case of a Service Information event, such as the beginning of a scheduled program. For instance, DTV block 120 is suitably kept in a low-power mode and then becomes fully activated if the DTV Request is granted by Application Processor and Digital Baseband block 130. Also, Application Processor and Digital Baseband block 130 has software that asserts active control over the DTV block 120 by supplying an interrupt request DTV_IRQ to MPU 150 and by controlling ABB/PM block 125 to provide MPU clock CLK to MPU 150, to provide real-time clock RTC to the system, and to provide supply voltage VSS via a power, reset, and control module PRCM 175 to all parts needed by DTV block 120 at any given time to provide fully-active operation. Interrupt request DTV_IRQ vectors MPU 150 to commence run-time fully-active operation of DTV block 120.
Buffering for content storage and replay later also supports time-shifting performance features to add to the user experience. When keypad 115 indicates that digital television is no longer desired, or the phone clam-shell display is closed, or upon occurrence of a time-out condition or otherwise in software, then Application Processor and Digital Baseband block 130 asserts de-activating control over the DTV block 120 by supplying a DTV Reset output to PRCM 175 to reset DTV block 120. Furthermore, a DTV Debug block 180 has a JTAG tap controller and serial scan chain coupled to various registers and circuitry of the DTV block 120 to facilitate production testing and field testing of the DTV block 120. DTV Debug block 180 is coupled to an debug block APP_DEBUG 185 associated with the rest of the system (compare Debugger of
In
TS Demux 235 provides PSI/SI (program specific information/service information) streams and IP (Internet protocol) datagrams of a less-fully-corrected nature. An MPE-FEC RS (Reed-Solomon) Decoder block 240 provides multi-protocol encapsulation forward error correction to supply more-fully-corrected IP datagrams than those from TS Demux 235. MPE-FEC block 240 is coupled to a MPE-FEC Buffer 245 to or in the adjustable memory 220.
A Mux 255 has first input to receive the more-fully-corrected IP datagrams from MPE-FEC RS (Reed-Solomon) Decoder block 240. This Mux 255 has a second input fed by the less-fully-corrected IP datagrams from TS Demux 235. Mux 255 selection is controlled by a selector control from Configuration Control block 250. Depending on the level of correction configured in Configuration Control block 250, the Mux 255 supplies an output SPI (
In this
Channel estimation block 210 compensates for multi-path effects, fading, and other distortions that appear in the transmission channel. The signal as transmitted is altered by a transfer function H of the transmission channel. The channel estimation algorithm makes a statistical estimate H-hat of that transfer function when predetermined symbols known at each end are sent as pilot symbols on some of the tones (over-the-air carrier frequencies) called pilot tones during an occasional pilot transmission period. The process then at least partially cancels the transfer function H by multiplying H by the inverse of the estimated transfer function H-hat.
In the mobile handset or vehicular mobile device 100, motion of the entire handset or device relative to a television transmitter introduces a potentially interfering effect called Doppler effect on the transmission channel as seen at the receiver 100. For example, the user when walking, taking an escalator or elevator, or driving a car moves the handset relative to the television transmitter. (An analogous acoustic Doppler effect is commonly heard by a listener as the pitch of a whistling moving train or ambulance siren changes as an effect of its motion relative to the listener.) The Doppler effect of the motion of the receiver 100 relative to the transmitter smears the reception by moving, displacing or offsetting the tones and their modulation in the frequency domain at channel estimation time compared to their frequency placement in the originating transmission.
Doppler circuitry in block 210 supplies a Doppler estimate representing frequency displacement or difference in units such as number of Hertz. The Doppler estimate responds to and essentially looks like a frequency shift between the time-bases (clocks) of the transmitter and receiver. To estimate the Doppler frequency, an auto-correlation process is applied, for example, to known data received in one OFDM symbol auto-correlated with the next symbol.
According to an applicable video transmission protocol, pilot symbols are sent from a television transmitter and buffered (e.g., 3-4 at a time) in the receiver to estimate the magnitude of Doppler effect. Then television information is transmitted at TV frequency modulated with IP datagrams from the television transmitter to the handset 100. Handset 100 receives the IP datagrams representing the television program transmission. Then the television transmitter delivers another pilot transmission period in response to which the receiver block 210 adaptively further adjusts for the Doppler effect using feedback based on the estimated Doppler frequency, and then yet-further information is successively transmitted, and so on.
Intercarrier interference (ICI) cancellation in block 210 further improves performance of the channel estimation algorithm. The channel compensated OFDM symbols are then sent to a convolutional decoder Viterbi decoder 225, which is a first-layer in a forward error correction (FEC) process to improve the probability of error-free reception of the transmitted signal, such as by detecting and eliminating errors in the received signal.
The decoded bits are then grouped in blocks of bytes (e.g., 204-byte blocks) and sent to a second-layer of FEC, the inner Reed-Solomon (RS) decoder 230. At the output of the inner RS decoder 230, groups of packets (e.g., 188-byte packets) conforming to the MPEG-2 transport stream (TS) packet format are sent to the TS demultiplexer 235. TS demultiplexer 235 filters the multiplexed MPEG-2 transport stream TS to obtain the broadcast content within the broadcast digital video signal. To prepare for and provide for a third-layer of FEC, some of the video content is previously further protected with an outer RS coding step prior to transmission. This outer layer is known as the multi-protocol encapsulation forward-error correction, or MPE-FEC. Decoding of this layer is performed by MPE-FEC RS Decoder 240. The TS demultiplexer 235 has output for IP datagrams without MPE-FEC as well as PSI/SI (program specific information and service information).
Two performance properties or parameters pertaining to a digital video receiver system 120 of
In an OFDM receiver, Doppler performance can be improved through a process in block 210 that iteratively cancels the intercarrier interference within an OFDM symbol. However, additional memory is used for each iteration of the process in block 210, as more of the OFDM symbols are buffered, see OFDM Symbol Buffer 215 and adjustable shared memory 220, and later discussion herein for
A competing process block MPE-FEC 240 in an example uses between 0.5 Mbit and 2 Mbit of storage in MPE-FEC Buffer 245 to support processing of each elementary stream. Adjustable memory 220 provides a limited, configurable space responsive in size to Configuration Control 250 that combines the spaces of OFDM Symbol Buffer 215 and MPE-FEC Buffer 245. Some embodiments also leave some guaranteed, or unshared, space reserved for and represented by one or both of
In
Thus, four cases are:
In some embodiments, cases 1, 2, 3 are handled by different respective configurations and memory real-estate is saved. Power management is suitably applied in case 1 in some embodiments wherein less memory is likely to be actively used than in cases 2 and 3. In some other configurable embodiments, memory real-estate may be higher to handle all four cases including highest performance in case 4. Power management is applied in some embodiments to save power in the lower performance cases 2 and 3, and to conserve even more power in case 1.
An elementary stream is a stream of packets in the transport stream that share a common packet identifier (PID). Note that multiple streams of packets for different content streams, such as different TV programs, or e-mails and audio and video can be delivered concurrently in the transport stream and stored in the system in a manner respectively identifying the different streams, services, and applications.
In
Various customers may have differing and conflicting requirement sets to specify the presence, number, and level of performance of the Doppler interference canceling process and multiple MPE-FEC elementary streams. Some embodiments accommodate such requirement sets by providing a digital video receiver embodiment of a single architecture that is statically configured in different ways that accommodate the conflicting requirements by trading off memory between the Doppler interference canceling and number of MPE-FEC elementary streams. The architecture of a same particular embodiment gets the work done that is specified by a given requirement set for one application or customer, and is reconfigurable for another application or customer without architectural revision to get the work done that is specified by that other application or customer. Thus, the same architecture executes work that is different work for different requirement sets.
Without added memory cost to the system, some digital video receiver embodiments are configured to support either high Doppler performance or the concurrent reception of multiple MPE-FEC elementary streams or some other tradeoff between Doppler and multiple MPE-FEC elementary streams. In other words, both of these desirable features can be enabled within the same product, whether or not at the same time, at a lower overall system cost than a solution that independently provides both the highest Doppler performance and the concurrent reception of highest number of multiple MPE-FEC elementary streams. A digital video receiver using an embodiment can appeal to a broader base of customers, thereby delivering a wider range of choices to enterprises and to the consuming public.
Dynamically trading off Doppler performance with multiple concurrent performance of MPE-FEC streams has two features. One way allows a company to dynamically support and sell to a customer base using an embodiment that supports various requirement sets by statically configuring a configuration selection block to satisfy the various requirement sets. Software programs registers to fix the selectors.
In some embodiments, circuitry dynamically trades off Doppler performance of a moving or non-moving platform at different times, see
Turning to
In
In
In
In an embodiment of
In another embodiment shown in
MPU 340 configures and controls the blocks 310, 320, 370 directly in some embodiments or through a Selection Configuration Control 330 as in
In still another embodiment, super-allocation is provided for power management purposes to run a dynamically-configurable part of the memory in a low-power or off mode and another part of the memory in a full power mode. Allocation of full power mode memory space between at least two signal process blocks is provided for the part of the memory that is running in the full power mode. For example, if Doppler is low or negligible, and number of elementary streams is low, then part of the memory can be allocated to power management power-down space to conserve power until Doppler rises or a service event to increase the number of elementary streams occurs.
Further other embodiments do a three-way super-allocation between Signal Process_1 memory space, Signal Process_2 memory space, and power management power-down memory space. Signal Process_1 memory space is in turn allocated to plural blocks of Signal Process_1. Signal Process_2 memory space is in turn allocated to plural blocks of Signal Process_2.
An example of an embodiment of
Another example of an adjustable memory embodiment in
In
Examples of the services and programs that can be received and that have known amount memory needed for such service are audio, video, or data. Simultaneously broadcast along with these services are service information (SI) tables, such as an ESG (electronic service guide). A receiver can know how much memory is needed for each service from processing of that information.
The amount of available or allocated memory limits or restricts the extent to which the telecommunications signal processing blocks can function. Channel estimation, for instance, does not fail when memory is limited because estimates of the received data, x, can be taken from the equalizer output of any iteration. All the equalizer outputs are valid; however, estimates improve as more iterations (memory buffers) are allocated.
In an example of a digital video mode, an on-chip memory is used for MPE-FEC, and an additional 1Mb/0.5Mb (for 4/3 iterations) of the data-tones memory of the Doppler algorithm is used by the MPE-FEC. In T-DMB mode, 2Mb are used by the time-deinterleaver of the FEC module. DVB-H and T-DMB are examples of a transport layer. Internet protocol IP carries encapsulated video content in IP datagrams.
For the MPE-FEC decoder 240 of
If a request for an additional service is received, and if the memory needed for that service exceeds the memory available in allocable spaces 410.0-410.N, then that request is rejected by the system controller and a message is sent to a host processor such as the applications processor of block 130 in
In
Further embodiments provide structures with any plurality of access ports (e.g., 470) and any plurality of clocks by adding further selector control lines from the configuration block 250 to the multiplexers 440 etc. and 450 etc. Inputs are provided to the multiplexers 440 etc. from any two or more or all of the plurality of access ports and inputs to the multiplexers 450 etc. from any two or more or all of the plurality of clocks. Some embodiments provide plural-ported memory 220 for read/write access from different busses to respective memory ports, wherein configuration register(s) 460 configurably allocate memory spaces in the plural-ported memory 220 for use by multiple corresponding signal processing blocks 210, 240, 470. Some embodiments use a digital signal processor core or integrated circuit to implement two or more of the signal processing blocks 205, 210, 225, 230, 235, 240, 255 of
In
In another embodiment, memory is shared between different video standards so that for DVB-H, the memory is allocated as taught herein and for TDMB (terrestrial digital multimedia broadcasting or T-DMB) standard the memory is used for time-to-deliver. Also, for improved TDMB, adjustable shared memory as taught herein is used to allocate memory or trade off memory for Doppler and time-to-deliver.
In
In
In
A clock designated PHY_CLK is coupled to a first input of a clock Mux 450 and to a first input of a clock Mux 451 and to a clock input of memory block 420.1. An additional clock designated CPU_CLK is coupled to a second input of clock Mux 450 and to a second input of clock Mux 451 and to clock inputs of memory blocks 430.1 and 430.2. The output of clock Mux 450 is coupled to clock inputs of memory blocks 410.0 and 410.1. The output of clock Mux 451 is coupled to clock inputs of memory blocks 410.2 and 410.3. Clock Muxes 450 and 451 have respective selector controls coupled to register bits in register 460 of Selection Configuration Control 250. Using clock muxes 450, 451 separate from bus muxes 440, 441, etc., facilitates clock rate throttling of processes, power management, and memory control.
Still other embodiments based on
In a parallel-bus version of the adjustable memory, the bus muxing is performed on plural parallel lines of parallel busses coupled to the independent telecommunication blocks, for which memory is allocated. The parallel output of each bus mux is used to access the memory block(s) to which that bus mux is coupled. For instance, a parallel bus in
In a serial-bus version of the adjustable memory, the independent telecommunication blocks, for which memory is allocated, are coupled via respective high-speed serial buses to the corresponding inputs of the bus muxes 440, 441, and so on. Then the serial output of each bus mux is converted from serial to parallel form and used to access the memory block(s) to which that bus mux 440 or 441, etc., is coupled.
Coupling to the muxes 440, 441, etc., and 450, 451, etc., is suitably provided by electrical conduction, optical transmission, or other coupling technology in integrated circuits.
In
MPU 510 communicates with preprocessing hardware, accelerators and interfaces such as transport stream demultiplexer, MPE-FEC, CRC (cyclic redundancy checksum), serial interfaces WSPI/SDIO and other suitable blocks. Multiple elementary streams carry audio/video play, audio/video recording, file downloads, electronic service guide updates, entitlement management messages, e-mail, voice over packet (VOP/VoIP), security services and other services. Some elementary streams carry multiple services in the same elementary stream where some time multiplexing of the services is permissible.
In
In
In
In
Further in
In
In
In
Doppler estimation 740 feeds a comparator 724. The comparator 724 accesses Look-up Table 710 (or decoder logic to instantiate the same information in some embodiments). Lookup Table 710 provides memory bank selector outputs 715 that are routed to selector controls of Muxes 440, 441, etc., to dynamically govern the allocation in adjustable memory 720. Any two or more of Doppler estimation 740, FEC 660, and MPE-FEC Link Layer 650 are coupled via the Muxes 440, 441, etc., according to their respective allocation to adjustable memory 720. Memory bus lines 745 couple block 740 to a first input of each of two or more of the set of Muxes 440, 441, etc. Memory bus lines 755 couple MPE-FEC block 650 to a second input of each of two or more of the set of Muxes 440, 441, etc. In
In
Tap selector lines 775 are dynamically selected and activated by Lookup Table 710 in a manner analogous to the bank selector outputs 715. Tap selector lines 775 from Lookup Table 710 couple back to Doppler Estimation block 740 to control the number of equalizer taps used by the circuitry in block 740 (compare output control Mux 920 and block 950 of
In some dynamic selector embodiments, a block such as a FEC 660 or MPE-FEC block 650, instead of Doppler estimator block 740, counts an elementary streams number ESN and uses that number ESN instead of Doppler to dynamically drive the memory allocation through comparator 724 and Lookup Table 710. The threshold 725 and Lookup Table configuration 735 are flexibly alterable as between different system products. In some other dynamic selector embodiments, demands for MPE-FEC service along with Doppler memory demand are dynamically and jointly considered, jointly combined or jointly responded to, in order to determine the memory allocation. In
The adjustment control process is next considered based on a pair of generalized signal processing blocks A and B from a signal processing chain of any of
In another jointly combined dynamic selector running process, an allocating mechanism receives, selects and analyzes respective memory demand estimates A, B, C, etc. from a Block A such as Doppler 740, a Block B such as MPE-FEC 650 counting elementary streams, and a Block C, e.g., FEC 660 based on number of elementary streams. A metric establishes a some function of the demand estimates, such as a linear function that allocates X amount of memory in the allocations or proportions AX/(A+B+C) and BX/(A+B+C) and CX/(A+B+C). Adjustable memory 720 has memory blocks as in
Suppose, for example, that Doppler estimation requests five blocks (binary 101) of memory, FEC requests three blocks (binary 011) and MPE-FEC requests six blocks (binary 110). Shared memory space is limited, however, say to only eight (8) blocks. Signal line 725 carries all these requests as a composite request {101 011 110} to the Lookup Table 710. Corresponding to this request, Lookup Table 710 is already configured and loaded beforehand via line 735 by MPU 730 with predetermined bit-fields for Lookup Table 710. The predetermined bit fields represent selector controls to the muxes corresponding to any such composite request that gets delivered to Lookup Table 710 at run-time. Lookup Table 710 at run-time responds to the composite request {101 011 110}, for instance, to output a corresponding particular predetermined bit field that establishes 3 blocks for Doppler, 2 blocks for FEC, and 3 blocks for MPE-FEC, for instance, to total to eight 8 blocks.
Lookup Table 710 then produces selector controls to Muxes 440, 441, 442 to deliver all the space in adjustable memory 720 in the discrete amounts or blocks of memory that are actually present. One type of embodiment provides eight 3-input muxes 440-447 to service the eight blocks respectively. Let the Bank Selector 715 control signal values that choose one of the three inputs of each Mux be 01, 10, 11 respectively for Doppler (id=01), FEC (id=10), MPE-FEC (id=11). In response to the composite request {101 011 110}, the Lookup Table sends out control signal values 01,01,01,10,10,11,11,11 to Muxes 440-447 respectively to identify the signal processing block identification (id) to which each of the muxes are thereby controlled to deliver memory spaces—3 blocks for Doppler, 2 blocks for FEC, and 3 blocks for MPE-FEC in this example.
Concurrently, Lookup Table 710 sends back Tap Selectors 775 value of 011 (decimal 3) back to block 740 so that block 740 operates with three equalizer taps according to the 3 blocks granted or established by Lookup Table 710 in this operational case. Control lines (not shown) analogous to Tap Selectors 775 also suitably go from Lookup Table 710 to each requesting Block B and Block C to indicate the respective granted amounts of memory or circuitry that Block B and Block C are permitted to employ.
Implementation suitably provides various embodiments that use more or fewer Muxes 442, etc. in
In
In
In
Next, a third iteration or third tap section 740.3 has plural tone spaced pilots, a channel estimation 810.3, a block 840.3 for ICI slope estimation, and a block 850.3 for PIC (parallel interference cancellation) and FEQ. The third iteration process has a third portion 830.3 of Pilot memory fed by the second iteration FEQ 820.2 and by the second portion 835.2 of the Data memory. Channel estimation 810.3 in the third iteration 740.3 and ICI slope estimation 840.3 are fed by the second portion 835.2 of Data memory and by the third portion 830.3 of Pilot memory. Channel estimation 810.3 and ICI slope estimation 840.3 feed respective outputs to the block 850.3 for PIC and FEQ. PIC and FEQ 850.3 use a third portion 835.3 of Data memory.
In this
In
Note further that the Pilot memory portions 830.i and Data memory portions 835.i in
In this way, the functional portions 830.i of Pilot memory and the functional portions 835.i of Data memory are variably established and deployed in block 740 depending on the memory allocation so that some particular number of the tap sections are operative.
The input to a Soft Slicer 870 in
In
In
Each of the tap sections 940.1, 940.2, 940.3, etc. provide successively more-refined equalized outputs x(k), x(k−1), x(k−2), etc. to the first, second, third, etc. inputs of the Mux 920. In general, the number of functioning tap sections, (e.g. 940.1 only; or 940.1 and 940.2 only; or all of 940.1, 940.2, 940.3) is limited and controlled by Tap Selectors 775. Tap Selectors 775 controls selector inputs of the Mux 920 to deliver as output from Mux 920 the highest numbered tap 940.i output to which a current allocation from adjustable memory (e.g., 220) extends. Tap Selectors 775 is coupled to a block 950 providing tap-specific enabling circuits, selecting circuits, and configuring and bypassing for the tap sections. In this way, the tap sections starting with 940.1 are activated only as far as buffer spaces 830.i, 835.i extend until the allocation from adjustable memory is entirely used up or consumed. All higher i-numbered tap sections 940.i (beyond those taps that are given memory space) are inactive or disabled or bypassed. Analogously, other blocks in the telecommunications signal chain have sub-blocks that are enabled and configured to the extent of their respective block allocation from adjustable memory.
The improved circuits, structures and processes of
In
Digital circuitry 1150 on integrated circuit 1100 supports and provides wireless interfaces for any one or more of GSM, GPRS, EDGE, UMTS, and OFDMA/MIMO (Global System for Mobile communications, General Packet Radio Service, Enhanced Data Rates for Global Evolution, Universal Mobile Telecommunications System, Orthogonal Frequency Division Multiple Access and Multiple Input Multiple Output Antennas) wireless, with or without high speed digital data service, via an analog baseband chip 1200 and GSM/CDMA transmit/receive chip 1300. Digital circuitry 1150 includes a ciphering processor CRYPT for GSM ciphering and/or other encryption/decryption purposes. Blocks TPU (Time Processing Unit real-time sequencer), TSP (Time Serial Port), GEA (GPRS Encryption Algorithm block for ciphering at LLC logical link layer), RIF (Radio Interface), and SPI (Serial Port Interface) are included in digital circuitry 1150.
Digital circuitry 1160 provides codec for CDMA (Code Division Multiple Access), CDMA2000, and/or WCDMA (wideband CDMA or UMTS) wireless suitably with HSDPA/HSUPA (High Speed Downlink Packet Access, High Speed Uplink Packet Access) (or 1xEV-DV, 1xEV-DO or 3xEV-DV) data feature via the analog baseband chip 1200 and RF GSM/CDMA chip 1300. Digital circuitry 1160 includes blocks MRC (maximal ratio combiner for multipath symbol combining), ENC (encryption/decryption), RX (downlink receive channel decoding, de-interleaving, viterbi decoding and turbo decoding) and TX (uplink transmit convolutional encoding, turbo encoding, interleaving and channelizing.). Blocks for uplink and downlink processes of WCDMA are provided.
Audio/voice block 1170 supports audio and voice functions and interfacing. Speech/voice codec(s) are suitably provided in memory space in audio/voice block 1170 for processing by processor(s) 1110. An applications interface block 1180 couples the digital baseband chip 1100 to an applications processor 1400. Also, a serial interface in block 1180 interfaces from parallel digital busses on chip 1100 to USB (Universal Serial Bus) of PC (personal computer) 2070. The serial interface includes UARTs (universal asynchronous receiver/transmitter circuit) for performing the conversion of data between parallel and serial lines. Chip 1100 is coupled to location-determining circuitry 1190 for GPS (Global Positioning System). Chip 1100 is also coupled to a USIM (UMTS Subscriber Identity Module) 1195 or other SIM for user insertion of an identifying plastic card, or other storage element, or for sensing biometric information to identify the user and activate features.
In
An audio block 1220 has audio I/O (input/output) circuits to a speaker 1222, a microphone 1224, and headphones (not shown). Audio block 1220 has an analog-to-digital converter (ADC) coupled to the voice codec and a stereo DAC (digital to analog converter) for a signal path to the baseband block 1210 including audio/voice block 1170, and with suitable encryption/decryption activated.
A control interface 1230 has a primary host interface (I/F) and a secondary host interface to DBB-related integrated circuit 1100 of
A power conversion block 1240 includes buck voltage conversion circuitry for DC-to-DC conversion, and low-dropout (LDO) voltage regulators for power management/sleep mode of respective parts of the chip regulated by the LDOs. Power conversion block 1240 provides information to and is responsive to a power control state machine between the power conversion block 1240 and circuits 1250.
Circuits 1250 provide oscillator circuitry for clocking chip 1200. The oscillators have frequencies determined by one or more crystals. Circuits 1250 include a RTC real time clock (time/date functions), general purpose I/O, a vibrator drive (supplement to cell phone ringing features), and a USB On-The-Go (OTG) transceiver. A touch screen interface 1260 is coupled to a touch screen XY 1266 off-chip.
Batteries such as a lithium-ion battery 1280 and backup battery provide power to the system and battery data to circuit 1250 on suitably provided separate lines from the battery pack. When needed, the battery 1280 also receives charging current from a Charge Controller in analog circuit 1250 which includes MADC (Monitoring ADC and analog input multiplexer such as for on-chip charging voltage and current, and battery voltage lines, and off-chip battery voltage, current, temperature) under control of the power control state machine.
In
Further in
The RISC processor 1420 and the DSP 1424 in section 1420 have access via an on-chip extended memory interface (EMIF/CF) to off-chip memory resources 1435 including as appropriate, mobile DDR (double data rate) DRAM, and flash memory of any of NAND Flash, NOR Flash, and Compact Flash. On chip 1400, the shared memory controller 1426 in circuitry 1420 interfaces the RISC processor 1420 and the DSP 1424 via an on-chip bus to on-chip memory 1440 with RAM and ROM. A 2D graphic accelerator is coupled to frame buffer internal SRAM (static random access memory) in block 1440. A security block 1450 in security logic 1038 of
Security logic 1038 of
On-chip peripherals and additional interfaces 1410 include UART data interface and MCSI (Multi-Channel Serial Interface) voice wireless interface for an off-chip IEEE 802.15 (“Bluetooth” and low and high rate piconet and personal network communications) wireless circuit 1430. Debug messaging and serial interfacing are also available through the UART. A JTAG emulation interface couples to an off-chip emulator Debugger for test and debug. Further in peripherals 1410 are an I2C interface to analog baseband ABB chip 1200, and an interface to applications interface 1180 of integrated circuit chip 1100 having digital baseband DBB.
Interface 1410 includes a MCSI voice interface, a UART interface for controls, and a multi-channel buffered serial port (McBSP) for data. Timers, interrupt controller, and RTC (real time clock) circuitry are provided in chip 1400. Further in peripherals 1410 are a MicroWire (u-wire 4 channel serial port) and multi-channel buffered serial port (McBSP) to Audio codec, a touch-screen controller, and audio amplifier 1480 to stereo speakers.
External audio content and touch screen (in/out) and LCD (liquid crystal display), organic semiconductor display, and DLP™ digital light processor display from Texas Instruments Incorporated, are suitably provided in various embodiments and coupled to interface 1410. In vehicular use, the display is suitably any of these types provided in the vehicle, and sound is provided through loudspeakers, headphones or other audio transducers provided in the vehicle. In some vehicles a transparent organic semiconductor display is provided on one or more windows of the vehicle and wirelessly or wireline-coupled to the video feed.
Interface 1410 additionally has an on-chip USB OTG interface couples to off-chip Host and Client devices. These USB communications are suitably directed outside handset 1010 such as to PC 1070 (personal computer) and/or from PC 1070 to update the handset 1010.
An on-chip UART/IrDA (infrared data) interface in interfaces 1410 couples to off-chip GPS (global positioning system block cooperating with or instead of GPS 1190) and Fast IrDA infrared wireless communications device. An interface provides EMT9 and Camera interfacing to one or more off-chip still cameras or video cameras 1490, and/or to a CMOS sensor of radiant energy. Such cameras and other apparatus all have additional processing performed with greater speed and efficiency in the cameras and apparatus and in mobile devices coupled to them with improvements as described herein. Further in
Further, on-chip interfaces 1410 are respectively provided for off-chip keypad and GPIO (general purpose input/output). On-chip LPG (LED Pulse Generator) and PWT (Pulse-Width Tone) interfaces are respectively provided for off-chip LED and buzzer peripherals. On-chip MMC/SD multimedia and flash interfaces are provided for off-chip MMC Flash card, SD flash card and SDIO peripherals.
In
Still other additional wireless interfaces such as for wideband wireless such as IEEE 802.16 “WiMAX” mesh networking and other standards are suitably provided and coupled to the applications processor integrated circuit 1400 and other processors in the system. WiMax has MAC and PHY processes and the illustration of blocks 1510 and 1520 for WLAN indicates the relative positions of the MAC and PHY blocks for WiMax. See also description of
In
In
In this way, advanced networking capability for services, software, and content, such as cellular telephony and data, audio, music, voice, video, e-mail, gaming, security, e-commerce, file transfer and other data services, internet, world wide web browsing, TCP/IP (transmission control protocol/Internet protocol), voice over packet and voice over Internet protocol (VoP/VoIP), and other services accommodates and provides security for secure utilization and entertainment appropriate to the just-listed and other particular applications.
The embodiments, applications and system blocks disclosed herein are suitably implemented in fixed, portable, mobile, automotive, seaborne, and airborne, communications, control, set top box 2090, television 2044 (receiver or two-way TV), and other apparatus. The personal computer (PC) 2070 is suitably implemented in any form factor such as desktop, laptop, palmtop, organizer, mobile phone handset, PDA personal digital assistant 2096, internet appliance, wearable computer, content player, personal area network, or other type.
For example, handset 2010 is improved for selectively determinable functionality, performance, security and economy when manufactured. Handset 2010 is interoperable and able to communicate with all other similarly improved and unimproved system blocks of communications system 2000. Camera 1490 provides video pickup for cell phone 1020 to send over the internet to cell phone 2010′, PDA 2096, TV 2094, and to a monitor of PC 2070 via any one, some or all of cellular base station 2050, DVB station 2020, WLAN AP 2060, STB 2092, and WLAN gateway 2080. Handset 2010 has a video storage, such as hard drive, high density memory, and/or compact disk (CD) in the handset for digital video recording (DVR) such as for delayed reproduction, transcoding, and retransmission of video to other handsets and other destinations.
On a cell phone printed circuit board (PCB) 2020 in handset 2010, is provided a higher-security processor integrated circuit 1022, an external flash memory 1025 and SDRAM 1024, and a serial interface 1026. Serial interface 1026 is suitably a wireline interface, such as a USB interface connected by a USB line to the personal computer 1070 and magnetic and/or optical media 2075 when the user desires and for reception of software intercommunication and updating of information between the personal computer 2070 (or other originating sources external to the handset 2010) and the handset 2010. Such intercommunication and updating also occur via a processor in the cell phone 2010 itself such as for cellular modem, WLAN, Bluetooth from a website 2055 or 2065, or other circuitry 1028 for wireless or wireline modem processor, digital television and physical layer (PHY).
In
The words “internal” and “external” as applied to a circuit or chip respectively refer to being on-chip or off-chip of the applications processor chip 1022. All items are assumed to be internal to an apparatus (such as a handset, base station, access point, gateway, PC, or other apparatus) except where the words “external to” are used with the name of the apparatus, such as “external to the handset.”
ROM 1032 provides a boot storage having boot code that is executable in at least one type of boot sequence. One or more of RAM 1034, internal flash 1036, and external flash 1024 are also suitably used to supplement ROM 1032 for boot storage purposes.
It is contemplated that the skilled worker uses each of the integrated circuits shown in
In
In a step 2215, the design of the configurable mux-shared memory circuitry, for instance, is verified in simulation electronically on the RTL and netlist. In this way, the contents and timing of the registers, operation of the circuits in various configurations and using the registers, are verified and the Doppler and MPE-FEC operations are verified. Dynamic re-configuration of
If verification evaluation 2220 is satisfactory, the verified design is provided in a manufacturing-ready form on a design information media, such as a design dataset, pattern generation dataset or the like, and fabricated in a wafer fab and packaged to produce a resulting integrated circuit at step 2225 according to the verified design. Then a step 2230 verifies the operations directly on first-silicon and production samples by using scan chain methodology on the page processing circuit. An evaluation decision step 2235 determines whether the chips are satisfactory, and if not satisfactory, the operations loop back as early in the process such as step 2210 as needed to get satisfactory integrated circuits.
Given satisfactory integrated circuits in step 2235, a telecommunications unit based on teachings herein is manufactured. With the configuration circuits and adjustable memory, conflicting requirement sets are accommodated and resolved in a single architecture that is configured into different products and product lines to ship to customer. See also description earlier hereinabove of this business process.
The process prepares in a step 2240 a particular design and printed wiring board (PWB) of the telecommunication unit having a telecommunications modem for wireless, DSL, cable, other wireline, optical, and other technology, a microprocessor coupled to the telecommunications modem, configurable adjustable memory support coupled to the telecommunications signal chain, and microprocessor, peripherals, and a user interface coupled to the microprocessor. Storage, such as SDRAM and Flash memory and on-chip secure memory, is coupled to the system and is provided with real-time operating system RTOS, Public HLOS, protected applications (PPAs and PAs), and other supervisory software.
The particular design of the configurable adjustable shared-memory embodiment is tested in a step 2250 by electronic simulation and prototyped and tested in actual application. Operation of the circuits and using the registers in various configurations selectively activating fields of a configuration register, for instance, are verified to confirm operations of the integrated circuit(s) and system and to perform verification and test operations that go beyond those operations earlier in the process. The verification and test operations pertaining to real-time and non-real-time operations, power management, various real-time scenarios such as multi-protocol operational scenarios for handling as many services and elementary streams as are specified for the system. Further testing evaluates and confirms system stability and satisfactory operation of mobile video display, phone, e-mails/data service, web browsing, voice over packet, content player, camera/imaging, video, microcontroller, and other such operation that is apparent to the human user and can be evaluated by system use. Also, various attack scenarios are applied in the test operations, such as by using real viruses, DoS attacks and other attacks.
Parameters of the circuitry, software and system are adjusted for in faster application execution, lower power dissipation, Doppler interference resistance, QoS (quality of service) for each communications service processed, and other pertinent metrics. Examples of parameters include enable/disable register bits in configuration register 460 of
In manufacturing step 2270, the adjusted parameter(s) are loaded into the Flash memory or otherwise established in the integrated circuit(s) of the system. The components are assembled on a printed wiring board or otherwise as the form factor of the design is arranged to produce resulting telecommunications units according to the tested and adjusted design, whereupon operations are completed at END 2275.
Various embodiments are used with one or more microprocessors, each microprocessor having a pipeline is selected from the group consisting of 1) reduced instruction set computing (RISC), 2) digital signal processing (DSP), 3) complex instruction set computing (CISC), 4) superscalar, 5) skewed pipelines, 6) in-order, 7) out-of-order, 8) very long instruction word (VLIW), 9) single instruction multiple data (SIMD), 10) multiple instruction multiple data (MIMD), 11) multiple-core using any one or more of the foregoing, and 12) microcontroller pipelines, control peripherals, and other micro-control blocks using any one or more of the foregoing.
Various embodiments are implemented in any integrated circuit manufacturing process such as different types of CMOS (complementary metal oxide semiconductor), SOI (silicon on insulator), SiGe (silicon germanium), organic transistors, and with various types of transistors such as single-gate and multiple-gate (MUGFET) field effect transistors, and with single-electron transistors and other structures. Photonic integrated circuit blocks, components, and interconnects are also suitably applied in various embodiments.
Aspects
(See Notes paragraph at end of this Aspects section.)
1A. The electronic circuit claimed in claim 1 further comprising a second signal processing circuit including at least two signal processing blocks connected in cascade, said memory circuit coupled to and adjustable between said at least two signal processing blocks of said second signal processing circuit.
1B. The electronic circuit claimed in claim 1A wherein said memory circuit is further configurable to establish a trade-off of the memory spaces between said at least two signal processing blocks of said second signal processing circuit.
1C. The electronic circuit claimed in claim 1 wherein at least two of the memory spaces are each readable and writable.
1D. The electronic circuit claimed in claim 1 wherein said first signal processing block is operable for Doppler performance, whereby signal processing is maintained when the electronic circuit is moved at a speed relative to a remote source.
1E. The electronic circuit claimed in claim 1 wherein said second signal processing block is operable to process multiple substantially-concurrent information streams.
1F. The electronic circuit claimed in claim 1 wherein said configuring circuit includes a microprocessor.
1G. The electronic circuit claimed in claim 1 wherein said configuring circuit is responsive to at least one of said signal processing blocks to dynamically establish the trade-off.
1H. The electronic circuit claimed in claim 1 further comprising a second signal processing circuit that includes a location-determining circuit coupled to said memory circuit.
4A. The signal processing device claimed in claim 4 wherein said taps are operable for equalization and provide respective equalizer outputs, and said signal processing device further comprises a multiplexer circuit fed by said equalizer outputs, and said multiplexer circuit has an output that provides a selected equalizer output.
4B. The signal processing device claimed in claim 4 wherein said first signal processing block is operable to provide channel estimation.
4C. The signal processing device claimed in claim 4 wherein said first signal processing block is further operable to provide inter-channel interference cancellation.
4D. The signal processing device claimed in claim 4 wherein said signal processing circuit is operable to process channels modulated with datagrams.
4E. The signal processing device claimed in claim 4 wherein said signal processing circuit is operable to process channels in a multi-carrier telecommunication.
4F. The signal processing device claimed in claim 4 wherein said second signal processing block is operable to recover plural substantially-concurrent elementary streams.
7A. The electronic circuit claimed in claim 7 wherein said control circuit is jointly responsive to said first and second signal processing blocks to dynamically establish the trade-off.
7B. The electronic circuit claimed in claim 7 wherein said control circuit includes a lookup table to dynamically establish the trade-off.
7C. The electronic circuit claimed in claim 7 further comprising a system controller coupled to said control circuit.
7D. The electronic circuit claimed in claim 7C wherein said system controller is operable to maintain a record of the amount of available memory space for at least one of said signal processing blocks.
7E. The electronic circuit claimed in claim 7D wherein said system controller is operable to increase and decrease entries in the record of the amount of available memory space in response a status change in a service.
7F. The electronic circuit claimed in claim 7D wherein said system controller is operable, in response to a request for an additional service, to determine that the memory needed for that service exceeds the memory available, and to issue a signal rejecting the request.
7G. The electronic circuit claimed in claim 7 wherein said control circuit is operable to dynamically adjust said memory circuit in response to received packets representing telecommunication under a first video protocol, and upon reception of different received packets representing telecommunication under a second video protocol to utilize said memory circuit for time-to-deliver.
7H. The electronic circuit claimed in claim 7G wherein said control circuit is operable upon reception of additionally-different received packets representing telecommunication under a third video protocol to utilize said memory circuit to trade off memory for Doppler and time-to-deliver.
11A. The power management circuit claimed in claim 11 wherein said memory circuit is controllable to trade-off Doppler performance with support for multiple concurrent packet streams.
11B. The power management circuit claimed in claim 11 wherein said memory circuit includes a multiplexing circuit for selectively coupling said first and second signal processing blocks to said memory spaces, said multiplexing circuit responsive to said power control circuit to establish the trade-off.
11C. The power management circuit claimed in claim 11B having a first clock line and a second clock line wherein said memory circuit includes a second multiplexing circuit selectively coupling said first clock line and said second clock line to said memory spaces, said second multiplexing circuit responsive to said power control circuit to establish the selective coupling of the first and second clock lines to said memory spaces.
11D. The power management circuit claimed in claim 11C wherein said first signal processing block is selectively coupled by said first multiplexing circuit to memory spaces that are also selectively coupled by said second multiplexing circuitry to said first clock line.
11E. The power management circuit claimed in claim 11D wherein said second signal processing block is selectively coupled by said first multiplexing circuit to memory spaces that are also selectively coupled by said second multiplexing circuitry to said second clock line.
11F. The power management circuit claimed in claim 11 wherein said power control circuit is operable to provide super-allocation of said memory circuit with a controllable part of the memory that is less powered or unpowered and with another controllable part of the memory that is fully powered.
11G. The power management circuit claimed in claim 11F wherein said power control circuit is operable to adjust memory space between the first and second signal processing blocks for the fully powered part of the memory.
11H. The power management circuit claimed in claim 11G for use with a signal processing circuit having memory demand related to Doppler and a number of one or more elementary streams, wherein said power control circuit is operable, when the memory demand due to Doppler and number of elementary streams is lower, to adjust said memory circuit to reduce memory space of the fully powered part of memory to conserve power until the memory demand rises.
11J. The power management circuit claimed in claim 11 further comprising a second signal processing circuit, wherein an at least three-way super-allocation is provided for fully-powered memory spaces in said memory circuit for said first-named signal processing circuit and said second signal processing circuit, and a less-power memory space in said memory circuit.
11K. The power management circuit claimed in claim 11 further comprising a clock rate control circuit coupled to said power control circuit.
11L. The power management circuit claimed in claim 11 wherein said signal processing circuit has at least three signal processing blocks, said memory circuit includes a multiplexing circuit for selectively coupling said signal processing circuit to the memory spaces, said multiplexing circuit has a plurality of multiplexers each having at least three inputs respectively coupled to the at least three signal processing blocks, and each of said multiplexers separately controlled by said power control circuit.
11M. The power management circuit claimed in claim 11 wherein said memory circuit includes a multiplexing circuit for selectively coupling said signal processing circuit to the memory spaces, and said memory circuit further includes a guaranteed memory space coupled together with said multiplexing circuit to at least one of said first and second signal processing blocks.
15A. The digital video receiver claimed in claim 15 wherein said configurable block includes a channel estimation circuit and an adjustable memory coupled to said channel estimation circuit.
15B. The digital video receiver claimed in claim 15 wherein said configurable block includes a channel estimation circuit for the Doppler performance, an MPE-FEC decoder, an adjustable memory coupled to both said channel estimation circuit and said MPE-FEC decoder, and a configuration register, said adjustable memory further coupled to said configuration register.
15C. The digital video receiver claimed in claim 15 wherein said configurable block includes a channel estimation circuit successively coupled with at least one decoder, a transport stream demultiplexer, and an MPE-FEC decoder.
15D. The digital video receiver claimed in claim 15 wherein said configurable block is operable to provide program specific information and to provide content datagrams.
15E. The digital video receiver claimed in claim 15 further comprising a power management block coupled to said configurable block.
15F. The digital video receiver claimed in claim 15 further comprising a wireless modem coupled to said microprocessor.
15G. The digital video receiver claimed in claim 15 for use with an antenna, the digital video receiver including an antenna signal block coupled to said configurable block and operable to receive a television signal.
15H. The digital video receiver claimed in claim 15 wherein said microprocessor is coupled to said configurable block and responsive to a service information event.
15J. The digital video receiver claimed in claim 15 further comprising a transport stream demultiplexer coupled to said configurable block and operable to provide at least one service information event to said microprocessor.
15K. The digital video receiver claimed in claim 15 further comprising a buffer coupled to said configurable block for content storage and replay later.
15L. The digital video receiver claimed in claim 15 further comprising a control circuit responsive to a condition to de-activate said configurable block.
15M. The digital video receiver claimed in claim 15 wherein said microprocessor has a first debug block, and said configurable block has second debug block coupled to said first debug block.
15N. The digital video receiver claimed in claim 15 further comprising a vehicular platform wherein said vehicular platform has a display and speaker coupled to said microprocessor.
22A. The process claimed in claim 22 wherein the first signal processing block includes a Doppler estimation circuit and the storage circuit configuration data additionally includes lookup table information for dynamically establishing the trade-off and indexed according to values related to Doppler estimation.
22B. The process claimed in claim 22 wherein the storage circuit configuration data additionally includes configuration data to control clocking of the allocated spaces by plural clocks.
22C. The process claimed in claim 22 further comprising combining the integrated circuit with a display.
25A. The digital communication apparatus claimed in claim 25 wherein different allocations of the memory spaces for said CE block vary its Doppler performance, and said apparatus further comprising a microprocessor operable for configuring an allocation of said adjustable memory circuit according to a particular regime selected from the group consisting of 1) a first regime for lower Doppler performance and fewer concurrent MPE-FEC elementary streams, 2) a second regime for higher Doppler performance with fewer concurrent MPE-FEC elementary streams, and 3) a third regime for lower Doppler performance with a higher number of concurrent MPE-FEC elementary streams.
25B. The digital communication apparatus claimed in claim 25 wherein said adjustable memory circuit includes a multiplexing circuit selectively coupling said CE block and said MPE-FEC block to said memory spaces, said multiplexing circuit configurable to establish the selective coupling.
25C. The digital communication apparatus claimed in claim 25 further comprising a first clock line and a second clock line wherein said adjustable memory circuit includes a second multiplexing circuit selectively coupling said first clock line and said second clock line to said memory spaces, said second multiplexing circuit responsive to said configuring circuit to establish the selective coupling of the first and second clock lines to said memory spaces.
25D. The digital communication apparatus claimed in claim 25 wherein said channel estimation block and said multi-protocol encapsulation forward error correction block are established in a digital signal processor.
25E. The digital communication apparatus claimed in claim 25D wherein said digital signal processor has at least one configuration register operable to allocate the memory spaces.
28A. The process claimed in claim 28 wherein the configuring step includes statically configuring information into the video receiver architecture.
28B. The process claimed in claim 28 wherein the process faces a varying customer order demand, and said configuring including dynamically supporting the varying customer order demand by configuring different numbers of units of said video receiver architecture product-specifically to the different products in response to the varying customer order demand.
28C. The process claimed in claim 28 wherein the configuring step includes dynamically operating the video receiver architecture of at least one product unit over time to dynamically trade off the Doppler performance with the number of elementary streams in testing.
Notes: Aspects are paragraphs which might be offered as claims in patent prosecution. The above dependently-written Aspects have leading digits and internal dependency designations to indicate the claims or aspects to which they pertain. Aspects having no internal dependency designations have leading digits and alphanumerics to indicate the position in the ordering of claims at which they might be situated if offered as claims in prosecution.
It is emphasized here that while some embodiments may have an entire feature totally absent or totally present, other embodiments, such as those performing the blocks and steps of the Figures of drawing, have more or less complex arrangements that execute some process portions, selectively bypass others, and have some operations running concurrently sequentially regardless. Accordingly, words such as “enable,” “disable,” “operative,” “inoperative” are to be interpreted relative to the code and circuitry they describe. For instance, disabling (or making inoperative) a second function by bypassing a first function can establish the first function and modify the second function. Conversely, making a first function inoperative includes embodiments where a portion of the first function is bypassed or modified as well as embodiments where the second function is removed entirely. Bypassing or modifying code increases function in some embodiments and decreases function in other embodiments.
A few preferred embodiments have been described in detail hereinabove. It is to be understood that the scope of the invention comprehends embodiments different from those described yet within the inventive scope. Microprocessor and microcomputer are synonymous herein. Processing circuitry comprehends digital, analog and mixed signal (digital/analog) integrated circuits, ASIC circuits, PALs, PLAs, decoders, memories, non-software based processors, microcontrollers and other circuitry, and digital computers including microprocessors and microcomputers of any architecture, or combinations thereof. Internal and external couplings and connections can be ohmic, capacitive, inductive, photonic, and direct or indirect via intervening circuits or otherwise as desirable. Implementation is contemplated in discrete components or fully integrated circuits in any materials family and combinations thereof. Various embodiments of the invention employ hardware, software or firmware. Process diagrams herein are representative of flow diagrams for operations of any embodiments whether of hardware, software, or firmware, and processes of manufacture thereof.
While this invention has been described with reference to illustrative embodiments, this description is not to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention may be made. The terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in the detailed description and/or the claims to denote non-exhaustive inclusion in a manner similar to the term “comprising”. It is therefore contemplated that the appended claims and their equivalents cover any such embodiments, modifications, and embodiments as fall within the true scope of the invention.
Goel, Manish, Lingam, Srinivas, Sella, Assaf, DiRenzo, Michael T.
Patent | Priority | Assignee | Title |
10074154, | Dec 12 2014 | NXP USA, INC | Display controller and a method thereof |
10869108, | Sep 29 2008 | PATENT ARMORY INC | Parallel signal processing system and method |
9312895, | Aug 07 2008 | Hypres, Inc. | Two stage radio frequency interference cancellation system and method |
9804991, | Mar 03 2015 | Qualcomm Incorporated | High-frequency signal observations in electronic systems |
9838051, | Aug 07 2008 | Two stage radio frequency interference cancellation system and method |
Patent | Priority | Assignee | Title |
5175841, | Mar 13 1987 | Texas Instruments Incorporated | Data processing device with multiple on-chip memory buses |
5212742, | May 24 1991 | Apple Inc | Method and apparatus for encoding/decoding image data |
5933855, | Mar 21 1997 | SAMSUNG ELECTRONICS CO , LTD | Shared, reconfigurable memory architectures for digital signal processing |
6085413, | Feb 02 1998 | WILMINGTON TRUST FSB, AS ADMINISTRATIVE AGENT | Multilayer electrical interconnection device and method of making same |
6466962, | Jun 07 1995 | International Business Machines Corporation | System and method for supporting real-time computing within general purpose operating systems |
6625719, | Sep 28 1990 | Texas Instruments Incorporated | Processing devices with improved addressing capabilities systems and methods |
6724329, | Apr 24 2002 | BEIJING XIAOMI MOBILE SOFTWARE CO , LTD | Decision feedback equalization employing a lookup table |
6754509, | Dec 30 1999 | QUALCOMM INCORPORATED, A DELAWARE CORPORATION | Mobile communication device having dual micro processor architecture with shared digital signal processor and shared memory |
6819670, | Jun 16 1989 | FENNER INVESTMENTS, LTD | Data packet routing for mobile networks |
6988234, | Dec 07 2001 | SAMSUNG ELECTRONICS CO , LTD | Apparatus and method for memory sharing between interleaver and deinterleaver in a turbo decoder |
7023931, | Nov 05 2001 | Texas Instruments Incorporated | System and method for soft slicing |
7120771, | Jan 16 2002 | Texas Instruments Incorporated | Secure mode for processors supporting MMU |
7139320, | Oct 11 2001 | Texas Instruments Incorporated | Method and apparatus for multicarrier channel estimation and synchronization using pilot sequences |
7145906, | Jun 16 1989 | Fenner Investments, Ltd. | Packet switching node |
8078919, | Jun 14 2005 | HGST NETHERLANDS B V | Method, apparatus and program storage device for managing multiple step processes triggered by a signal |
20020031166, | |||
20020099854, | |||
20030078025, | |||
20030221027, | |||
20030235217, | |||
20050111416, | |||
20050114616, | |||
20050129042, | |||
20050143114, | |||
20050157780, | |||
20060013346, | |||
20060062390, | |||
20060087585, | |||
20060128425, | |||
20060128428, | |||
20060222096, | |||
20060285484, | |||
20060293077, | |||
20070043912, | |||
20070064835, | |||
20070076735, | |||
20070294494, | |||
20070294496, | |||
20080108301, | |||
20090300468, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 11 2007 | Texas Instruments Incorporated | (assignment on the face of the patent) | / | |||
Apr 11 2007 | DIRENZO, MICHAEL T | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019472 | /0598 | |
Apr 11 2007 | SELLA, ASSAF | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019472 | /0598 | |
Apr 11 2007 | GOEL, MANISH | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019472 | /0598 | |
Apr 11 2007 | LINGAM, SRINIVAS | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019472 | /0598 |
Date | Maintenance Fee Events |
Nov 20 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 18 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 17 2017 | 4 years fee payment window open |
Dec 17 2017 | 6 months grace period start (w surcharge) |
Jun 17 2018 | patent expiry (for year 4) |
Jun 17 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 17 2021 | 8 years fee payment window open |
Dec 17 2021 | 6 months grace period start (w surcharge) |
Jun 17 2022 | patent expiry (for year 8) |
Jun 17 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 17 2025 | 12 years fee payment window open |
Dec 17 2025 | 6 months grace period start (w surcharge) |
Jun 17 2026 | patent expiry (for year 12) |
Jun 17 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |