The invention provides a method for verifying a person's identity, which includes obtaining a password and/or random key from a person, and comparing the obtained password and/or random key to a plurality of known passwords and/or random keys to determine a likely identity of the person. The method further includes measuring a specific biometric of the person, the specific biometric comprising a respiratory, cardiac, or other physiologic biometric, and comparing the measured specific biometric to the known specific biometric of the person that is associated with the obtained password and/or random key to verify the likely identity of the person.

Patent
   8762733
Priority
Jan 30 2006
Filed
Jan 25 2007
Issued
Jun 24 2014
Expiry
Dec 31 2030
Extension
1436 days
Assg.orig
Entity
Large
46
274
currently ok
17. A method for verifying a person's identity, comprising:
measuring a biometric of a person whose identity is known, wherein the biometric comprises an ecg parameter, and setting a baseline for the biometric based on the measurement;
calculating an acceptable variation range for the biometric, wherein the acceptable variation range has upper and lower bounds that differ by a percentage of the measured biometric,
and is based on the baseline and the normal deviation for the biometric across a population sample of people;
storing the acceptable variation range in a memory;
obtaining a measurement of the biometric from a person to be verified using an ambulatory measuring device and setting a value for the biometric for the person to be verified; and
comparing the value of the biometric for the person to be verified to a database including a plurality of person-specific acceptable variation ranges for a population to verify the identity of the person to be verified.
9. A method for verifying a person's identity, comprising:
measuring a biometric of a person whose identity is known, wherein the biometric comprises a respiratory biometric, and setting a baseline for the biometric based on the measurement, wherein the thoracic or abdominal girth of the person is measured;
calculating an acceptable variation range for the biometric, wherein the acceptable variation range has upper and lower bounds that differ by a percentage of the measured biometric, and is based on the baseline and the normal deviation for the biometric across a population sample of people;
storing the acceptable variation range in a memory;
obtaining a measurement of the biometric from a person to be verified using an ambulatory measuring device and setting a value for the biometric for the person to be verified; and
comparing the value of the biometric for the person to be verified to a database including a plurality of person-specific acceptable variation ranges for a population to verify the identity of the person to be verified.
15. A method for verifying a person's identity, comprising:
measuring a biometric of a person whose identity is known, wherein the biometric comprises an ecg parameter, and setting a baseline for the biometric based on the measurement;
calculating an acceptable variation range for the biometric, wherein the acceptable variation range has upper and lower bounds that differ by a percentage of the measured biometric,
and is based on the baseline and the normal deviation for the biometric across a population sample of people;
storing the acceptable variation range in a memory;
obtaining a password or key from a person to be verified;
comparing the obtained password or key to a plurality of known passwords or keys to determine a likely identity of the person to be verified, wherein each of the plurality of known passwords or keys are associated with a specific person;
obtaining a measurement of the biometric from the person to be verified and setting a value for the biometric for the person to be verified; and
comparing the value of the biometric for the person to be verified to a stored acceptable variation range of a specific person associated with the obtained password or key to verify the likely identity of the person to be verified.
1. A method for verifying a person's identity, comprising:
measuring a biometric of a person whose identity is known, wherein the biometric comprises a respiratory biometric, and setting a baseline for the biometric based on the measurement, wherein the thoracic or abdominal girth of the person is measured;
calculating an acceptable variation range for the biometric, wherein the acceptable variation range has upper and lower bounds that differ by a percentage of the measured biometric, and is based on the baseline and the normal deviation for the biometric across a population sample of people;
storing the acceptable variation range in a memory;
obtaining a password or key from a person to be verified;
comparing the obtained password or key to a plurality of known passwords or keys to determine a likely identity of the person to be verified, wherein each of the plurality of known passwords or keys are associated with a specific person;
obtaining a measurement of the biometric from the person to be verified and setting a value for the biometric for the person to be verified; and
comparing the value of the biometric for the person to be verified to a stored acceptable variation range of a specific person associated with the obtained password or key to verify the likely identity of the person to be verified.
16. A method for verifying a person's identity, comprising:
measuring a biometric of a person whose identity is known and setting a baseline for the biometric based on the measurement;
calculating an acceptable variation range for the biometric, wherein the acceptable variation range has upper and lower bounds that differ by a percentage of the measured biometric,
and is based on the baseline and the normal deviation for the biometric across a population sample of people;
storing the acceptable variation range in a memory;
obtaining a password or key from a person to be verified;
comparing the obtained password or key to a plurality of known passwords or keys to determine a likely identity of the person to be verified, wherein each of the plurality of known passwords or keys are associated with a specific person;
obtaining a measurement of the biometric from the person to be verified and setting a value for the biometric for the person to be verified;
comparing the value of the biometric for the person to be verified to a stored acceptable variation range of a specific person associated with the obtained password or key to verify the likely identity of the person to be verified;
obtaining a fingerprint, a retinal scan, an electrocardiogram, or a dna scan from the person to be verified;
comparing the obtained fingerprint, retinal scan, electrocardiogram, or dna scan to a plurality of known fingerprints, retinal scans, electrocardiograms, or dna scans to determine a likely identity of the person to be verified; and
comparing the value of the biometric for the person to be verified to the acceptable variation range of a person associated with the obtained fingerprint, retinal scan, electrocardiogram, or dna scan to verify the likely identity of the person to be verified.
2. The method of claim 1, wherein the respiratory biometric comprises a respiratory rate, a minute ventilation, a tidal volume, an inspiratory flow rate, an expiratory flow rate, a presence of cough, or a presence of apnea or hypoapnea.
3. The method of claim 1, wherein the girth is measured by inductive plethysmography.
4. The method of claim 1, wherein measuring the respiratory biometric comprises:
instructing the person whose identity is known and the person to be verified to perform one or more maneuvers; and
measuring at least one respiratory pattern exhibited by the person whose identity is known and the person to be verified during performance of the maneuvers, wherein the baseline respiratory biometric for the person whose identity is known and the set value for the respiratory biometric for the person to be verified comprise at least one measured respiratory pattern.
5. The method of claim 4, wherein the at least one respiratory pattern is measured over a period time during the performance of the maneuvers.
6. The method of claim 4, wherein at least one maneuver comprises performing a predetermined sequence of breaths.
7. The method of claim 4, wherein at least one maneuver comprises performing a predetermined sequence of physical movements.
8. The method of claim 1, wherein the biometric comprises a plurality of physiological parameters.
10. The method of claim 9, wherein the ambulatory measuring device comprises a garment that is worn by the person to be verified.
11. The method of claim 9 further comprising, prior to obtaining the measurement of the biometric from the person to be verified:
obtaining from the person to be verified a password, key, or electrocardiogram; and
comparing the obtained password, key, or electrocardiogram to a known database of passwords, keys, or electrocardiograms to determine a likely identity of the person to be verified;
wherein the value of the biometric for the person to be verified is compared to an acceptable variation range of a person associated with the password, key, or electrocardiogram to verify the likely identity of the person to be verified.
12. The method of claim 8, wherein the plurality of physiological parameters includes at least one of the following: a cardiac parameter, a posture/activity parameter, a temperature parameter, an EEG parameter, an EOG parameter, EMG parameter, a vocal parameter, and a gait parameter.
13. The method of claim 1, wherein the person whose identity is known and the person to be verified are the same person.
14. The method of claim 9, wherein the person whose identity is known and the person to be verified are the same person.

The application claims the benefit of U.S. Provisional Application No. 60/762,880 filed Jan. 30, 2006.

The present invention relates to a method for identifying a person. More particularly, the invention relates to a method of confirming the identity of a person using cardiac, pulmonary, or other biometric measurements.

Systems designed for ensuring security and privacy can be used with a variety of applications. Such applications traditionally include the regulation of entry to, and mobility within, a person's residence or workplace, but can also include controlling access to a person's computer, vehicle, bank account, or other property.

Generally, these systems are premised on the idea of confirming the identity of a person as that of an authorized person or user before granting access to whatever the system is designed to protect. Typically, a security system solicits an identifier from a person, and the person in turn responds by providing such an identifier. A comparison is then made between the provided identifier and an identifier that is stored by the system and associated with the person's profile. If a correct match is made, access or entry is granted.

In the past, security systems have typically incorporated the solicitation of a password or other random key that is unique to an authorized person and which in theory only the authorized person knows or possesses. Some of the problems associated with passwords and keys, however, include the fact that they can be forgotten by, or otherwise become unavailable to, the authorized person. Furthermore, they can be discovered by, or otherwise be made known to or become possessed by, an unauthorized individual.

Security systems have also incorporated the solicitation of biometrics in their design, either alone or in conjunction with the solicitation of passwords or random keys. Some of the advantages of using biometrics include the fact that if properly selected, biometrics serve as relatively more precise and unique identifiers of a person and do not require active memory or possession of the identifier on the part of the person. Additionally, because properly selected biometrics are uniquely identifiable with only one specific person, the likelihood of falsifying or misrepresenting a person's biometric is relatively small. Biometrics that are currently used in security systems include superficial anatomical traits, for example fingerprints, hand and face geometries, and retinal patterns; cardiac parameters; metabolic parameters; vocal parameters; or other physiological characteristics.

The combination of a password and/or key, and a biometric adds to the reliability of identifying a unique individual. Even if all three parameters are incorporated, however, such a system may still be vulnerable to corruption. In a military setting, for example, an enemy combatant could steal the key from an authorized person, torture the person to acquire the password, and remove the person's finger to obtain the fingerprint biometric thereon, and thus potentially gain access to a military computer system.

Physiological data can be derived from a wide variety of physiological monitoring systems designed for, e.g., in-hospital use, in-clinic use, ambulatory use, or the like. Without limitation or prejudice, however, the following description is largely in terms of preferred monitoring systems for ambulatory use.

In order to perform normal daily waking and sleeping activities, a monitored subject should be constrained no more than necessary. In preferred embodiments, therefore, physiological sensors are attached to, affixed to, carried by, or incorporated in or as part of ordinary wearable items that are unobtrusive, comfortable, and useable without assistance. Suitable wearable items include garments, jackets, bands, patches, and the like, made from a variety of materials, particularly elastic materials to insure a snug fit; they can be donned in one piece or include zippers, Velcro, snaps, and the like, that are joined after donning. Sensors can be incorporated into garments in many ways, for example, by weaving, knitting, or braiding into a garment's fabric; or by being carried in, mounted in, or attached to the garment; also flexible sensors can be glued, printed, sprayed and so forth onto inner or outer garment surfaces. U.S. Pat. Nos. 6,551,252 and 6,047,203 disclose such garments. The entire contents of the references identified above are expressly incorporated herein by reference thereto. Citation or identification of the references listed above, or in any section of this application hereafter, shall not be construed as prior art to the present invention.

U.S. Pat. No. 5,719,950 describes a biometric authentication system that incorporates the solicitation of a specific biometric parameter, such as a fingerprint, and a non-specific biometric parameter, such as body temperature, electrocardiogram reading, or pulse. The non-specific biometric is selected to ensure that the individual seeking authentication is not incapacitated, dismembered, or deceased.

U.S. Pat. No. 6,483,929 describes a method and device for authentication using physiological and histological biometrics of a person, including fingerprints, muscular-skeletal dimensions, oxygen and carbon dioxide content in tissue, cardiac cycles, dilatory response of the eye, and other responses of the nervous and metabolic systems to applied stimuli.

Thus, there remains a need for a method of identity authentication and confirmation that measures as a biometric the unique set of multiple physiologic parameters and characteristics of a person, including for example respiratory and cardiac parameters.

The present invention is directed to a method for verifying a person's identity. A preferred embodiment includes obtaining a password and/or random key from a person and comparing it to a plurality of known passwords and/or random keys to determine a likely identity of the person. The method also includes measuring a specific biometric of the person, and comparing it to the known baseline specific biometric of the person that is associated with the obtained password and/or random key to verify the likely identity of the person. Preferably, the known baseline respiratory biometric includes a range of values.

Preferably, the measured specific biometric includes a respiratory biometric. Additionally, the respiratory biometric of the person preferably includes a respiratory rate, a minute ventilation, a tidal volume, an inspiratory flow rate, an expiratory flow rate, a presence of cough, and presence of apnea or hypoapnea, or a combination thereof. Measuring the respiratory biometric preferably includes measuring the thoracic and/or abdominal girth of the person. Preferably, a person's girth is measured by inductive plethysmography.

In one embodiment, measuring the respiratory biometric preferably includes instructing the person to perform one or more maneuvers, and measuring at least one respiratory pattern exhibited by the person during performance of the maneuvers. The measured respiratory biometric includes at least one measured respiratory pattern. The at least one respiratory pattern is preferably measured over a period time during the performance of the maneuvers. Preferably, at least one maneuver includes performing a predetermined sequence of breaths, and at least one maneuver includes performing a predetermined sequence of physical movements.

In another embodiment, the specific biometric preferably further includes other physiological parameters, such as cardiac parameters, posture/activity parameters, temperature parameters, EEG parameters, EOG parameters, EMG parameters, vocal parameters, and gait parameters, or a combination thereof. In particular, the cardiac parameters preferably include an ECG parameter.

In yet another embodiment, the method further includes obtaining at least one of a fingerprint, a retinal scan, an electrocardiogram, and a DNA scan from the person, comparing the at least one obtained fingerprint, retinal scan, electrocardiogram, and DNA scan to a plurality of known fingerprints, retinal scans, electrocardiograms, and DNA scans to determine a likely identity of the person, and comparing the measured specific biometric to the known baseline specific biometric of the person that is associated with the fingerprint, retinal scan, electrocardiogram, and DNA scan to verify the likely identity of the person.

The present invention is also directed to a method for verifying a person's identity by providing an ambulatory measuring device to a person configured for measuring a specific biometric of the person, measuring the specific biometric of the person, and comparing the measured specific biometric to a database of known baseline specific biometrics to verify the identity of the person. In one embodiment, the specific biometric includes a respiratory biometric, while in another embodiment, the specific biometric includes an ECG parameter. Preferably, the ambulatory measuring device includes a garment that is worn by the person.

The invention thus provides an method of confirming the identity of a person that includes measuring a unique parameter or set of multiple physiologic parameters of the person. This invention also includes software products implementing the methods of this invention. Hardware systems variously configured to perform the methods of this invention are also included.

The present invention may be understood more fully by reference to the following detailed description of preferred embodiments of the present invention, illustrative examples of specific embodiments of the invention, and the appended figures in which:

FIG. 1 depicts an embodiment of an ambulatory multiple parameter monitoring system according to the present invention;

FIG. 2 depicts one embodiment of a method of identifying a person as known in the prior art;

FIG. 3 depicts one embodiment of a method of confirming the identity of a person according to the present invention;

FIG. 4 depicts a flow chart for one embodiment of a training algorithm;

FIG. 5 depicts a flow chart for one embodiment of a classifying algorithm;

FIG. 6 depicts an ECG representation of a single heartbeat;

FIG. 7 depicts a segment of an ECG record;

FIG. 8 depicts a QRS complex; and

FIG. 9 depicts the plot of a principle components analysis.

Preferred embodiments of the present invention include monitoring of specific biometrics of a person including, for example, moment-by-moment cardiac and pulmonary functioning, activity level, and other physiological systems or processes. Particular embodiments may monitor fewer physiological systems, while other embodiments may monitor additional physiological systems depending on the availability of ambulatory, non-invasive sensors.

Many types of sensors can be incorporated in wearable, monitoring items. One useful physiological sensor, referred to herein generically as a “size sensor”, gathers signals responsive to size indicia describing portions of a monitored subject's body, e.g., the torso, the neck, the extremities, or parts thereof. Size indicia can include the length along a selected portion of the body surface; the circumference, diameter, or cross-sectional area of a body part; and the like.

Size sensor signals can also be processed to yield information about organ system functioning. Signals from size sensors at one or more levels of the torso, e.g., at an abdominal level and at a rib cage level, can be interpreted using a two-component breathing model in order to determine respiratory rates, respiratory volumes, respiratory events, and the like. U.S. Pat. Nos. 6,551,252; 5,159,935; and 4,777,962, and U.S. patent application Ser. No. 10/822,260 describe such signal processing. Indicia from size sensors at the mid-thorax can be processed to determine cardiac stroke volumes and/or aortic pulsations. U.S. Pat. Nos. 6,783,498 and 5,178,151 describe such signal processing. Additionally, size sensors about one or more limbs can be responsive to venous or arterial pulsations, the changing size of an extremity, and the like; and abdominal size sensors can also be responsive to intestinal activity, and so forth. U.S. Pat. No. 5,040,540 describes such sensors.

Preferred size sensors are based on inductive plethysmographic (“IP”) technologies. However, useful size sensors can be based on diverse other technologies, e.g., body impedance sensors; mercury-containing silastic strain gauges; differential linear transformers; magnetometers sensing body diameters; piezoelectric or mechanical strain gauges; magnetic motion detectors; various optical techniques including interferometry; electrical impedance; surface electrical or magnetic activity; ultrasonic and Doppler measurements of body wall motions or body diameters; and/or plethysmographic techniques including bellows pneumographs, volume pneumographs, body plethysmographs, and so forth. Active elements of size sensors can be based on thread and fabric technologies. A fabric size sensor can measure, e.g., the resistance of conductive threads; the optical properties of transparent threads; the local strain of a fabric woven so that local strain is reflective of circumferential overall strain, and so forth.

With respect to preferred sensors based on IP technologies, the impedance of a conductive element is known to reflect size and shape of the element. Therefore, the impedance of a conductive element configured to lie on a portion of a body part, to partially or fully encircle a body part, or otherwise arranged on the body of a subject changes as the size of the underlying body part changes due to, e.g., respirations, pulsations, voluntary motions, cardiac activity, and the like. IP technology measures this impedance and consequently reflects such physiological functioning.

An IP sensor includes a conductive element, usually a loop of wire or a conductive thread, arranged so that its impedance changes, preferably substantially linearly, with its size and shape. So that IP sensors generate signals reflective of changes in the size of the underlying body part, these sensors are conveniently incorporated in elastic material arranged alone or in a garment to fit snugly against the monitored body part. The elastic material can be a knitted, woven, crocheted, or braided textile on which the sensor wire or thread is affixed during or after textile manufacture. Sensor electronics then determines the impedance, preferably substantially inductive, of an IP sensor's conductive element. In preferred embodiments, the IP sensor is incorporated into a resonant circuit and changes in resonant frequency are measured, e.g., by using a counting oscillator. Digitized data reflecting the time varying resonant frequencies are then output for processing into physiological information.

In addition to size sensors providing respiratory and/or cardiac information, wearable items can include diverse additional sensors for other physiological and/or non-physiological parameters of a monitored subject. For example, accelerometers can sense current activity level and body posture or orientations including signals relating to a person's walking gait or pace; thermistors can sense skin or body core temperature; and pulse oximeters can sense blood oxygen level. Further, electrodes in electrical communication with the subject can sense such electrical activities as electrocardiogram (“ECG”) signals, electroencephalogram (“EEG”) signals, electro-oculogram (“EOG”) signals, electro-myogram (“EMG”) signals (of the orbital, facial and other muscles), skin conductance or resistance, and the like. These electrodes are preferably made of fabric, or are otherwise flexible, and provide sufficient electrical contact without the need for conductivity enhancements, such as pastes, fluids, and the like. Additional sensors can include microphones for vocal and body sounds, ultrasound transducers for blood flow or organ pulsations, and so forth.

Preferred embodiments of physiological monitoring systems include sensors that gather signals for processing. In one embodiment, the monitoring system includes sensors, as generally known to one of ordinary skill in the art, that can be constructed according to the many known technologies useful for non-invasive physiological sensing. Preferably, selected sensors have sufficient accuracy and precision, both in amplitude and response time (i.e. bandwidth), so that the gathered signals actually reflect the physiological systems and processes of interest. Preferably, the sensors have clinically confirmed accuracies and precisions.

Preferably, the physiological monitoring systems are ambulatory systems configured so that a person is not constrained and can perform their normal daily waking and sleeping activities. Preferably, the ambulatory monitoring systems are also configured for use without assistance by medical or other trained personnel. A preferred ambulatory physiological monitoring system configuration includes a wearable item, for example, a garment, band, patch, and the like, or associations with partial-shirts or shirts, on partial body suits, or in full body suits that are unobtrusive, comfortable, and preferably made of non-restricting fabric into which sensors are incorporated.

A preferred embodiment of an ambulatory monitoring systems is illustrated in FIG. 1, which depicts garment 23 equipped with an extensive array of size sensors capable of measuring venous and arterial pulsations, individual lung function, and the like, as well as other sensors. In particular, size sensor 13 located around the thorax of an individual measures anatomical changes thereat and returns signals relating to respiratory function. Additionally, size sensor 29 at the mid-thorax level of the xiphoid process returns signals with cardiac pulsation components. This embodiment is provided with two buffering and/or processing units (referred to herein as portable date units (“PDUs”), local unit 25 and nearby unit 27. PDUs are preferably sufficiently compact and lightweight to be carried on or by the monitored subject. PDUs can include IP sensor electronics and preferably also electronics for operating sensors, and (if necessary) retrieving and digitizing sensor data. Such systems are described in U.S. Pat. No. 6,551,252.

Signals gathered by monitoring systems for use by this invention are preferably processed by one or more analysis computers providing processing capability that may be remotely located or distributed. Preferably, the processing methods are linked into an integrated system that processes signals from a monitoring system primarily directed to cardio-respiratory monitoring. In one embodiment, basic signal processing, e.g. filtering and digitization, is performed on units local to the monitoring system, such as local unit 25. Complete processing by this invention's methods generally requires processing capabilities similar to those of a modern desktop PC with, for example, a 2 GHz or more processor, 256 MB or more of main memory, 10 GB or more of peripheral storage, standard interface units, and the like. In one embodiment, nearby unit 27 provides this capability in the vicinity of the monitored person, while in another embodiment, this capability is provided by remotely located system 33. Gathered signal data is transferred to system 33 and unit 27 by routine means, for example, using private wireless networks or public cellular phone systems, by means of a memory device such as a micro hard disk or a flash memory card, and the like.

Initial sensor signal processing generally includes filtering, digitization, noise limiting, extraction of relevant signal components, and the like. Following initial processing, specific processing of respiratory size sensor signals includes calibration, determination of a tidal volume signal, and extraction of respiratory events from the tidal volume signal. U.S. Pat. Nos. 6,413,225; 5,159,935; 4,834,766; and 4,777,962, and U.S. patent application Ser. No. 10/822,260 describe such respiratory processing. Cardiac sensor signal processing includes extraction of cardiac components, enhancement of cardiac components, determination of stroke volume indicia, and the like. U.S. Pat. Nos. 6,783,498; 5,178,151; and 5,040,540, and U.S. patent application Ser. No. 10/991,877 describe such cardiac processing.

Signals from additional sensors are processed as appropriate. R-wave can be recognized in ECG signals using known methods, and then cardiac rates and rate variability can be extracted. ECG, EMG, EOG, and similar signals are usually stored for later manual grading and analysis. Accelerometer signals can be low and high pass filters to extract posture information and activity level information, respectively. U.S. patent application Ser. No. 10/991,877 describes such signal processing.

This methods of the present invention are performed on software or firmware programmable systems. In the case of software programming, methods are coded in standard computer languages, such as C, C++, or in high level application languages, such as Matlab and associated toolboxes (Math Works, Natick, Mass.). Code is then translated or compiled into executable computer instructions for controlling a microprocessor or similar device. In the case of firmware programming, higher level method specifications written in software languages or hardware languages such as VHDL, are generally translated into bit codes by tools supplied by the manufacturer of the hardware part that is being programmed. For example, manufacturer's tools prepare bit-streams for configuring FPGAs.

Software or firmware programming can be stored and transferred on computer readable media (such as CD ROMS, flash cards, etc.), across-network connections, and the like. This programming can be made generally available as program products.

The present invention preferably includes methods and systems of verifying a person's identity that compare physiological information recorded at a time of identity confirmation with baseline physiological information recorded previously, the physiological information being preferably measured by embodiments of the physiological monitoring systems and methods previously described. Preferably, the present invention can be incorporated into existing or new systems, such as security systems, access control systems, and the like, that authorize only those persons who meet various identification criteria.

FIG. 2 depicts one example of a prior art method 260 of identifying a person that includes soliciting and obtaining from a person an identifier, which may include a password and/or a random key, as shown in step 200. In some cases, the password is a personal identification number (“PIN”) or an alphanumeric combination, for example a text string, that is either manually entered on a keypad or spoken aloud by the person for processing and recognition by the system. In some cases, the random key includes a physical key configured for receipt in a keyhole, or an electronic access card, badge, or fob that is configured to be read by an electronic sensor or reader. In other embodiments, the identifiers may include digital images, fingerprints, retinal scans, DNA scans, and/or electrocardiogram readings, and the like, which are obtained by known methods for processing by the system.

Once the identifier is obtained from the person, it is compared to a plurality of known baseline identifiers, as shown in step 210, and the system determines if there is a match, as shown in step 220. Typically, these identifiers are previously recorded, and stored in an electronic database of the system. The stored identifiers correspond to a list or profiles of “authorized persons”, i.e., those persons who are authorized, for example, for entry or access.

If the identifier obtained from the person does not match or correspond to at least one of those stored in the database, solicitation of the person's identifier is repeated as shown in step 230. If the person continually (for example, more than twice) provides an identifier that does not match or correspond to at least one that is stored in the database, the person is identified as an “unauthorized person,” as shown in step 240. As a result, and if, for example, the method was incorporated in a security system, the person would be denied access or entry to the property that the system is protecting. If, however, the person provides an identifier that matches or corresponds to at least one identifier stored in the database, the person is recognized as an “authorized person,” and is granted access or entry, as shown in step 250.

Such prior art methods of identification, however, typically suffer from many disadvantages, as previously discussed. The present invention supplements known identification systems with additional steps to verify and confirm the identity of a person based on indices derived from physiological measurements after initial recognition that a person is a “likely authorized person”.

A preferred embodiment of the method of the present invention is depicted in FIG. 3. Preferably, steps 300 to 350 are similar to steps 200 to 250 of the prior art method 260 shown in FIG. 2. Specifically, the steps of soliciting and comparing a “preliminary identifier” in FIG. 3 are analogous to those for soliciting and comparing an “identifier” in FIG. 2, and the step of identifying a person as a “likely authorized person” in FIG. 3 is analogous to that for identifying a person as an “authorized person” in FIG. 2.

After identifying a person as a likely authorized person in step 350, the preferred method further includes measuring a specific biometric of the likely authorized person that includes at least one physiologic biometric, for example a respiratory biometric, as shown in step 360. As previously described, the respiratory biometric preferably includes discrete indices such as a respiratory rate, a minute ventilation, a tidal volume, an inspiratory or expiratory flow rate, a presence of a cough, apnea, or hypoapnea, or a combination thereof. Preferably, the respiratory biometric is measured by measuring the size or girth of the likely authorized person's thorax and/or abdomen. As previously discussed, measurement is preferably achieved by using IP sensors incorporated in a garment or other similar ambulatory device to measure changes in cross-sectional areas, circumferences, diameters, or geometrically similar indicia of the person's thorax and/or abdomen.

Aside from measuring discrete or single physiological parameters as a specific biometric of a person, the method can also include measuring a person's physiological response to stimuli or other provocations. In one embodiment, the likely authorized person's respiratory biometric is measured as a series of responses or waveforms over a selected period of time to provide a “physiological fingerprint” of the likely authorized person.

Preferably, such a physiological fingerprint is measured by instructing the person to perform a physical maneuver and measuring at least one physiological parameter, for example a respiratory pattern, exhibited by the person while performing the maneuver. The person can be instructed to perform a series of physical maneuvers over a period of time, for example five, ten, or thirty seconds, while measurements of respiratory patterns are obtained. Additionally, measurements can be taken over a period of time after the person performs the maneuvers to capture the person's exhibited response to, or recovery from, the maneuvers.

In one example, the person may be instructed to perform a series predetermined inhalation and exhalation breathing patterns, such as deep breaths and short breaths, and the person's measured inspiratory and expiratory flow rates and/or capacities are measured. Alternatively, the person may be instructed to perform a series of predetermined physical movements or exercises, such as jumping-jacks or stationary jogging, and the person's respiratory response while performing the exercises is measured as a biometric. The physiological fingerprint can also include measurements of other physiological parameters as the specific biometric of the likely authorized person.

Once the likely authorized person's specific biometric is measured, the measured specific biometric is compared to a plurality of known baseline specific biometrics that are associated with the preliminary identifier of the likely authorized person, as shown in step 370, and the system determines if there is a match, as shown in step 380. These baseline specific biometrics are also stored in the electronic database of the system. Preferably, the baseline specific biometric is previously measured at a time when the person exhibited a stable physiological condition and health to reflect the person's normal physiological parameters. Additionally, the baseline specific biometric is preferably recently updated, e.g., preferably measured within the last five years and more preferably measured within the twelve months, to minimize expected deviations due to aging.

Preferably, the baseline specific biometric of a person is stored as a limited range of discrete indices or physiological fingerprints. For example, the method can include measuring a person's baseline respiratory rate, and storing such respiratory rate as a baseline specific biometric that includes a range of respiratory rates, i.e., having upper and lower bounds that differ by a percentage of the measured respiratory rate. Preferably, the allowable range is determined based on a normal deviation that can be expected in a healthy population for a particular physiological parameter; more preferably, the allowable range is less than a normal deviation. By storing the baseline specific biometric as a limited range, the comparison during step 370 does not have to result in an exact match in step 380. Rather, so long as the measured specific biometric of a person falls within an acceptable tolerance range of the baseline specific biometric, a correct match will be determined.

In the case of physiological fingerprints comprising a series of physiological measurements, such as a time series of respiratory measurements, the methods can preferably also include comparing such fingerprints and determining the likelihood of a match by known pattern recognition techniques. See, e.g., Duda et al., Pattern Classification, 2000 2'nd ed., Wiley-Interscience. Such techniques can be, for example, based on statistical classifications, or on neural networks, or the like. A preferred type of pattern recognition technique is described subsequently with respect to ECG recognition. In the case of a time series of respiratory measurements, significant features can readily be determined and the described techniques can be readily adapted.

If the measured specific biometric of the likely authorized person does not match or correspond one of those baseline specific biometrics that are stored in the database and associated with the preliminary identifier of that person, measuring of the likely authorized person's specific biometric is repeated, as shown in step 390. If, after successive attempts (for example, more than twice), the measured specific biometric does not match or correspond to one of the baseline specific biometrics stored in the database for the likely authorized person, the likely authorized person is verified and confirmed as an unauthorized person, as shown in step 400.

If, however, the measured specific biometric of the likely authorized person matches or corresponds to one of the baseline specific biometrics stored in the database and associated with the preliminary identifier for that person, the identity of the likely authorized person is verified and confirmed as that of an authorized person, as shown in step 410. As a result, and if, for example, the method were incorporated in a security system, the person would be granted access or entry.

In alternative embodiments, the measured specific biometric preferably includes, in addition to a respiratory biometric, or alternatively, standing alone, other physiological parameters, such as cardiac parameters (including heart rate, ECG readings, and blood pressure), posture and activity parameters, temperature parameters, EEG, EOG, and EMG parameters, speech and cough parameters (including pitch, frequency, and amplitude), gait or other walking parameters, or a combination thereof. These specific biometrics can be measured by known techniques as were previously discussed, and preferably include the use of IP sensors incorporated in a garment or other ambulatory device.

The identification methods previously discussed are preferably based on or incorporate standard pattern recognition and machine learning tools as known in the art. See, e.g., Duda, R. et al., Pattern Classification, Wiley, New York, N.Y. (2001), Vapnik, V., Statistical Learning Theory, Wiley, New York, N.Y. (1998), and Hastie, T. et al., The Elements of Statistical Learning, Springer (2001).

Pattern recognition may be broadly defined as developing an automated algorithm that is able to accurately classify an individual as belonging to one of n labeled classes. The basic approach preferably includes a-priori data to train an algorithm. Presentation of this data to a classification algorithm teaches the classifier to generalize between each of the classes that are present. Thus, the classifier preferably creates a set of decision boundaries so that when a new data point is presented to the classifier, the classifier may label it accordingly. FIG. 4 is a flow chart that shows steps 1-5 of one embodiment for training a classification system for use in pattern recognition.

Step 1 preferably includes labeling the relevant classes. Preferably, this is simply assigning an arbitrary integer label for each of the n classes or individuals, e.g., c1=1, . . . , n. Step 2 preferably includes extracting relevant features from the data that will be used to uniquely identify each class. In many embodiments, sets of features are manually selected and the remaining steps of FIG. 4 are performed to determine if the performance of the trained classifier is satisfactory. If not, a different set of features is manually selected and the process of FIG. 4 is repeated. Other embodiments of this invention include automatically selecting features; performing the steps of FIG. 4 to determine whether the classifier performance is satisfactory; and if not, returning to step 2 and repeating this process with another automatically determined set of features. The extracted features are put together to form a feature vector. The dimension D of this vector or feature space is preferably the number of features used, and each component in the feature vector is preferably a scalar component. Following feature extraction, step 3 preferably includes scaling the data in an appropriate manner. In one embodiment, this is a simple transform that ensures that the data lie in the range [0;1] or [−1;1].

The dimension reduction of step 4 preferably includes principal components analysis to transform a number of correlated variables into a preferably smaller number of uncorrelated variables called principal components. This allows the first principal component to account for as much of the variability in the data as possible, and each succeeding component then accounts for as much of the remaining variability as possible. As a result, components that account for very little variability in the feature space may be discarded.

The final step 5 includes selection of an appropriate learning algorithm to train the classifier. Preferably, the scaled and reduced feature vectors used for training are presented to the learning algorithm, i.e., for each class, a representative set of training data is labeled as belonging to that class. The algorithm then preferably fits hyper-dimensional decision boundaries between each class. A preferred learning algorithm for identity confirmation is the one-class support vector machine (“SVM”), see e.g. B. Scholkopf et al., Estimating the Support of High-Dimensional Distribution, Neural Computation, 13:7, 1443-1471 (2001). Embodiments of this invention also include automatically selecting important features by repeating the steps of FIG. 4 until the performance of the trained classifier is satisfactory.

Once a system has been trained, new data may be classified, as shown in FIG. 5. Steps 6-8 are generally similar to steps 2-4 except that the former steps make use of information determined by the latter steps. Specifically, steps 6-8 use the features and also use the characterizations of reduced dimensionality that have been determined during training during steps 2 and 4, respectively, to be significant and useful. Where step 4 applies a principal components analysis, the characterizations of reduced dimensionality are the important principal components, each of which is a combination of one or more of the extracted features. Further, step 9 uses the classifier that has been trained in step 5.

Thus, classification step 6 receives input signals describing an subject and extracts the particular features of importance determined during training. Step 7 scales the extracted features in a manner similar to the scaling performed in step 3. Step 8 combines the scaled features into the important characterizations of reduced dimensionality that have been previously determined during training. Then step 9 applies the previously-trained classifier to the characterizations determined in step 8 in order to find the likely class (if any) for the subject described by the input signals.

In the present invention, the class of an subject being tested is determined to be one the classes of the subjects on which the method has been trained. Each such training class is further identified by its identifies (see, e.g., FIG. 2). If the determined class matches the class identified by the identifier presented by the subject under test, then that subject is indicated to be confirmed. If the determined and the identified classes do not match, or if no likely matching class is found, the subject is indicated to be not confirmed.

ECG Parameter Recognition

A preferred parameter recognition method for measuring ECG as a specific biometric is described below in more detail. Extracted features can be combined to form a feature vector that is preferably used as the primary representation or indicator for comparing measured physiological parameters to baseline physiological parameters.

Preferably, the first step in ECG feature extraction is to identify each heart beat, which may be achieved by identifying the QRS complex. Several standard R-wave detection and QRS detection algorithms are known, such as that disclosed by Kohler et al., The Principles of Software QRS Detection, IEEE Engineering in Medicine and Biology (2002), and any of these would be suitable to detect the QRS complex. In addition, the P-wave and T-waves may also be identified such that a single heartbeat can then be defined from the beginning of the P-wave to the end of the T-wave, as shown in FIG. 6.

The precise selection of ECG features preferably depends on the resolution of the sampled and digitized ECG signal, and several components may not be adequately determined for low resolution systems. This would then result in a reduced subset of ECG features, but the same principals discussed below would still apply. Features extracted from the ECG signal may generally be divided into one of four categories: 1) morphological features, 2) transform features, 3) nonlinear features, and 4) parametric modeling features.

Morphological features refer to features describing the basic geometric shape. Morphological features preferably include measurements such as the P-R interval, the S-T interval, the Q-T interval, the width of the QRS peak at 60% of the baseline level, the amplitude of the P-wave to the baseline level, the amplitude of R-wave to the baseline level, the amplitude of the T-wave to the baseline level, the amplitude of the baseline level to the Q-wave, and fitting straight lines to the Q-R and the R-S points and then calculating the angle between the resultant lines.

Transform features and nonlinear features refer to features describing details not clearly visible to the human eye (frequency components, fractal features, etc.). Transform features preferably include the average relative power in specific frequency bands that are preferably calculated using autoregressive (parametric) models. This is done, for example, by calculating the spectrum over a frequency range 1 . . . N, dividing the range into sub-bands, averaging the power in each sub-band, and then normalizing by the total power over 1-N for each sub-band. Each of these results in a new scalar feature in a feature vector. Transform features may also include wavelet coefficients, which are obtained by taking the wavelet transform of the heart beat and then selecting a subset of coefficients for use as components in the feature vector. Transform features can also include other transforms, such as cepstral transforms and discrete cosine transforms. With respect to non-linear features, these preferably include fractal dimensions of an entire heart beat, correlation dimensions of an entire heart beat, and Luypanov exponents.

Parametric modeling refers to curve fitting and then using a reduced set of coefficients from the resultant curve fit. This includes, for example, fitting a simple linear prediction or AR(MA) model to the curve of order n and then using these n points as a subcomponent of the feature vector.

Following feature extraction, the data is preferably scaled and subjected to post-processing to enhance the results of feature extraction. Preferably, post-processing preferably includes a dimension reduction method, e.g., principal components analysis, which, as described, finds a limited set important feature combinations known as principal components. Post-processing can also include calculating the class for n consecutive heart beats and then only if a predetermined percentage of these (90% etc.) all agree on the same result, is the individual assigned a class label or identifier. This advantageously allows for some tolerance of faulty QRS detection as well as artifact. Alternatively, pre-processing may include averaging n heart beats prior to feature extraction. Additional post processing may include combining the results of the ECG recognition with that of alternative biometrics before a final decision is made.

The particular learning algorithm used with the present invention can be selected from one of many algorithms known in the art, for example, linear discriminate functions, probability distribution, estimation, and clustering, support vector and other kernel machines, neural networks, and/or boosting algorithms. As discussed above, a preferred learning algorithm for identity confirmation is the one-class SVM by Scholkopf et al. because is fits a tight bound to a single class with no information about other classes. Thus, if a new feature vector falls within this bound, it belongs to this class or is associated with this person; otherwise it is rejected as being of this class or associated with this person.

Speech Parameter Recognition

As another example of parameter recognition, a preferred method for measuring breath and speech combinations as a specific biometric is described below in more detail. Some of these features are described in more detail in WO 2006/002338A2, published Jan. 5, 2006 and titled “Systems and Methods for Monitoring Cough”. Preferably, a microphone or other sound recorder is first used to extract the following features and create associated traces from a provided audio sample: 1) sound envelope, 2) event marker trace, 3) pitch, 4) sound energy, 5) duration, and 6) peak fraction.

The sound envelope (“SE”) is the trace of the audio signal that is preferably captured from a throat microphone (“MIC”), and downsampled from 1500 Hz to 50 Hz. Every 30 data points are preferably normalized and summed to give a low resolution envelope.

The event marker trace (“EVT”) is a binary trace preferably at the same resolution as the SE trace. It is ON when the SE trace rises above a threshold (e.g., 60) and goes OFF when it drops below another threshold (e.g., 30) for 3 consecutive samples.

Pitch is evaluated using the Mel cepstrum of the raw MIC trace. A cepstrum is the result of taking the Fourier Transform (FT) of the decibel spectrum as if it were a signal. The cepstrum is preferably defined as the FT of the log (with unwrapped phase) of the FT (cepstrum of signal=FT(log(FT(the signal))+j2πm), where m is the integer required to properly unwrap the angle of the complex log function.

There is a real cepstrum and a complex cepstrum. The real cepstrum preferably uses the logarithm function defined for real values, while the complex cepstrum uses the complex logarithm function defined for complex values as well. The complex cepstrum holds information about magnitude and phase of the initial spectrum, allowing reconstruction of the signal. The real cepstrum only uses the information of the magnitude of the spectrum.

The cepstrum is an excellent feature vector for representing the human voice and musical signals. For such applications, the spectrum is preferably first transformed using the Mel frequency bands. The result is called the Mel Frequency Cepstral Coefficients (MFCC), and can be used for voice identification, pitch detection and other analysis. This is a result of the cepstrum advantageously separating the energy resulting from vocal cord vibration from the “distorted” signal formed by the rest of the vocal tract.

Sound energy is the integral of the SE trace over the duration of the EVT event. Duration is the length in milliseconds of the EVT ON period (i.e., sound event). Peak fraction refers to the peak of the SE trace for each event expressed as a fraction of the total EVT duration (e.g., (Peak location-Start)/(End-Start)).

The EVT trace is then preferably used to mark sections of the breath traces, where the following additional features are extracted:

ViVol, which is the inspired tidal volume of the breath that begins just preceding the EVT marking;

Hfb, which is the raw abdominal contribution to tidal volume band bandpass-filtered between 1 and 5 Hz;

Lfb, which is the rw abdominal contribution to tidal volume band bandpass-filtered between 0.1 and 1 Hz;

Maximum deflection, which is calculated for both Hfb and Lfb. The maximum peak—trough of consecutive peaks and troughs are determined for these filtered traces during each EVT;

Insp./Exp. ratio, which is the ratio of the percentage of the EVT during inspiration and that during expiration;

Center fraction, which is the location of the minimum trough is calculated expressed as a fraction of the event time;

Turning points, which is the number of peaks and troughs over the duration of the EVT ON;

AB baseline, which is the mean value of abdominal contribution to tidal volume band for 5 seconds before and after the event; and

Phase, which is the phase difference between the ribcage contribution to tidal volume band and the abdominal contribution to tidal volume band.

Following feature extraction, the data is preferably scaled. Next, it is subject to a dimension reduction process, e.g., principal components analysis, which finds a limited number of significant combinations, i.e., that account for a large part of the data variance. Based on the identified combination of all these extracted features, a reduced-dimension feature vector representative of breath and speech is created and processed to train a classifier.

The present invention for identity confirmation is illustrated by the following example of a method of physiological parameter feature extraction for ECG and speech that is merely for the purpose of illustration and are not to be regarded as limiting the scope of the invention or the manner in which it can be practiced.

ECG Parameter Recognition

Six subjects (i.e. classes), 4 male and 2 female, each wore the LIFESHIRT® ambulatory monitoring garment by Vivometrics, Inc. (Ventura, Calif.) with ECG sensors and stood quietly for 30 seconds of recording. Each subject was given a different class label 1 through 6, and the ECG was sampled at 200 Hz. It was preferable to sample at a higher rate as not all of the above-mentioned features were easily distinguishable at 200 Hz. FIG. 7 shows a segment of a typical ECG record for subject 2.

After sampling, QRS detection was performed on the ECG signal for each subject, which resulted in extracted QRS complexes as shown in FIG. 8, for example, for subject 2. Additionally, Table 1 shows the number of extracted QRS complexes for each subject.

TABLE 1
Subject No. of QRS complex's
1 155
2 186
3 199
4 168
5 237
6 201

The following 11 features were extracted from each ECG QRS complex (note that all of the morphological features are normalized in some way so that they are scale independent):

1. (R-wave peak—left baseline)/left baseline;

2. (R-wave peak—right baseline)/right baseline;

3. (left baseline—min of Q or S wave)/left baseline;

4. (right baseline—min of Q or S wave)/right baseline;

5. (R wave peak—Q wave peak)/R wave peak;

6. (R wave peak—S wave peak)/R wave peak;

7. Q-R interval/length QRS;

8. location of S wave/length QRS;

9. standard deviation of QRS/mean of QRS;

10. energy in 1-4 Hz band/total energy; and

11. energy in 4-16 Hz band/total energy.

Normalization or scaling was preferably achieved using two baselines, which were preferably the mean values of the first 20 and last 20 samples. Thus, the feature vector had a dimension of 14. Each of the features were then scaled to a value between 0 and 1, and then dimension reduction techniques were applied. To illustrate the idea, a principle components analysis was performed on the data to reduce the results to a dimension of 2 so that a plot for each subject could be created. An example of such a plot is illustrated in FIG. 9, which clearly shows that decision boundaries may relatively easily be drawn between data groups. These boundaries would be even more improved for analysis of more components.

In a subsequent classification step, 5 components were used, as well as an SVM. To get a measure of performance, 10 groups of cross validation tests were performed, a set of nine of these groups were used to train the classification methods, and a set of the one remaining group was used to test the classification method. Many different training and test set variations were used. The training data was never included in the test data. The accuracy for each test was the number of correct classes/total number of classes, and then the data was pooled to get a single number for the accuracy of the test.

The results showed that the total cross-validation accuracy using 2 principle components was 94.6632%, while the total cross-validation accuracy using 5 principle components was 97.9003%. This accuracy was on a heart beat by heart beat basis. Assuming that about 4 out of 5 consecutive heart beats must be the same for the individual to be classified, this will probably increase to about 100% accuracy. A potential reason for some misclassification was due to imperfect QRS detection and noise. This was minimized by having the subjects stand quietly, and will probably be increased under different testing and sampling circumstances.

This certainly proved the validity of the system for small databases. A higher sample rate will provide more accurate features when increasing the number of individuals (i.e., classes).

Speech Parameter Recognition

Four subjects (i.e. classes), 2 male and 2 female, spoke casually for 15 minutes each. Each subject wore the LIFESHIRT® with abdominal and ribcage sensor bands, and were in both seated and standing postures. Each subject was given a different class label 1 through 4. The respiratory IP sensors were sampled at 50 Hz, and a throat microphone that sampled at 1500 Hz was used.

A simple feature vector of dimension 8 was formed, which included pitch, Lfb deflection, Hfb deflection, ViVol, Insp./Exp. ratio, duration, turning points, and center fraction. Each feature was scaled or normalized between 0 and 1, and then dimension reduction techniques were applied by performing a principle components analysis to reduce the date to a dimension of 2. The results indicated that such parameter recognition techniques, which include extraction of the above-listed speech-related features, followed by scaling and dimension reduction of the data, can be applied to differentiate sufficiently between speech or audio events for various classes or persons so that they can be automatically classified.

The term “about,” as used herein, should generally be understood to refer to both the corresponding number and a range of numbers. Moreover, all numerical ranges herein should be understood to include each whole integer within the range.

While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments can be devised by those of ordinary skill in the art. Features of the embodiments described herein can be combined, separated, interchanged, and/or rearranged to generate other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the scope of the present invention.

A number of references are cited herein, the entire disclosures of which are incorporated herein, in their entirety, by reference for all purposes. Further, none of these references, regardless of how characterized above, is admitted as prior to the invention of the subject matter claimed herein.

Myers, Lance, Derchak, P. Alexander

Patent Priority Assignee Title
10084880, Nov 04 2013 Proteus Digital Health, Inc. Social media networking based on physiologic information
10141675, Jun 25 2010 NOX MEDICAL EHF Biometric belt connector
10187121, Jul 22 2016 OTSUKA PHARMACEUTICAL CO , LTD Electromagnetic sensing and detection of ingestible event markers
10223905, Jul 21 2011 Proteus Digital Health, Inc. Mobile device and system for detection and communication of information received from an ingestible device
10238604, Oct 25 2006 Proteus Digital Health, Inc. Controlled activation ingestible identifier
10305544, Nov 04 2009 Proteus Digital Health, Inc. System for supply chain management
10398161, Jan 21 2014 OTSUKA PHARMACEUTICAL CO , LTD Masticable ingestible product and communication system therefor
10426343, Mar 17 2016 Industrial Technology Research Institute Physiology detecting garment, physiology detecting monitoring system and manufacturing method of textile antenna
10441194, Dec 29 2006 OTSUKA PHARMACEUTICAL CO , LTD Ingestible event marker systems
10467548, Sep 29 2015 ZEPP, INC Method, apparatus and system for biometric identification
10517506, May 24 2007 Proteus Digital Health, Inc. Low profile antenna for in body device
10548497, May 15 2009 NOX MEDICAL EHF Systems and methods using flexible capacitive electrodes for measuring biosignals
10588550, Nov 06 2013 NOX MEDICAL EHF Method, apparatus, and system for measuring respiratory effort
10682071, Mar 15 2013 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
10690763, Apr 20 2015 ResMed Sensor Technologies Limited Detection and identification of a human from characteristic signals
10797758, Jul 22 2016 OTSUKA PHARMACEUTICAL CO , LTD Electromagnetic sensing and detection of ingestible event markers
10819340, Nov 03 2016 Vicwood Prosperity Technology Limited Living body detection method and apparatus
10824958, Aug 26 2014 GOOGLE LLC Localized learning from a global model
10842416, Aug 20 2018 Thomas Jefferson University; Thomas Jefferson Univeristy Acoustic sensor and ventilation monitoring system
10869619, Aug 19 2016 NOX MEDICAL EHF Method, apparatus, and system for measuring respiratory effort of a subject
10881330, Aug 20 2018 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
11000191, Aug 20 2018 Thomas Jefferson Univeristy Acoustic sensor and ventilation monitoring system
11000212, Aug 20 2018 Thomas Jefferson University; RTM Vital Signs LLC Acoustic sensor and ventilation monitoring system
11006863, Aug 20 2018 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
11071476, Aug 20 2018 RTM Vital Signs LLC Acoustic sensor and ventilation monitoring system
11092685, Apr 20 2015 ResMed Sensor Technologies Limited Detection and identification of a human from characteristic signals
11196811, Dec 01 2006 Fitistics, LLC Data communications between an exercise device and a personal content device
11213225, Aug 20 2018 Thomas Jefferson University; RTM Vital Signs LLC Acoustic sensor and ventilation monitoring system
11217342, Jul 08 2008 OTSUKA PHARMACEUTICAL CO , LTD Ingestible event marker data framework
11357730, Oct 25 2006 OTSUKA PHARMACEUTICAL CO , LTD Controlled activation ingestible identifier
11464423, Feb 14 2007 OTSUKA PHARMACEUTICAL CO , LTD In-body power source having high surface area electrode
11529076, Aug 20 2018 Thomas Jefferson University; RTM Vital Signs LLC Acoustic sensor and ventilation monitoring system
11550904, Aug 25 2020 Robert Bosch GmbH System and method for improving measurements of an intrusion detection system by transforming one dimensional measurements into multi-dimensional images
11551153, Aug 26 2014 GOOGLE LLC Localized learning from a global model
11602282, Sep 08 2017 NOX MEDICAL EHF System and method for non-invasively determining an internal component of respiratory effort
11744481, Jun 04 2013 OTSUKA PHARMACEUTICAL CO , LTD System, apparatus and methods for data collection and assessing outcomes
11796665, Apr 20 2015 ResMed Sensor Technologies Limited Detection and identification of a human from characteristic signals
11896386, Jun 02 2017 NOX MEDICAL EHF Coherence-based method, apparatus, and system for identifying corresponding signals of a physiological study
11928614, May 02 2006 OTSUKA PHARMACEUTICAL CO , LTD Patient customized therapeutic regimens
11950615, Jan 21 2014 Otsuka Pharmaceutical Co., Ltd. Masticable ingestible product and communication system therefor
9756874, Jan 21 2014 OTSUKA PHARMACEUTICAL CO , LTD Masticable ingestible product and communication system therefor
9824287, Sep 29 2015 ZEPP, INC Method, apparatus and system for biometric identification
9883819, Jan 06 2009 PROTEUS DIGITAL HEALTH, INC Ingestion-related biofeedback and personalized medical therapy method and system
9941931, Nov 04 2009 OTSUKA PHARMACEUTICAL CO , LTD System for supply chain management
9946942, Sep 29 2015 ZEPP, INC Method, apparatus and system for biometric identification
9948642, Sep 29 2015 ZEPP, INC Multi-modal biometric identification
Patent Priority Assignee Title
3534727,
3731184,
3874368,
3926177,
4016868, Nov 25 1975 Garment for impedance plethysmograph use
4033332, Sep 11 1972 V-CUSA, INC ; VALLEYLAB ULTRASONIC SURGICAL PRODUCTS, INC ; VALLEYLAB, INC , A CORP OF CO Activity and respiration monitor
4102331, Sep 21 1976 DATASCOPE INVESTMENT CORP A CORP OF NEW JERSEY Device for transmitting electrical energy
4258718, Apr 16 1979 Measuring respiratory air volume
4267845, Oct 05 1978 Method and apparatus for measuring pulmonary ventilation
4289142, Nov 24 1978 Physiological occurrence, such as apnea, monitor and X-ray triggering device
4306567, Dec 22 1977 CLINICAL DEVELOPMENT CORPORATION Detection and monitoring device
4308872, Apr 07 1977 NON-INVASIVE MONITORING SYSTEMS, INC Method and apparatus for monitoring respiration
4373534, Apr 14 1981 VIVOMETRICS, INC Method and apparatus for calibrating respiration monitoring system
4387722, Nov 24 1978 Respiration monitor and x-ray triggering apparatus
4433693, Jul 25 1975 Method and assembly for monitoring respiration and detecting apnea
4446872, Sep 08 1977 AVL Medical Instruments AG Method and apparatus for determining systolic time intervals
4452252, May 26 1981 VIVOMETRICS, INC Non-invasive method for monitoring cardiopulmonary parameters
4456015, May 26 1981 VIVOMETRICS, INC Non-invasive method for semiquantitative measurement of neck volume changes
4463764, Sep 29 1981 NORWEST BANK MINNESOTA, NATIONAL ASSOCIATION Cardiopulmonary exercise system
4494553, Apr 01 1981 , Vital signs monitor
4537196, Dec 21 1981 AHP LEASING, INC ; COROMETRICS MEDICAL SYSTEMS, INC ; AHP SUBSIDIARY HOLDING CORPORATION Systems and methods for processing physiological signals
4546777, Mar 06 1981 Siemens Gammasonics, Inc. Heart sound detector and synchronization for diagnostics
4548204, Mar 06 1981 Siemens Medical Systems, Inc Apparatus for monitoring cardiac activity via ECG and heart sound signals
4549552, Mar 06 1981 Siemens Medical Systems, Inc Heart sound detector and cardiac cycle data are combined for diagnostic reliability
4572197, Jul 01 1982 The General Hospital Corporation; GENERAL HOSPITAL CORPORATION THE, BOSTON MASSACHUSETTS 02114 A CORP Body hugging instrumentation vest having radioactive emission detection for ejection fraction
4580572, Jun 01 1983 Bio-Stimu Trend Corporation Garment apparatus for delivering or receiving electric impulses
4648407, Nov 18 1983 NON-INVASIVE MONITORING SYSTEMS, INC Method for detecting and differentiating central and obstructive apneas in newborns
4672975, Jun 17 1985 Stethoscope with image of periodically expanding and contracting heart
4753988, Feb 18 1987 Roussel Uclaf High gloss acrylate rubber-modified weatherable resins
4777962, May 09 1986 VIVOMETRICS, INC Method and apparatus for distinguishing central obstructive and mixed apneas by external monitoring devices which measure rib cage and abdominal compartmental excursions during respiration
4796639, Nov 05 1987 NORWEST BANK MINNESOTA, NATIONAL ASSOCIATION Pulmonary diagnostic system
4800495, Aug 18 1986 Nellcor Puritan Bennett Method and apparatus for processing signals used in oximetry
4807640, Nov 19 1986 NON-INVASIVE MONITORING SYSTEMS, INC Stretchable band-type transducer particularly suited for respiration monitoring apparatus
4815473, Apr 07 1977 VIVOMETRICS, INC Method and apparatus for monitoring respiration
4817625, Apr 24 1987 Respironics, Inc Self-inductance sensor
4819752, Oct 02 1987 CARDIO ACCESS LLC Blood constituent measuring device and method
4834109, Jan 02 1986 VIVOMETRICS, INC Single position non-invasive calibration technique
4860766, Nov 18 1983 NON-INVASIVE MONITORING SYSTEMS, INC Noninvasive method for measuring and monitoring intrapleural pressure in newborns
4863265, Oct 16 1987 Mine Safety Applicances Company Apparatus and method for measuring blood constituents
4867571, Sep 26 1986 SensorMedics Corporation Wave form filter pulse detector and method for modulated signal
4911167, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4920969, Oct 08 1985 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
4928692, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4934372, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4955379, Aug 14 1987 NATIONAL RESEARCH DEVELOPMENT CORPORATION, A BRITISH CORP Motion artefact rejection system for pulse oximeters
4960118, May 01 1989 Method and apparatus for measuring respiratory flow
4966155, Jan 31 1985 The University of Strathclyde Apparatus for monitoring physiological parameters
4972842, Jun 09 1988 Vital Signals, Inc.; VITAL SIGNALS, INC Method and apparatus for precision monitoring of infants on assisted ventilation
4981139, Aug 11 1983 Vital signs monitoring and communication system
4986277, Aug 24 1988 VIVOMETRICS, INC Method and apparatus for non-invasive monitoring of central venous pressure
5007427, Oct 08 1985 CAPINTEC, INC Ambulatory physiological evaluation system including cardiac monitoring
5025791, Jun 28 1989 OMRON HEALTHCARE CO , LTD Pulse oximeter with physical motion sensor
5036857, Oct 26 1989 University of Medicine and Dentistry of New Jersey Noninvasive diagnostic system for coronary artery disease
5040540, Aug 24 1988 VIVOMETRICS, INC Method and apparatus for non-invasive monitoring of central venous pressure, and improved transducer therefor
5074129, Dec 26 1989 Novtex Formable fabric
5076801, Jun 22 1990 Xerox Corporation Electronic component including insulation displacement interconnect means
5099841, Feb 06 1989 Instrumentarium Corporation Measurement of the composition of blood
5099855, Nov 09 1989 STATE OF OREGON, ACTING BY AND THROUGH THE OREGON STATE BOARD OF HIGHER EDUCATION, ACTING FOR AND ON BEHALF OF THE OREGON HEALTH SCIENCES UNIVERSITY Methods of and apparatus for monitoring respiration and conductive gel used therewith
5111817, Dec 29 1988 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
5131399, Aug 06 1990 LIFE SENSING INSTRUMENT COMPANY, INC Patient monitoring apparatus and method
5143089, May 03 1989 ADVANCED MEDICAL DEVICES, S A Assembly and method of communicating electrical signals between electrical therapeutic systems and body tissue
5159935, Mar 08 1990 NON-INVASIVE MONITORING SYSTEMS, INC Non-invasive estimation of individual lung function
5173151, Jul 30 1990 SEIKO EPSON CORPORATION, A CORP OF JAPAN Method of dry etching in semiconductor device processing
5178151, Apr 20 1988 VIVOMETRICS, INC System for non-invasive detection of changes of cardiac volumes and aortic pulses
5224479, Jun 21 1991 Topy Enterprises Limited ECG diagnostic pad
5241300, Apr 24 1992 SIDS detection apparatus and methods
5271551, Nov 18 1988 Container
5299120, Sep 15 1989 Koninklijke Philips Electronics N V Method for digitally processing signals containing information regarding arterial blood flow
5301678, Nov 19 1986 Non-Invasive Monitoring System, Inc. Stretchable band - type transducer particularly suited for use with respiration monitoring apparatus
5329932, Nov 09 1989 Oregon Health Sciences University Methods of and apparatus for monitoring respiration and conductive composition used therewith
5331968, Oct 19 1990 adidas AG Inductive plethysmographic transducers and electronic circuitry therefor
5333106, Oct 09 1992 Aradigm Corporation Apparatus and visual display method for training in the power use of aerosol pharmaceutical inhalers
5348008, Nov 25 1991 Oishi-Kogyo Company Cardiorespiratory alert system
5353793, Nov 25 1991 Oishi-Kogyo Company Sensor apparatus
5416961, Jan 26 1994 Schlegel Corporation Knitted wire carrier having bonded warp threads and method for forming same
5447164, Nov 08 1993 Koninklijke Philips Electronics N V Interactive medical information display system and method for displaying user-definable patient events
5520192, Dec 23 1991 Imperial College of Science, Technology and Medicine Apparatus for the monitoring and control of respiration
5533511, Jan 05 1994 JPMorgan Chase Bank, National Association Apparatus and method for noninvasive blood pressure measurement
5535738, Jun 03 1994 RIC Investments, LLC Method and apparatus for providing proportional positive airway pressure to treat sleep disordered breathing
5544661, Jan 13 1994 Charles L., Davis Real time ambulatory patient monitor
5564429, Nov 25 1991 VITALSCAN, INC Method of identifying valid signal-carrying channels in a cardiorespiratory alert system
5577510, Aug 18 1995 Portable and programmable biofeedback system with switching circuit for voice-message recording and playback
5582337, Jun 20 1995 MCP IP, LLC Strap system for carrying skates and shoes and method of use
5584295, Sep 01 1995 Analogic Corporation System for measuring the period of a quasi-periodic signal
5588425, May 21 1993 adidas AG Method and apparatus for discriminating between valid and artifactual pulse waveforms in pulse oximetry
5601088, Feb 17 1995 EP Technologies, Inc. Systems and methods for filtering artifacts from composite signals
5611085, Nov 02 1992 Garment for holding an electrocardiographic monitoring unit and cables
5617847, Oct 12 1995 Assisted breathing apparatus and tubing therefore
5694939, Oct 03 1995 The United States of America as represented by the Administrator of the Autogenic-feedback training exercise (AFTE) method and system
5718234, Sep 30 1996 Northrop Grumman Corporation Physiological data communication system
5719950, Mar 24 1994 Minnesota Mining and Manufacturing Company Biometric, personal authentication system
5720709, Oct 25 1995 S.M.C. Sleep Medicine Center Apparatus and method for measuring respiratory airway resistance and airway collapsibility in patients
5724025, Oct 21 1993 Koninklijke Philips Electronics N V Portable vital signs monitor
5749365, Nov 07 1991 Health monitoring
5820567, Nov 02 1995 Healthcare Technology Limited Heart rate sensing apparatus adapted for chest or earlobe mounted sensor
5825293, Sep 20 1996 Apparatus and method for monitoring breathing magnetically
5848027, Nov 22 1995 Polar Electro Oy Method for processing personal data
5882307, Aug 05 1994 Acuson Corporation Method and apparatus for receive beamformer system
5899855, Nov 17 1992 HEALTH HERO NETWORK, INC Modular microprocessor-based health monitoring system
5913830, Aug 20 1997 RIC Investments, LLC Respiratory inductive plethysmography sensor
5921920, Dec 12 1996 PENNSYLVANIA, TRUSTEES OF THE UNIVERSITY OF Intensive care information graphical display
5937854, Jan 06 1998 SensorMedics Corporation Ventilator pressure optimization method and apparatus
5989193, May 19 1995 Somed Pty Limited Device and method for detecting and recording snoring
5991922, Dec 26 1996 ACME LAUNDRY PRODUCTS, INC Monitored static electricity dissipation garment
6002952, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6015388, Mar 17 1997 adidas AG Method for analyzing breath waveforms as to their neuromuscular respiratory implications
6018677, Nov 25 1997 Tectrix Fitness Equipment, Inc.; Tectrix Fitness Equipment Heart rate monitor and method
6035154, Nov 28 1997 Seiko Epson Corporation Image forming apparatus
6047203, Mar 17 1997 adidas AG Physiologic signs feedback system
6066093, Jul 28 1995 UNILEAD INTERNATIONAL, INC Disposable electrodeless electro-dermal devices
6067462, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6068568, Dec 12 1996 Tsubakimoto Chain Co. Silent chain
6070098, Apr 11 1997 CIRCADIAN TECHNOLOGIES, INC Method of and apparatus for evaluation and mitigation of microsleep events
6120441, Oct 16 1995 ResMed R&D Germany GmbH Method and device for quantitative analysis of sleep disturbances
6142953, Jul 08 1999 Compumedics Sleep Pty Ltd Respiratory inductive plethysmography band transducer
6145551, Sep 22 1997 Georgia Tech Research Corp.; Georgia Tech Research Corporation Full-fashioned weaving process for production of a woven garment with intelligence capability
6198394, Dec 05 1996 Empire IP LLC System for remote monitoring of personnel
6223072, Jun 08 1999 SANDLEFORD PARK LIMITED, AS SECURITY AGENT Apparatus and method for collecting data useful for determining the parameters of an alert window for timing delivery of ETC signals to a heart under varying cardiac conditions
6254552, Oct 03 1997 LANTHEUS MEDICAL IMAGING, INC Intra-coronary radiation devices containing Ce-144 or Ru-106
6261238, Oct 04 1996 ISONEA ISRAEL LTD Phonopneumograph system
6273859, Nov 01 1995 University Technologies International, Inc. Adaptively controlled mandibular positioning device and method of using the device
6287264, Apr 23 1999 TRUSTEES OF TUFTS COLLEGE, THE System for measuring respiratory function
6302844, Mar 31 1999 Inventor Holdings, LLC Patient care delivery system
6306088, Oct 03 1998 INDIVIDUAL MONITORING SYSTEMS, INC Ambulatory distributed recorders system for diagnosing medical disorders
6341504, Jan 31 2001 adidas AG Composite elastic and wire fabric for physiological monitoring apparel
6361501, Aug 26 1997 Seiko Epson Corporation Pulse wave diagnosing device
6381482, May 13 1998 Georgia Tech Research Corporation Fabric or garment with integrated flexible information infrastructure
6413225, Jun 18 1999 adidas AG Quantitative calibration of breathing monitors with transducers placed on both rib cage and abdomen
6436057, Apr 22 1999 UNITED STATES OF AMERICA, DEPARTMENT OF HEALTH & HUMAN SERVICES, REPRESENTED BY THE SECRETARY, C O CDC Method and apparatus for cough sound analysis
6443890, Mar 01 2000 PHDX SYSTEMS, INC Wireless internet bio-telemetry monitoring system
6449504, Aug 20 1999 Cardiac Pacemakers, Inc Arrhythmia display
6454719, Aug 01 2000 Pacesetter, Inc. Apparatus and method for diagnosis of cardiac disease using a respiration monitor
6461307, Sep 13 2000 Natus Medical Incorporated Disposable sensor for measuring respiration
6463385, Nov 01 1996 Garmin International, Inc Sports computer with GPS receiver and performance tracking capabilities
6478736, Oct 08 1999 MICROLIFE MEDICAL HOME SOLUTIONS INC Integrated calorie management system
6483929, Jun 08 2000 Halo Wearables, LLC Method and apparatus for histological and physiological biometric operation and authentication
6485431, Nov 24 1999 Edwards Lifesciences Corporation Method and apparatus for determining cardiac output or total peripheral resistance
6506153, Sep 02 1998 Med-Dev Limited Method and apparatus for subject monitoring
6511424, Apr 11 1997 CIRCADIAN TECHNOLGIES, INC Method of and apparatus for evaluation and mitigation of microsleep events
6513532, Jan 19 2000 MICROLIFE MEDICAL HOME SOLUTIONS INC Diet and activity-monitoring device
6551252, Apr 17 2000 adidas AG Systems and methods for ambulatory monitoring of physiological signs
6579231, Mar 27 1998 Apple Inc Personal medical monitoring unit and system
6604115, Nov 05 1999 GE Marquette Medical Systems, Inc. Method and apparatus for storing data
6633772, Aug 18 2000 Lifescan IP Holdings, LLC Formulation and manipulation of databases of analyte and associated values
6647252, Jan 18 2002 ARRIS ENTERPRISES LLC Adaptive threshold algorithm for real-time wavelet de-noising applications
6656127, Aug 06 1999 BREATHID 2006 Breath test apparatus and methods
6687523, Sep 22 1997 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure for monitoring vital signs of infants
6699194, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6702752, Feb 22 2002 Datex-Ohmeda, Inc Monitoring respiration based on plethysmographic heart rate signal
6709402, Feb 22 2002 Datex-Ohmeda, Inc Apparatus and method for monitoring respiration with a pulse oximeter
6721594, Aug 24 1999 Cardiac Pacemakers, Inc. Arrythmia display
6723055, Apr 23 1999 TRUSTEES OF TUFTS COLLEGE, THE System for measuring respiratory function
6726636, Apr 12 2000 Loran Technologies, Inc. Breathalyzer with voice recognition
6727197, Nov 18 1999 OFFRAY SPECIALTY NARROW FABRICS, INC Wearable transmission device
6747561, Jun 20 2000 Med-DataNet, LLC Bodily worn device for digital storage and retrieval of medical records and personal identification
6775389, Aug 10 2001 Advanced Bionics AG Ear auxiliary microphone for behind the ear hearing prosthetic
6783498, Mar 27 2002 adidas AG Method and system for extracting cardiac parameters from plethysmographic signals
6801916, Apr 01 1998 ASCEND HIT LLC Method and system for generation of medical reports from data in a hierarchically-organized database
6817979, Jun 28 2002 Nokia Technologies Oy System and method for interacting with a user's virtual physiological model via a mobile terminal
6858006, Sep 08 2000 WIRELESS MEDICAL, INC Cardiopulmonary monitoring
6881192, Jun 12 2002 Pacesetter, Inc. Measurement of sleep apnea duration and evaluation of response therapies using duration metrics
6941775, Apr 05 2002 MMI-IPCO, LLC Tubular knit fabric and system
6961448, Dec 30 1999 Medtronic, Inc User authentication in medical device systems
6970731, Sep 21 1998 Georgia Tech Research Corp.; Georgia Tech Research Corporation Fabric-based sensor for monitoring vital signs
6993378, Jun 25 2001 Leidos, Inc Identification by analysis of physiometric variation
7001337, Feb 22 2002 Datex-Ohmeda, Inc Monitoring physiological parameters based on variations in a photoplethysmographic signal
7073129, Dec 18 1998 Microsoft Technology Licensing, LLC Automated selection of appropriate information based on a computer user's context
7077810, Feb 05 2004 Welch Allyn, Inc; Hill-Rom Services, Inc Techniques for prediction and monitoring of respiration-manifested clinical episodes
7081095, May 17 2001 Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
7082327, Apr 16 2003 Medtronic, Inc.; Medtronic, Inc Biomedical signal analysis techniques using wavelets
7099714, Mar 31 2003 Medtronic, Inc Biomedical signal denoising techniques
7104962, Jun 24 2003 CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGENT Cough/sneeze analyzer and method
7154398, Jan 06 2003 Wireless communication and global location enabled intelligent health monitoring system
7207948, Jun 24 2004 adidas AG Systems and methods for monitoring cough
7254516, Dec 17 2004 NIKE, Inc Multi-sensor monitoring of athletic performance
7267652, Apr 10 2003 adidas AG Systems and methods for respiratory event detection
7319385, Sep 17 2004 Nokia Technologies Oy Sensor data sharing
7604603, Mar 26 2002 adidas AG Method and system for extracting cardiac parameters from plethysmographic signals
7670295, Apr 17 2000 adidas AG Systems and methods for ambulatory monitoring of physiological signs
7727161, Apr 10 2003 adidas AG Systems and methods for monitoring cough
7762953, Apr 20 2005 adidas AG Systems and methods for non-invasive physiological monitoring of non-human animals
7809433, Aug 09 2005 adidas AG Method and system for limiting interference in electroencephalographic signals
7878979, May 20 2005 adidas AG Methods and systems for determining dynamic hyperinflation
20020032386,
20020084130,
20020090667,
20020123701,
20020138765,
20020138768,
20030100843,
20030135097,
20030135127,
20030185408,
20030187341,
20040010420,
20040019289,
20040030224,
20040041019,
20040111040,
20040117204,
20040122334,
20040143194,
20040204636,
20040210147,
20040225227,
20040249299,
20050027207,
20050054941,
20050076908,
20050119586,
20050125970,
20050211247,
20050223236,
20050228234,
20050240087,
20050256385,
20050264398,
20060000420,
20060036183,
20060074334,
20060122528,
20060178591,
20060258914,
20060293609,
20070027368,
20070049843,
20070050715,
20070100622,
20070150006,
20070177770,
20070208262,
20070209669,
20070270671,
20080015454,
20080027341,
20080045815,
20080051839,
20080082018,
20080221401,
20080269644,
20090131759,
20100274100,
20110009766,
DE4214263,
EP262778,
EP875199,
GB1596298,
GB2116725,
JP1091834,
JP2001104259,
JP2001516253,
JP2005275508,
JP5168602,
JP5298589,
JP53126786,
JP58109031,
JP6337933,
JP7227383,
RE35122, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
WO128420,
WO176467,
WO2060370,
WO269878,
WO3022149,
WO2004019503,
WO2005115242,
WO2006002338,
WO2006009830,
WO2007021645,
WO2007069111,
WO2007089751,
WO2009074973,
WO2010027515,
WO9810699,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 19 2007DERCHAK, P ALEXANDERVIVOMETRICS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0192850026 pdf
Jan 19 2007MYERS, LANCEVIVOMETRICS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0192850026 pdf
Jan 25 2007adidas AG(assignment on the face of the patent)
Apr 30 2010VIVOMETRICS, INC TEXTRONICS, INC D B A ADIDAS WEARABLE SPORTS ELECTRONICSASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0244830216 pdf
May 26 2010TEXTRONICS, INC adidas AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0244740783 pdf
Date Maintenance Fee Events
Dec 07 2017M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 17 2021M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Jun 24 20174 years fee payment window open
Dec 24 20176 months grace period start (w surcharge)
Jun 24 2018patent expiry (for year 4)
Jun 24 20202 years to revive unintentionally abandoned end. (for year 4)
Jun 24 20218 years fee payment window open
Dec 24 20216 months grace period start (w surcharge)
Jun 24 2022patent expiry (for year 8)
Jun 24 20242 years to revive unintentionally abandoned end. (for year 8)
Jun 24 202512 years fee payment window open
Dec 24 20256 months grace period start (w surcharge)
Jun 24 2026patent expiry (for year 12)
Jun 24 20282 years to revive unintentionally abandoned end. (for year 12)