An apparatus for wafer edge exposure comprises a first exposure unit and a second exposure unit. The first exposure unit includes a first light source to emit first light of multiple wavelengths, and a first mask to direct the first light toward a first area at an edge portion of a wafer. The second exposure unit includes a second light source to emit second light of a single wavelength, and a second mask to direct the second light toward a second area at the edge portion of the wafer. The second area encloses a transition area that borders the first area under the first mask.
|
10. An apparatus for wafer edge exposure comprising:
a first light source to emit first light toward a first area at an edge portion of a wafer via a first mask, the first light having a first source size; and
a second light source to emit second light toward a second area at the edge portion of the wafer via a second mask, the second light having a second source size smaller than the first source size.
1. An apparatus for wafer edge exposure comprising:
a first exposure unit comprising:
a first light source to emit first light of multiple wavelengths; and
a first mask to direct the first light toward a first area at an edge portion of a wafer; and
a second exposure unit comprising:
a second light source to emit second light of a single wavelength; and
a second mask to direct the second light toward a second area at the edge portion of the wafer.
19. A method of wafer edge exposure comprising:
providing a first exposure unit to expose photoresist on a first area at an edge portion of a wafer, the first exposure unit comprising:
a first light source to emit first light of multiple wavelengths; and
a first mask to direct the first light toward the first area;
providing a second exposure unit to expose photoresist on a second area at the edge portion of the wafer, the second exposure unit comprising:
a second light source to emit second light of a single wavelength; and
a second mask to direct the second light toward the second area;
emitting the first light from the first light source via the first mask toward the first area; and
emitting the second light from the second light source via the second mask toward the second area,
wherein the second area encloses a transition area that borders the first area under the first mask.
2. The apparatus of
a reflector to reflect the first light from the first light source; and
a collective lens to converge the first light from the reflector toward the first mask.
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
11. The apparatus of
a reflector to reflect the first light from the first light source; and
a collective lens to converge the first light from the reflector toward the first mask.
12. The apparatus of
13. The apparatus of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
18. The apparatus of
20. The method of
reflecting the first light from the first light source toward a collective lens; and
converging the first light from the reflector toward the first mask.
21. The method of
22. The method of
|
The present invention generally relates to wafer edge exposure and, more particularly, to an apparatus for and a method of wafer edge exposure.
In the manufacturing of semiconductor products, a wafer edge exposure (WEE) process may be employed for exposing a photoresist film on an edge portion of a wafer so that undesired photoresist may be removed during a subsequent developing process. Generally, an apparatus for WEE processing may be installed in a tracker and equipped with a single light source.
Such apparatus with a single light source, however, may not be able to properly expose an undesired photoresist film on a wafer edge in advanced semiconductor manufacturing as device patterns are increasingly reduced in size. For example, the light source may emit light composed of multiple light components of different wavelengths in a relatively large bandwidth, which may result in photoresist pattern deformation or peeling, especially in the manufacturing of down-sized semiconductor products. It may therefore be desirable to have an apparatus for and a method of wafer edge exposure.
The present invention is directed to an apparatus for wafer edge exposure and a method of wafer edge exposure that are able to address the issue in the prior art.
Examples of the present invention may provide an apparatus for wafer edge exposure. The apparatus includes a first exposure unit that comprises a first light source to emit first light of multiple wavelengths, and a first mask to direct the first light toward a first area at an edge portion of a wafer, and includes a second exposure unit that comprises a second light source to emit second light of a single wavelength, and a second mask to direct the second light toward a second area at the edge portion of the wafer.
Some examples of the present invention may also provide an apparatus for wafer edge exposure. The apparatus includes a first light source to emit first light toward a first area at an edge portion of a wafer via a first mask, the first light source having a first source size, and includes a second light source to emit second light toward a second area at the edge portion of the wafer via a second mask, the second light source having a second source size smaller than the first source size.
Examples of the present invention may further provide a method of wafer edge exposure. The method includes providing a first exposure unit to expose photoresist on a first area at an edge portion of a wafer, the first exposure unit comprising a first light source to emit first light of multiple wavelengths, and a first mask to direct the first light toward the first area, providing a second exposure unit to expose photoresist on a second area at the edge portion of the wafer, the second exposure unit comprising a second light source to emit second light of a single wavelength, and a second mask to direct the second light toward the second area, emitting the first light from the first light source via the first mask toward the first area, and emitting the second light from the second light source via the second mask toward the second area, wherein the second area encloses a transition area that borders the first area under the first mask
Additional features and advantages of the present invention will be set forth in portion in the description which follows, and in portion will be obvious from the description, or may be learned by practice of the invention. The features and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, examples are shown in the drawings. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown in the examples.
In the drawings:
Reference will now be made in detail to the present examples of the invention illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like portions. It should be noted that the drawings are in greatly simplified form and are not to precise scale.
Referring to
The first light source 11 may include a lamp such as a xenon-mercury (Xe—Hg) lamp, wherein the size of the first light source 11 may range from approximately 5 mm to 50 mm. Furthermore, the first light from the first light source 11 may be composed of optical waves of different wavelengths in a first bandwidth. However, due to the size and different wavelengths of first light source 11, the light cannot be well reflected to focus on the collective lens 13, and the image contrast of the light from the lens collective 13 is thus relatively low. That is, the light from the first light source 11 is not parallel or coherent light. Moreover, the thickness of the first mask 14 may be in the range of 0.1 mm to 3 mm, which may be too thick for the light with multiple wave lengths, for instance, the light with a bandwidth from 190 nanometer (nm) to 450 nm. Then, the light with low image contrast passes through the first opening 15, forming the first process window 17 on wafer edge. In one example, the size of the first process window 17 may be about 3 mm×3 mm. However, a shielding mask shadow effect may occur as the light with poor image contrast passes through a thick mask.
The second light source 21 may include or emulate a point light source that is configured to emit coherent light in a second bandwidth or emit a light wave more coherent than the first light. Accordingly, the first light may have a light source size greater than the second light source size. In one example according to the present invention, the first light may have a first light source size ranging from approximately 5 mm to 50 mm, and the second light may have a second light source size ranging from approximately 10 micrometer (um) to 1000 um. Moreover, the second bandwidth may be much smaller than the first bandwidth. Depending on the property of photoresist, the second light source 21 in one example may include an argon fluoride (ArF) laser that emits the second light of a single wavelength of approximately 193 nm. In another example, the second light source 21 may include a krypton fluoride (KrF) laser that emits the second light of a single wavelength of approximately 248 nm.
Due to the factors of large light source, multiple waves and thick mask, when the first light passes through the first opening 15, the shielding mask shadow effect may occur, resulting in a transition area under the first mask 14 about the first opening 15. The different wavelengths W1 to WN of the first light may cause different transition sub-areas (shown in dashed lines). In the present example, the transition area has a first width L1 from points P2 to P3 along a radial direction of the wafer 30. In one example, the first width L1 may range from, for example, approximately 10 μm to 50 μm. At the transition area, the amount of optical energy received is smaller than that of a threshold energy Eth that is required to completely expose photoresist in order to completely remove the photoresist in a developing process. In one example, the threshold energy Eth may range from approximately 10 to 50 millijoules per square centimeter (mj/cm2). As a result, photoresist on the transition area may be incompletely exposed after the first WEE process. The underexposed photoresist, if exists, may adversely affect the subsequent processing and in turn the yield rate.
As the wafer 30 is rotated with respect to the second exposure unit 20, a second area A2 at the edge portion of the wafer 30 may be completely exposed by the second light through the second process window 17.
In one example according to the present invention, photoresist on an edge portion of a wafer may be processed by the first exposure unit 10 and then the second exposure unit 20 so that residual photoresist on the transition area T, if any, after the first WEE process may be removed by the second exposure unit 20 during the second WEE process. In another example, however, photoresist on an edge portion of a wafer may be processed by the second exposure unit 10 and then the first exposure unit 20. In that case, since the second light is enough to completely expose the photoresist on the edge portion in the second process window 27, no underexposed photoresist is supposed to exist after the second WEE process. The first WEE process performed by the first exposure unit 10 afterwards may nevertheless ensure complete exposure of the photoresist if unexpectedly exists.
At step 102, a first light source to emit first light of multiple wavelengths may be provided. The first light has a first light source size.
At step 103, a second light source to emit second light of a single wavelength may be provided. The second light has a second light source size smaller than the first light source size.
At step 104, the first light may be emitted from the first light source via a first mask toward a first area at the edge portion of the wafer. The energy level of the first light applied over the exposure time is equal to or greater than the threshold energy level so as to completely expose photoresist on the first area. The first area may take an annular shape and cover the wafer edge.
Due to low optical image contrast and mask shielding effect of the first unit 10, when applying the first energy to the first area, a transition area bordering the first area under the first mask may receive a portion of the first light and in turn a portion of the first energy. However, such received energy is not sufficient to completely expose photoresist on the transition area. At step 105, the transition area where underexposed photoresist may exist is identified.
At step 106, the second light may be emitted from the second light source via a second mask toward a second area at the edge portion of the wafer. The second area is located more proximal to the wafer center than the first area and encloses the transition area. Furthermore, the energy level of the second light applied over the exposure time is equal to or greater than the threshold energy level so as to completely expose photoresist on the second area, including underexposed photoresist, if any, on the first area.
In the present example, the edge portion is scanned by the first light source followed by the second light source. In another example, the second light source may scan the edge portion first. In that case, the transition area associated with the first light may be identified. Next, the second light may be emitted from the second light source toward the second area enclosing the transition area. Subsequently, the first light may be emitted from the first light source to scan the first area, which is located more distal to the wafer center than the second area.
It will be appreciated by those skilled in the art that changes could be made to the examples described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular examples disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
Further, in describing representative examples of the present invention, the specification may have presented the method and/or process of the present invention as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the specification should not be construed as limitations on the claims. In addition, the claims directed to the method and/or process of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the spirit and scope of the present invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5204224, | Sep 26 1988 | Ushio Denki | Method of exposing a peripheral part of a wafer |
5229811, | Jun 15 1990 | Nikon Corporation | Apparatus for exposing peripheral portion of substrate |
20090174873, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 30 2011 | YANG, CHIN CHENG | MACRONIX INTERNATIONAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026165 | /0299 | |
Apr 21 2011 | Macronix International Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 06 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 13 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 12 2017 | 4 years fee payment window open |
Feb 12 2018 | 6 months grace period start (w surcharge) |
Aug 12 2018 | patent expiry (for year 4) |
Aug 12 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 12 2021 | 8 years fee payment window open |
Feb 12 2022 | 6 months grace period start (w surcharge) |
Aug 12 2022 | patent expiry (for year 8) |
Aug 12 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 12 2025 | 12 years fee payment window open |
Feb 12 2026 | 6 months grace period start (w surcharge) |
Aug 12 2026 | patent expiry (for year 12) |
Aug 12 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |