A method of improving run length video encoding commands is described in which all compression commands that require a current pixel value to be compared to a previously sent pixel value to determine whether compression can take place in a longer run is adjusted to relieve stringent match conditions. Instead of requiring an exact match, the compression engine subtracts one pixel value from another, and compares the absolute value of the result to a threshold value. In this way, run lengths can be lengthened for purposes of compression and compression efficiency can be increased.

Patent
   8805096
Priority
Jun 25 2004
Filed
Aug 14 2007
Issued
Aug 12 2014
Expiry
Jan 29 2028
Extension
1313 days
Assg.orig
Entity
Large
3
232
currently ok
12. A method in a data processing system of compressing a video stream using run length encoding, the method comprising:
initiating run length encoding;
comparing an absolute value of the difference between a previous pixel and a current pixel with a predetermined threshold value to determine whether to continue the run-length encoding;
continuing the run length encoding if the absolute value is less than the predetermined threshold value; and
ending the run length encoding if the absolute value is above the predetermined threshold value.
1. A video system having an encoder to compress a video stream using run length encoding, the video system comprising:
a system in the encoder configured to:
initiate run length encoding;
compare an absolute value of the difference between a previous pixel and a current pixel with a predetermined threshold value to determine whether to continue the run-length encoding;
continue the run length encoding if the absolute value is less than the predetermined threshold value; and
end the run length encoding if the absolute value is above the predetermined threshold value.
2. A video system according to claim 1, wherein the system further varies the predetermined threshold based on a run-length encoding type.
3. A video system according to claim 2, wherein the run length encoding type includes a copy command comparing current pixel values in the video stream with known pixel values to the left of the current pixel values.
4. A video system according to claim 3, wherein the system further renders a color match condition when the comparing the absolute value indicates a color difference within the predetermined threshold.
5. A video system according to claim 2, wherein the run length encoding type includes at least a copy command comparing current pixel values in the video stream with known pixel values above the current pixel values.
6. A video system according to claim 5, wherein the system further renders a color match condition when the comparing the absolute value indicates a color difference within the predetermined threshold.
7. A video system according to claim 2, wherein the run length encoding type includes a copy command comparing current pixel values in the video stream with known pixel values at corresponding pixel locations of a different pixel frame in the video stream.
8. A video system according to claim 7, wherein the system further renders a color match condition when the comparing the absolute value indicates a color difference within the predetermined threshold.
9. A video system according to claim 1, wherein the system further varies the predetermined threshold based on a run-length encoding type including a two-color series command type.
10. A video system according to claim 9, wherein two-color series command type includes at least a copy command comparing current pixel values in the video stream with two known pixel values wherein the two known pixel values are taken from the video stream as the first two unique pixel values immediately preceding the current pixel values in the video stream.
11. A video system according to claim 10, wherein renders a color match condition when the comparing the absolute value indicates a color difference between the current pixel values and at least one of the two known pixel values within the predetermined threshold.
13. A method according to claim 12, further including the step of:
comparing current pixel values in the video stream with known pixel values to the left of the current pixel values, and rendering a color match condition when the comparing an absolute value indicates a color difference within the predetermined threshold.
14. A method according to claim 12, further including the step of:
comparing current pixel values in the video stream with known pixel values above the current pixel values, and rendering a color match condition when the comparing an absolute value indicates a color difference within the predetermined threshold.
15. A method according to claim 12, further including the step of:
comparing current pixel values in the video stream with known pixel values at corresponding pixel locations of a different pixel frame in the video stream, and rendering a color match condition when the comparing an absolute value indicates a color difference within the predetermined threshold.
16. A method according to claim 12, further including the step of:
comparing current pixel values in the video stream with two known pixel values wherein the two known pixel values are taken from the video stream as the first two unique pixel values immediately preceding the current pixel values in the video stream, and rendering a color match condition when the comparing an absolute value indicates a color difference within the predetermined threshold.

“This application is a divisional of U.S. patent application Ser. No. 10/875,679, “Video Compression Noise Immunity” filed on Jun. 25, 2004 and issued as U.S. Pat. No. 7,457,461 on Nov. 25, 2008, the entire contents of which are incorporated herein by reference. This application relates to U.S. patent application Ser. No. 10/260,534, Dambrackas, “Video Compression System” filed on Oct. 1, 2002 (the “Dambrackas Application”), the entire contents of which are incorporated by reference.”

This invention relates to digital video and more particularly to video compression noise immunity.

Run length encoding schemes for compressing digital video streams are a known method of reducing the bandwidth required to transmit video over a transmission medium. In run-length encoding, pixels of a certain color value are transmitted by identifying a copy command rather than the actual pixel color itself. Ideally, with run-length encoding, multiple consecutive pixels of a common color can be defined by one (or a few) commands indicating, essentially, that a run of X length of common pixel colors can be drawn using a known color as the copy standard. Thus, rather than sending a stream of information identifying independent colors of consecutive pixels, the encoder issues a command to draw X number of pixels of a previously identified pixel color.

The difference in the amount of bandwidth required between individual pixel identification and run length encoding can be substantial, especially in the computer arts, where long lengths of pixels are the same color (for example, background). As described in the Dambrackas Application, several different ways of run length encoding can be envisioned, such as copying a run from a pixel to the left of the run, copying a run from a pixel in a previous frame, copying a run from a pixel above the first pixel in the run, or other such methods.

The present invention can be employed in any kind of run length encoding scheme, including for example, the run length encoding scheme of the Dambrackas application.

As those of ordinary skill in the art will understand, pixel colors are represented by a color space, typically an RGB color space so that any particular color in a color palette can be represented by a value of red, combined with a value of blue, combined with a value of green. The number of bits available for each one of the color components (R, G, and B) will define the depth or richness of the color palette. The present invention is not limited in any way to the number of bits provided by the particular color palette, but for simplicity and purposes of explanation only, the present invention will be described with respect to an eight bit per color RGB color space.

In FIG. 1, this eight bit per component color scheme is shown as orthogonal definitions of a 8×8×8 RGB color matrix. Every color in the color palette can be defined by a location within the orthogonal projections as (1) a value for R between 0x00 and 0xFF, (2) a value of G between 0x00 and 0xFF, and (3) a value of B between 0x00 and 0xFF. In uncompressed digital video, each pixel is defined by its unique 8×8×8 orthogonal location. Because screens of information can include millions of pixels, such video schemes require huge bandwidths for communication.

Thus, for the scan line of pixels shown in FIG. 3, the prior art of FIG. 4 attempts to identify each individual pixel color C1, C2, C3, etc. as individual triplets of bytes of the pixel information shown in FIG. 1. That is, in FIG. 4, the pixel color C1 is identified as an independent triplet of bytes with a header H, an eight-bit R component (Rox), an eight-bit green component (Gox), and an eight-bit blue component (Box) effectively identifying a single color in the 8×8×8 matrix of FIG. 1. The next triplet of bytes following the C1 triplet is the C2 triplet independently identifying the pixel color C2 in a manner similar to that shown in C1. Similarly, subsequent pixel colors C3, C4, etc. are identified by their own independent triplets of bytes. As one can see in FIG. 4, the pixel scan line of FIG. 3 is being identified by a stream of bytes that are uncompressed. With potentially millions of pixels per monitor screen and rapid refresh rates, the number of bytes required to employ the uncompressed video of FIG. 4 makes it essentially unworkable.

Known run length encoding, which compresses the video of FIG. 4 into a fewer number of bytes, is shown in FIG. 5. In this example, suppose that C1-C7 are the same color (for example in a background scan portion). In the example of FIG. 5, the first pixel color C1 in the scan line of FIG. 3 is encoded as an independent triplet of bytes (for each of the R, G, and B components), just like it was in the uncompressed video of FIG. 4. The C1 color, that is now known to the decoder at the monitor end, then becomes a standard by which the next six subsequent pixel colors C2-C7 (which in this example are the same color as C1) are identified by a single RLE (run length encoding) byte comprised of a header, a copy left (CL) command, and a payload identifying the run length of six pixels. The encoding of FIG. 5 communicates all the information needed to transmit the exact seven colors in the scan line of FIG. 3 with a first triplet of bytes followed by a single RLE byte, where the embodiment of FIG. 4 required seven triplets of bytes.

The embodiment of FIG. 5 works very well as long as the color encoder is able to identify long runs of exact match colors. Thus, in the example described above with respect to FIG. 5, the colors C1-C7 were assumed to be identical. A problem occurs, however, when the colors C1-C7 are identical in fact, but the encoder does not recognize them as identical. Such mistaken identity of colors usually occurs due to noise intrusion. Thus, if the encoder recognizes C2, C4 and C6 as even minutely different colors as C1, C3 and C5, the run length encoding will be thwarted because the encoder will not recognize the C1-C7 scan portion as a true run of identical colors. This can occur even when the encoder inaccurately perceives C2, C4 and C6 as neighbors to C1, C3 and C5 in orthogonal location (FIG. 1).

The present invention liberalizes the identification of matches among consecutive pixels so run lengths of matching colors will not be interrupted by certain noise conditions.

FIG. 1 is a graphical representation of conventional eight bit RGB color palette;

FIG. 2 is a graphical representation of transitions in an example color palette;

FIG. 3 is a graphical representation of a scan line of pixel colors being output by a video source;

FIG. 4 is a conventional uncompressed video packetization of the scan line of FIG. 3;

FIG. 5 is a conventional run length encoding example of a scan line of FIG. 3;

FIG. 6 is a system according to an example embodiment of the present invention;

FIG. 7 is a flow diagram of an example method according to the present invention;

FIG. 8 is a flow diagram according to another example method;

FIG. 9 is a flow diagram according to another example method;

FIG. 10A-B is a flow diagram according to another example method; and

FIG. 11A is a graphical representation of RGB hysteresis according to an example aspect of the invention wherein the color space is divided into regular cubical regions.

FIG. 11B is a graphical representation of RGB hysteresis according to an example aspect of the invention wherein the color space is divided into a configuration of circular regions.

Image compression algorithms, such as the algorithms described in the Dambrackas application, exist to allow the information in an image to be represented in as few bytes as possible. Compression, however, does not come for free. Generally, the more efficient a compression algorithm is in representing the image in a small number of bytes, the more costly it is computationally. This means either more or faster hardware is needed to perform the computations, or more time is needed to process the image.

The information contained within the image that is to be represented by compression resides in the spatial placement of color data. In other words, in general, one can not separate the spatial information from the color information. Any attempt to do so either creates or destroys information from the original image.

Compression algorithms fall into two categories: lossy and loss-less. Loss-less compression algorithms preserve all spatial and color information in an image. They tend to require much more processing capability, and compress less efficiently than the lossy algorithms, however, the original image can be faithfully reproduced from the compressed data. Lossy compression algorithms enhance compression but do so at the expense of retention and fidelity of the spatial color information.

For purposes of the example described herein, an incoming pixel is assumed to be represented by three analog signals representing the R, G, and B color components of the pixel. Thus, in FIG. 6, the analog video signal 60 is received from any kind of analog video source as traditional red, green and blue color components. Of course, other color schemes are common and can be used in the present context in lieu of RGB schemes.

In addition to carrying the video information, each of the RGB color components in analog video signal 60 will also carry unwanted noise. There are a number of ways in which noise may be introduced into the analog video signals 60, and the exact noise types are neither important to—nor constraining on—the present invention. For purposes of this description, we assume that any noise discussed is additive noise which is not correlated with any data represented by the video signals, and is independent of any noise appearing on any other pixel or color component.

As shown in FIG. 1, a pixel's three color components can be thought of as coordinates in a three-dimensional color space, where the red, green and blue components form orthogonal axes. Color components from computer video sources typically get digitized into eight bits, resulting in 256 possible levels for each of the three color components. Of course, as described previously, the present invention is not limited to any particular number of bits or any particular color scheme (such as RGB) but has application wherever pixel encoding requires comparative analysis. The example of FIG. 1 illustrates a possible color space that contains over 16 million unique colors, and is often referred to as 24 bit color.

FIG. 2 is a two dimensional representation of a portion of FIG. 1 corresponding to just the R-G plane. In FIG. 2, very few of the colors defined by the R-G plane are shown for the purpose of illustrating one example context in which the present invention can improve compression. In the matrix of colors of FIG. 2, colors of increasing green value proceed to the right and colors of increasing red value proceed upwardly. The following description applies with respect to each of the color components, but for purposes of explanation, only the green component will be used to describe this system.

In FIG. 2, the green value between 0x00 and 0xFF (256 different color values) are defined by the hexadecimal representation corresponding to the green intensity. For example, a typical video signal may reflect an intensity of the green component that varies over a range from 0 mV to 700 mV. When that signal is digitized to eight green bits, the voltage variations are resolved in steps of 2.75 mV. Thus, if the green component is exactly 0 mV, it will be encoded as 0x00, and if the green component is exactly 2.75 mV, then it will be encoded as 0x01. In the case when the green component is exactly 1.375 mV, the smallest amount of noise will push the green color component closer to 0V or closer to 2.75 mV (depending on whether the noise is additive positively or negatively), resulting in a chance that the pixel will be encoded as either 0x00 or 0x01. Thus, for component values at transition locations, noise in the signal can have an impact on the actual color value selected.

Of course, with 256 possible green intensity values and in the context of, specifically, computer video, to the user looking at a particular pixel, a portion of which is the 1.375 mV green component, the difference between a 0x00 or 0x01 encoding may not make a significant difference in the perceived video presentation. Thus, in most computer contexts the problem of noise at the transitions between color values is not a problem of video perception per se, but may be a problem in the context of moving or still photograph video where slight changes in color are important to the user's shade perception. In the computer arts, while slight color variation may not on first blush appear critical, they become a real problem in the context of optimizing run length encoding of the computer video.

This can be seen in the examples of FIGS. 3-5. In situations where the encoder is determining whether a scan line, such as FIG. 3, includes a run of matched color values, if one of the colors C1-C7 is misperceived as a non-matching color, solely as a result of noise, the run will be ended and the encoding compression will suffer. Consider for example, the embodiment of FIG. 2 in which the green component is 350 mV. This value is at the transition between color 20 and color 21 such that the smallest amount of noise decreasing analog intensity will encode the color as element 20 (0x7F) and the smallest amount of noise increasing color intensity will encode the color as element 21 (0x80). In other words, the smallest amount of noise driving the signal downwards results in the signal being encoded as 0x7F and any noise forcing the signal upward will result in the signal being encoded as 0x80. In this example, the problem is particularly acute because the smallest amount of noise can make all of the bits in the digitized version change (0x7F versus 0x80).

The illustration of FIGS. 2 and 3 is somewhat simplified, but it illustrates the general principle that if we require exact matches between pixel values in determining run lengths, compression efficiency will suffer.

Another illustrative example of noise-induced inefficiency occurs when run length encoding is augmented by palette encoding. One method of compressing video is to reduce the number of bytes needed to transmit a color image by reducing the number of bits used to represent the color of a pixel. In the extreme case, each pixel could be represented as a single bit, resulting in a compression ratio of 24:1. This extreme color compression requires that half of the RGB colors get mapped to a 1 and the others get mapped to a 0. We do this by dividing our three dimensional color space of FIG. 1 into two distinct regions. A pixel which is mapped to one of these regions gets represented by a 1 and a pixel which gets mapped to the other region gets mapped to a 0. As an example, define a 1 as all pixels whose components sum is greater than 384, that is, the output from our color space compression will be

Y = 0 1 if R + G + B <= 384 if R + G + B > 384
where Y is the resulting 1 bit color value of the pixel, R is the red color component of the incoming pixel, G is the green color component of the incoming pixel, and B is the blue color component of the incoming pixel.

That color space conversion then gets interesting when noise is added to the system. In the three dimensional color space, addition of a small amount of noise to a single color component has only a small overall effect. Unfortunately, when the color space is reduced by mapping to new color values, the effect of a small amount of noise can be quite large. For example, if our incoming pixel color is (R,G,B)=(128,128,128) then its displayed color will be a mid level gray. When we compress this color using the function above, the sum of its components is 128+128+128=384, resulting in a compressed pixel value Y=0. If we add a noise value of 1 to only the red component of the nominal pixel value, we get (129,128,128). The sum of the noisy pixel's components is 129+128+128=385, resulting in a compressed pixel value of Y=1. The small noise tipped the color value from Y=0 to Y=1. A small amount of noise added to the incoming pixel can have a tremendous effect on the resulting color-compressed value.

As it turns out, many areas of the computer video arts are unique compared to the picture video arts because of the high contrast that usually occurs between adjacent pixels and the relatively few colors that are employed. In most computer video the primary interest is compressing images which are computer-generated desktop and windows applications.

The limited number of colors and limited need to handle moving video can be put to good use when designing a compression algorithm. Because of these characteristics, in the above example, the Y=0 and Y=1 change of pixel value may not materially affect the picture when it occurs in the computer arts. After all, Y=0 and Y=1 are nearly equally valid representations for a pixel value which lies on the boundary between the two regions. To take advantage of the high contrast of the information presented in typical screens, one can ignore small variations in color value of nearby pixels and generally lose little if any important information contained in the image. Ignoring any small color value changes over small spatial separations helps to compress data more efficiently, and may also help avoid transmitting noise information.

Because most of the information of interest within an incoming image lies in high contrast between neighboring pixels, small color changes between adjacent pixels can be ignored under the assumption that these small changes are artifacts of additive noise. One can then purposely bias the “measurement” of any pixel's color value based on the color value of that pixel's neighbors. In this example, the result is, in effect a type of spatial filtering, but not linear spatial filtering, which may risk either amplifying the effects of noise or losing high-contrast image information. Rather, in this example, the effect is dependent upon the amplitude of the change in color between adjacent pixels. That means reducing the low-amplitude noise-induced variations, while preserving the large-amplitude image content.

That spatial filtering can come into efficient use in any analytical encoder in which comparative analysis is performed between pixel values. In one example of such an application, the spatial filtering is applied to run-length encoding schemes. Most compression algorithms make use of the general similarity of nearby pixels in order to reduce the number of bytes needed to encode any particular pixel. For example, as introduced previously with respect to FIG. 5, in run length encoding (RLE), pixels are encoded by a color value and a run length, which indicates the number of subsequent pixels which have the same color value. As soon as the encoding algorithm detects a pixel with a different value, the run ends, and a new run begins.

The weakness of these types of algorithms is that any difference (such as that caused by noise) between a pixel and the pixel to which it is compared (the standard) can result in a mismatch being detected, and the run being prematurely terminated. Spatial filtering employing color space hysteresis relaxes the requirement that a pixel exactly match the color value of a run, so that a pixel value only needs to be within a threshold value to the run value to be regarded as a match.

In RLE, after using color space conversion to reduce the number of colors to be represented in the compressed image, the first pixel which the compression algorithm processes will set the color value of the first run. Then, taking the 24 bit color value of the pixel, determining the region in the color space into which that color value falls, and replacing the value with the 24 bit color of that region, yields a basis for the run. When the next pixel is measured, if its color value maps to the same region in the color space, then the run continues. However, if the “true” color of the next pixel (the color value prior to being corrupted with noise) is near the edge of the color space region, then noise can easily push that color value into an adjacent color spatial region.

So instead of comparing the new pixel to see if the new pixel falls into the region which forms the basis for a run in the color space map, the run's color region is replaced with one which is slightly expanded in all three color dimensions. The slightly expanded color region is larger in 3-D space than the true pixel color, but operates as a test region which can be used to test whether the encoder will treat the measured value as in fact within the true color space. If the pixel falls into the test region, then the run continues; if not, the run terminates and the new pixel forms the basis of a new run. This larger test region now prevents pixels which have been corrupted by small amounts of noise from being pushed out of the run's region, thus preserving longer runs that would otherwise be interrupted by noise. Larger color changes such as those expected from non-noise information within the input image will not be filtered and will thus terminate runs for screen areas of high pixel contrast.

Color space hysteresis is most simply implemented when the color space is divided into regular cubical regions as shown in FIG. 11A. To appreciate this figure, take as an example a simple RLE run, where the actual run color value is at the geometric center of cubical regions normal (R0x01,G0x01,B0x00), the normal color space region, and test (R0x01,G0x01,B0x00), the slightly expanded color region. A new pixel value which falls within region normal (R0x01,G0x01,B0x00) corresponds to the actual run color value represented in three dimensions. A new pixel of the same color, but which has been noise-corrupted and therefore pushed outside of the normal color space region normal (R0x01,G0x01,B0x00), would nonetheless fall within the expanded test region test (R0x01,G0x01,B0x00). This relaxed spatial requirement allows such a pixel to still correspond to the actual run color value, and prevents interruption of the current run.

The regions need not be cubical. FIG. 11B shows a configuration of circular regions having an actual color value of CVR, where normal (R0x01,G0x01) represents the normal color space region and test (R0x01,G0x01) represents the expanded test region. As shown, the blue bits can be completely dropped from the hysteresis to reduce the algorithm complexity.

Although each of the color components appear in two-bit form in FIGS. 11A and 11B, these components can have larger bit size allocations such as five bits or eight bits, for purposes of higher resolution. Also, a region need not be limited in size to the digital-value limits shown on the axes of FIGS. 11A and 11B, as it may be sized to cover larger dimensions.

A single number ntest can be used to describe the “expansion” of the region (test (R0x01,G0x01,B0x00)) for the purpose of implementing hysteresis, or a different value of ntest can be used for each color axis. In the latter case, hysteresis can be customized in the R, G, and B axes, respectively to accommodate different levels of sensitivity for the different components. In such a case, the hysteresis block and the actual color block of FIG. 11 would not be cubical or circular, but could form any variety of shape depending upon the bits from the color components and the ntest values chosen for each component axis.

Although not shown in FIG. 11A, each of the cubes defining an RGB pixel color will receive similar ntest hysteresis expansions so that adjacent cubes actually overlap in ascertainable value compared to adjacent color cubes. The actual value of hysteresis employed can vary depending on levels of sensitivity desired in video perception and richness of color, versus the opportunity to enhance compression by recognition of greater run length. As described above, the actual value can also depend upon the color axis, to create other than cubical hysteresis.

The present invention can be embodied with respect to any kind of encoding that compares pixels for commonality, such as run length encoding, and is not limited to any particular kind of run length encoding. Solely for brevity and purposes of illustrating an example of the present invention, one embodiment will be described with respect to a scan line shown in FIG. 3 and a run length encoding in which a run length of pixel colors C2-C7 are encoded based on a copy left (CL) command from the standard color C1. Examples of how such run length encoding can be accomplished within the context of computer monitors and computer networks is described in the Dambrackas application.

The Dambrackas application describes five different types of commands to encode a series of pixels. The first three are run-length encoding commands and include: (1) the copy-left command (encoding a run-length of pixel values based on a pixel value to the immediate left of the run), (2) the copy-old command (encoding a run-length of pixel values based on a pixel value in the same location as the first pixel in the run but in the immediately preceding frame), and (3) the copy-above command (encoding a run-length of pixel values based on a pixel value immediately above the first pixel in the run). Hysteresis provides advantage in the context of all of those run-length encoding techniques.

The hysteresis method also provides advantage in the context of the fourth encoding command described in the Dambrackas application, the so-called make-series command. The make-series command is also a comparative analysis command because it uses as standards two different current pixel color values and encodes by binary ones and zeros a subsequent set of pixels that fall within one of the two color standards. The command is effective for text encoding that comprises a string of 2-color (text and background) runs. Hysteresis provides advantage both (1) for the comparison of the two different color standards (to decide whether they are, in fact, high enough in contrast to be considered two different colors), and (2) for the comparison of subsequent pixels to determine whether they match one of the two color standards. Of course, the hysteresis values for the “two-color difference” determination can be the same or different in sensitivity (thresholds) than the “color match” determinations.

FIG. 6 illustrates an example system that includes hysteresis to ease the requirement for exact matches in calculating run length and other comparative conditions. Analog video signal 60 is input to analog digital converter 61 which it is digitized into a stream of digital video signals for the encoder 62. The encoder 62 may be an encoder such as that described in the Dambrackas application or any other similar kind of comparative analysis encoder. Within the encoder 62 is a threshold analysis routine 63, which run a threshold routine described below. Also included within encoder 62 is the compression routine 64, which provides the run length encoding of the digital video stream received from the A to D converter 61. Transmission medium 65 communicates the encoded video from the encoder 62 to the decoder 66 where decompression routine 67 reverses the process of the compression routine 64 to retrieve the digital video stream. The decompressed digital video stream is directed to a display 68, such as a flat panel display or in an alternative embodiment (after being passed through a D to A converter) to an analog video monitor.

The specific application of the system of FIG. 6 can vary. For example, the system could be a video extender for a remote PC. It may also be employed in video communication on network systems, remote PC controllers, KVM switch applications, or any other application in which digital video is encoded by run length encoding or other encoding which analyzes for match or mis-match conditions. Further, the routines involved in compression (64) and threshold analysis (63) can be in a single processor, ASIC, FPGA or other suitable device to perform the kinds of routines described in, for example, the several embodiments of FIGS. 7-10, or in still other alternative embodiments.

In an example embodiment of the present invention, instead of requiring an exact match for a run length condition to apply, the threshold routine 63 subtracts one pixel value from another pixel value, and compares the absolute value of the result to a threshold value. If the absolute value of the difference is less than or equal to the threshold, then it is treated as if it were an exact match. Specifically, a current pixel's red, green, and blue components Ri, Gi, Bi are identified as an incoming pixel value in a stream of video received by the encoder 62 from the converter 61. The encoder 62 also identifies Rs, Gs, Bs as a known pixel value (a standard) either in the present frame or a prior frame. Once the encoder 62 knows the value of Ri, Gi, Bi and Rs, Gs, Bs, the encoder 62 attempts to determine whether a match condition exists between the two. As previously described, in prior systems, the encoder 62 would determine whether the value of Ri, Gi, Bi was the same as Rs, Bs, Gs, to determine identity. As described with respect to FIG. 2, in some instances, that identity may fail as a result of mismatch identifications that don't really exist.

Accordingly, in the example embodiment, the encoder 62 subtracts the value of Rs, Gs, and Bs components from the values of Ri, Gi, Bi components in order to obtain difference signals Rd, Gd, Bd. The absolute values of Rd Gd and Bd are analyzed to determine whether they are less than a threshold value of Cthresh. If so, the run length is incremented at step 79 and a new Ri, Gi, Bi is identified. In other words, if the difference values Rd, Gd and Bd are less than the threshold, the match condition is assumed to be the case, and the run length is not interrupted.

When Rd, Gd or Bd exceed the threshold, the encoder 62 first determines whether any run length is currently in process. If so, that run length is ended and encoded by the compression routine 64, and a new Ri, Gi and Bi, is identified. If, on the other hand, no prior run length has been identified (prior to the current Ri, Gi and Bi presently being analyzed) then Ri, Gi and Bi are encoded according to some other encoding arrangement other than run length encoding by the compression routine 64. Again, another Ri, Gi and Bi is then identified.

Some examples will now be described to explain the impact of the compression. The examples are described in the context of the copy-old commands (CO), copy-left commands (CL), copy-above commands (CA), and make-series commands (MS) previously introduced.

First, a method of incrementing the count of a CO command (FIG. 7) is described. Recall that the copy-old command is a run length command in which the present pixel value is compared to the pixel value in a prior frame corresponding to the location of the first pixel in the present pixel run. In FIG. 7, an incoming pixel value is identified by encoder 62 as Ri, Gi and Bi at step 70. The previously sent value for the copy old pixel location (that is, the value currently displayed by the client) is identified by encoder 62 as Rs, Gs and Bs at step 71. Cthresh is the assigned color component threshold. Then, Rd=Rs−Ri, Gd=Gs−Gi, Bd=Bs−BI (where Rd, Gd, and Bd are the color component differences) is calculated at step 72. If |Rd|<Cthresh and |Gd|<Cthresh and |Bd|<Cthresh at steps 73-75, then the incoming pixel value matches the previously sent value, and the CO count is incremented at step 79. If the match fails at any of steps 73-75, then the CO command is terminated. Thereafter, if a run existed prior to Ri Gi Bi, but is now ending due to the current mis-match (step 76), the run is encoded at step 77. If not, the pixel Ri Gi Bi is encoded using a method other than RLE at step 78.

Next, a method of incrementing the count of a CL command (FIG. 8) is described. Recall that a copy-left command is a run length encoding command in which the present pixel value is compared to a prior pixel value immediately to the left of the first pixel in the present run. In FIG. 8, incoming pixel value is identified by encoder 62 as Ri, Gi, Bi, at step 80. The value of the pixel sent prior to the start of the CL command is RL, GL, BL at step 81, and Cthresh is the assigned color component threshold. Then, Rd=RL−Ri, Gd=GL−Gi, Bd=BL−Bi, (where Rd, Gd, and Bd are the color component differences) is calculated at step 82. If |Rd|<Cthresh and |Gd|<Cthresh and |Bd|<Cthresh at steps 83-85, then the incoming pixel value matches the previously sent value, and the CL count is incremented at step 89. If the match fails at any of steps 83-85, then the CL command is terminated. Thereafter, if a run existed prior to Ri Gi Bi but is now ending due to the current mismatch (step 86), the run is encoded at step 87. If not, the pixel Ri Gi Bi is encoded using a method other than run-length encoding at step 88.

Next a method of incrementing the count of a CA command (FIG. 9) is described. Recall that the copy-above command is a command in which the present pixel value is compared to a pixel value immediately above the first pixel in a present run. In FIG. 9, prior to starting a CA command, a list of color values must be stored which corresponds to the last color values sent for each pixel column position within the image (i.e., one previous row). The values contained in this array will not change during execution of the CA command. An incoming pixel value is identified by encoder 62 as Ri(x,y), Gi(x,y), Bi(x,y) at step 90. The value of the corresponding array entry is identified as RA(x), GA(x), BA(x) at step 91. Cthresh is the color component threshold, x is the pixel column of the current pixel and y is the row of the current pixel. Then, Rd=RA(x)−Ri(x,y), Gd=GA(x)−Gi(x,y), Bd=BA(x)−Bi(x,y) (where Rd, Gd, and Bd are the color component differences), is calculated at step 92. If |Rd|<Cthresh and |Gd|<Cthresh and |Bd|<Cthresh at steps 93-95, then the incoming pixel value matches the previously sent value, and the CA count is incremented at step 99. If the match fails at any of steps 93-95, then the CA command is terminated. Thereafter, if the run existed but is now ending due to the current mismatch (at step 96), the run is encoded at step 97. If no immediately previous run existed, the pixel RiGiBi is encoded with other than run length encoding at step 98.

Finally a method of testing a pixel to see if it fits in a MS command (FIGS. 10 A-B) is described. Recall that the make-series command is a command that fills bytes with a sequence of bits corresponding in binary value to two (and only two) color values of the two pixel colors immediately to the left of the first pixel in the make-series run. In the make-series command, two most recently sent pixel values are stored, which pixel values correspond to two different colors. All subsequent pixels in the run must be identified as coming from one or the other of those two colors, or the run terminates. First, prior to the start of the MS command, the two most recently sent pixel values must be stored. The most recently sent value is RP0, GP0, BP0; the next most recently sent value is RP1, GP1, BP1. Also note that these two values must differ by at least the threshold value; that is, these values are valid only if |RP0−RP1|>Cthresh or |GP0−GP1|>Cthresh or |BP0—BP1>Cthresh, at step 102. If, at step 102, the two color values are different by the threshold, the RP0 and RP1 are updated at step 102A for use in steps 104 and/or 109. A different threshold value Cthreshx can be used for step 102, i.e., a different threshold than used later in steps 104-107. If step 102 fails, then the previous two pixels are not “two colors,” and the current pixel is encoded using a technique other than the two-color MS command at step 103.

If the MS command applies at step 102, and |RP0−Ri|<Cthresh and |GP0−Gi|<Cthresh and |BP0−Gi|<Cthresh at steps 104-107, then the pixel can be represented as a 0 (corresponds to the first color standard) in the MS byte at the bit location for the current pixel, at step 108.

Similarly, if the MS command applies at step 102, and |RP1—Ri|<Cthresh and |GP1−Gi|<Cthresh and |BP1−Gi|<Cthresh at steps 109-112, then the pixel can be represented as a 1 (corresponding to the second color standard) in the MS byte at the bit location for the current pixel, at step 113.

If the MS command fails at any of steps 105-107 and for any of steps 110-112, then the MS command fails for the current pixel, the MS byte is created and sent, and the current pixel is encoded by some other command (other than MS) at step 103.

For each of the above scenarios Cthresh can be determined based on the designer's choice of greater color contrast versus greater compression efficiency. In effect, the hysteresis introduces potential color information loss to what might otherwise be an essentially lossless compression scheme. The amount of loss to be tolerated through the hysteresis can be determined based on the communications bandwidth, system speed, color palette, color depth (e.g., bits per pixel color component), and other such design criteria. Cthresh can then be assigned based on the degree of loss permitted. Cthresh need not be identical for every run length command type, nor for every color component type, nor for evaluating match conditions versus evaluating mis-match conditions.

In one example embodiment, Cthresh is different for one or more of the various encoding techniques employed by the algorithm. Thus, as just one illustrative example, the “no change” run length encoding technique can employ a Cthresh different from the “copy above” or “copy left” encoding techniques. Similarly, the “copy above” and “copy left” techniques could employ the same or different thresholds, although employing the same threshold is preferred in order to address artifacts consistently in the horizontal and vertical dimensions. Similarly, thresholds for the MS commands can be the same or different from any or all of the run length encoding commands, depending upon the sensitivities desired for the different command types.

Unlike prior usages of hysteresis in video processing, in which the hysteresis was used as a filter for the video, the present systems are unusual in providing hysteresis for individually different command types within a compression algorithm. Thus, hysteresis can be tailored to a particular command type (such as by setting unique thresholds and/or unique numbers of bits evaluated for each color component), rather than to the video signal per se. In the preferred embodiment, five command types are described (copy old, copy left, copy above, make a series, and make a pixel), each of which has a hysteresis associated with it that may (or may not) be unique compared to the hysteresis characteristics of the other command types. The present systems thus improve the efficiencies of each command type and can be tailored to the unique noise sensitivities of those command types. Of course, the present invention is in no way limited to a particular one or more command types, but may be applied to tailor hysteresis to any one or combination of command types.

While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Gilgen, Robert L.

Patent Priority Assignee Title
10140728, Aug 11 2016 Citrix Systems, Inc. Encoder with image filtering and associated methods
11330297, Aug 19 2014 Qualcomm Incorporated Methods incorporating extensions to copy-above mode for palette mode coding
11962788, Aug 03 2021 Vertiv Corporation DVCX and DVCY extensions to DVC video compression
Patent Priority Assignee Title
3710011,
3925762,
3935379, May 09 1974 GDE SYSTEMS, INC Method of and system for adaptive run length encoding of image representing digital information
4005411, Dec 30 1974 International Business Machines Corporation Compression of gray scale imagery to less than one bit per picture element
4134133, Jul 21 1976 Kokusai Denshin Denwa Kabushiki Kaisha Method for interline-coding facsimile signal
4142243, May 20 1977 Amdahl Corporation Data processing system and information scanout employing checksums for error detection
4369464, Jul 09 1979 Digital video signal encoding and decoding system
4384327, Oct 31 1978 Honeywell Information Systems Inc. Intersystem cycle control logic
4667233, Sep 17 1984 NEC Corporation Apparatus for discriminating a moving region and a stationary region in a video signal
4764769, Oct 19 1983 VEGA PRECISION LABORATORIES, INC A CORP OF VIRGINIA Position coded pulse communication system
4774587, Jun 02 1987 Eastman Kodak Company; EASTMAN KODAK COMPANY, ROCHESTER, NEW YORK, A NEW JERSEY CORP Still video transceiver processor
4855825, Dec 05 1985 VISTA COMMUNICATION INSTRUMENTS INC Method and apparatus for detecting the most powerfully changed picture areas in a live video signal
4873515, Oct 16 1987 Evans & Sutherland Computer Corporation Computer graphics pixel processing system
4959833, Mar 08 1989 ICS ELECTRONICS CORPORATION, 2185 OLD OAKLAND RD , SAN JOSE, CA 95131 A CORP OF CA Data transmission method and bus extender
5046119, Mar 16 1990 Apple Inc Method and apparatus for compressing and decompressing color video data with an anti-aliasing mode
5083214, May 02 1990 Eastman Kodak Company Apparatus and methods for extracting data from a scanned bit-mapped data strip
5235595, May 06 1987 Micron Technology, Inc Packet switching
5251018, Jan 29 1991 SAMSUNG ELECTRONICS CO , LTD Color signal contour compensator for matching the rise times of color and luminance signals of a video signal to produce sharper images
5325126, Apr 01 1992 INTEL CORPORATION, A DELAWARE CORP Method and apparatus for real time compression and decompression of a digital motion video signal
5339164, Dec 24 1991 Massachusetts Institute of Technology; MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE Method and apparatus for encoding of data using both vector quantization and runlength encoding and using adaptive runlength encoding
5418952, Nov 23 1988 PARALLEL SIMULATION TECHNOLOGY, LLC Parallel processor cell computer system
5430848, Aug 14 1992 Loral Fairchild Corporation Distributed arbitration with programmable priorities
5465118, Dec 17 1993 LENOVO SINGAPORE PTE LTD Luminance transition coding method for software motion video compression/decompression
5497434, May 05 1992 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Image data compression
5519874, Mar 13 1990 Hitachi, Ltd.; Hitachi Microcomputer System, Ltd. Application execution control method and system for servicing subscribers via a switchboard connected to a computer using an application management table
5526024, Mar 12 1992 AVAYA Inc Apparatus for synchronization and display of plurality of digital video data streams
5566339, Oct 23 1992 Avocent Huntsville Corporation System and method for monitoring computer environment and operation
5572235, Nov 02 1992 SAMSUNG ELECTRONICS CO , LTD Method and apparatus for processing image data
5630036, Nov 02 1992 Fujitsu Limited Image data compression method involving deleting data in areas where predicted color value, based on color change between adjacent pixels, is small, and image data processing device implementing same method
5659707, Oct 07 1994 Transpacific IP Ltd Transfer labeling mechanism for multiple outstanding read requests on a split transaction bus
5664029, May 13 1992 Apple Inc Method of disregarding changes in data in a location of a data structure based upon changes in data in nearby locations
5664223, Apr 05 1994 International Business Machines Corporation System for independently transferring data using two independently controlled DMA engines coupled between a FIFO buffer and two separate buses respectively
5721842, Aug 25 1995 AVOCENT REDMOND CORP Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch
5731706, Feb 18 1997 Fluke Corporation Method for efficient calculation of power sum cross-talk loss
5732212, Oct 23 1992 Avocent Huntsville Corporation System and method for remote monitoring and operation of personal computers
5754836, Sep 21 1995 Cisco Technology, Inc Split bus architecture for multipoint control unit
5757973, Jan 11 1991 Sony Corporation; Sony United Kingdom Limited Compression of image data seperated into frequency component data in a two dimensional spatial frequency domain
5764479, Sep 23 1996 LENOVO SINGAPORE PTE LTD Split system personal computer having floppy disk drive moveable between accessible and inaccessible positions
5764924, Aug 24 1995 TERADATA US, INC Method and apparatus for extending a local PCI bus to a remote I/O backplane
5764966, Jun 07 1995 SAMSUNG ELECTRONICS CO , LTD Method and apparatus for reducing cumulative time delay in synchronizing transfer of buffered data between two mutually asynchronous buses
5781747, Nov 14 1995 RATEZE REMOTE MGMT L L C Method and apparatus for extending the signal path of a peripheral component interconnect bus to a remote location
5796864, May 12 1992 Apple Inc Method and apparatus for real-time lossless compression and decompression of image data
5799207, Mar 28 1995 Transpacific IP Ltd Non-blocking peripheral access architecture having a register configure to indicate a path selection for data transfer between a master, memory, and an I/O device
5805735, Mar 02 1995 Apple Inc Method and apparatus for compression of digitized image data using variable color fidelity
5812169, May 14 1996 Eastman Kodak Company Combined storage of data for two printheads
5812534, Dec 02 1994 Multi-Tech Systems, Inc. Voice over data conferencing for a computer-based personal communications system
5828848, Oct 31 1996 SENSORMATIC ELECTRONICS, LLC Method and apparatus for compression and decompression of video data streams
5844940, Jun 30 1995 ARRIS Enterprises, Inc Method and apparatus for determining transmit power levels for data transmission and reception
5861764, Dec 31 1996 Hewlett Packard Enterprise Development LP Clock skew reduction using spider clock trace routing
5864681, Aug 09 1996 Hewlett Packard Enterprise Development LP Video encoder/decoder system
5867167, Aug 04 1995 Sun Microsystems, Inc. Compression of three-dimensional graphics data including quantization, delta-encoding, and variable-length encoding
5870429, Jun 17 1996 ARRIS Enterprises, Inc Apparatus method, and software modem for utilizing envelope delay distortion characteristics to determine a symbol rate and a carrier frequency for data transfer
5898861, Oct 18 1996 Hewlett Packard Enterprise Development LP Transparent keyboard hot plug
5946451, Apr 07 1995 Heidelberger Druckmaschinen AG Method for generating a contone map
5948092, Oct 07 1997 LENOVO SINGAPORE PTE LTD Local bus IDE architecture for a split computer system
5956026, Dec 19 1997 SHARP KABUSHIKI KAISHA, INC Method for hierarchical summarization and browsing of digital video
5967853, Jun 24 1997 COMMSCOPE, INC OF NORTH CAROLINA Crosstalk compensation for electrical connectors
5968132, Feb 21 1996 Fujitsu Limited Image data communicating apparatus and a communication data quantity adjusting method used in an image data communication system
5997358, Sep 02 1997 COMMSCOPE, INC OF NORTH CAROLINA Electrical connector having time-delayed signal compensation
6003105, Nov 21 1996 Hewlett-Packard Company Long-haul PCI-to-PCI bridge
6008847, Apr 08 1996 LOGITECH EUROPE, S A Temporal compression and decompression for video
6012101, Jan 16 1998 CLEARCUBE TECHNOLOGY, INC Computer network having commonly located computing systems
6016316, Apr 21 1995 Hybrid Patents Incorporated Hybrid access system employing packet suppression scheme
6032261, Dec 30 1997 Philips Electronics North America Corporation Bus bridge with distribution of a common cycle clock to all bridge portals to provide synchronization of local buses, and method of operation thereof
6038346, Jan 29 1998 Seiko Epson Corporation Runs of adaptive pixel patterns (RAPP) for lossless image compression
6040864, Oct 28 1993 Matsushita Electric Industrial Co., Ltd. Motion vector detector and video coder
6055597, Oct 30 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Bi-directional synchronizing buffer system
6060890, Apr 17 1998 GLOBALFOUNDRIES Inc Apparatus and method for measuring the length of a transmission cable
6065073, Aug 17 1998 Jato Technologies, Inc. Auto-polling unit for interrupt generation in a network interface device
6070214, Aug 06 1998 SHAMROCK INNOVATIONS, LLC Serially linked bus bridge for expanding access over a first bus to a second bus
6084638, Oct 08 1996 Panasonic Corporation of North America Computer interface extension system and method
6094453, Oct 11 1996 ETIIP HOLDINGS INC Digital data compression with quad-tree coding of header file
6097368, Mar 31 1998 MATSUSHITA ELECTRIC INDUSTRIAL COMPANY, LTD Motion pixel distortion reduction for a digital display device using pulse number equalization
6124811, Jul 02 1998 Intel Corporation Real time algorithms and architectures for coding images compressed by DWT-based techniques
6134613, Jun 16 1997 HANGER SOLUTIONS, LLC Combined video processing and peripheral interface card for connection to a computer bus
6146158, Sep 14 1998 TAGNOLOGY, INC Self-adjusting shelf mounted interconnect for a digital display
6154492, Jan 09 1997 Matsushita Electric Industrial Co., Ltd. Motion vector detection apparatus
6195391, May 31 1994 International Business Machines Corp Hybrid video compression/decompression system
6202116, Jun 17 1998 AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc Write only bus with whole and half bus mode operation
6233226, Dec 14 1998 VERIZON LABORATORIES, INC System and method for analyzing and transmitting video over a switched network
6240481, Dec 22 1997 Konica Corporation Data bus control for image forming apparatus
6240554, Oct 20 1993 IGATE, INC Local area network for simultaneous, bi-directional transmission of video bandwidth signals
6243496, Jan 07 1993 Sony United Kingdom Limited Data compression
6304895, Aug 22 1997 AVOCENT REDMOND CORP Method and system for intelligently controlling a remotely located computer
6327307, Aug 07 1998 Google Technology Holdings LLC Device, article of manufacture, method, memory, and computer-readable memory for removing video coding errors
6345323, Aug 25 1995 AVOCENT REDMOND CORP Computer interconnection system
6360017, Mar 05 1998 WSOU Investments, LLC Perceptual-based spatio-temporal segmentation for motion estimation
6370191, Nov 01 1999 Texas Instruments Incorporated Efficient implementation of error approximation in blind equalization of data communications
6373890, May 05 1998 NOVALOGIC, INC Video compression and playback process
6377313, Sep 02 1999 TECHWELL,INC Sharpness enhancement circuit for video signals
6377640, Jul 31 1997 Stanford Syncom, Inc.; STANFORD SYNCOM INC Means and method for a synchronous network communications system
6404932, Jul 31 1996 Matsushita Electric Industrial Co., Ltd. Apparatus and method of decoding an image using a statistical model based on pixels
6418494, Oct 30 1998 VERTIV IT SYSTEMS, INC ; Avocent Corporation Split computer architecture to separate user and processor while retaining original user interface
6425033, Jun 20 1997 National Instruments Corporation System and method for connecting peripheral buses through a serial bus
6453120, Apr 05 1993 Canon Kabushiki Kaisha Image processing apparatus with recording and reproducing modes for hierarchies of hierarchically encoded video
6470050, Apr 09 1999 SOCIONEXT INC Image coding apparatus and its motion vector detection method
6496601, Jun 23 1997 SIZMEK TECHNOLOGIES, INC System and method for asynchronous, adaptive moving picture compression, and decompression
6512595, Apr 27 1998 Canon Kabushiki Kaisha Data processing apparatus, data processing method, and medium
6516371, May 27 1999 Advanced Micro Devices, Inc. Network interface device for accessing data stored in buffer memory locations defined by programmable read pointer information
6522365, Jan 27 2000 Qualcomm Incorporated Method and system for pixel clock recovery
6539418, Aug 22 1997 AVOCENT REDMOND CORP Method and system for intelligently controlling a remotely located computer
6542631, Nov 27 1997 Seiko Epson Corporation Encoding method of a color image and its encoding device and a decoding method of the color image and its decoding device
6567464, Jul 24 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Fast retrain based on communication profiles for a digital modem
6571393, May 27 1998 HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY, THE Data transmission system
6574364, Mar 31 1998 Koninklijke Philips Electronics N V Pixel color value encoding and decoding
6584155, Dec 27 1999 Kabushiki Kaisha Toshiba Method and system for estimating motion vector
6590930, Jul 22 1999 CADENCE DESIGN SYSTEMS INC Local area network diagnosis
6661838, May 26 1995 Canon Kabushiki Kaisha Image processing apparatus for detecting changes of an image signal and image processing method therefor
6664969, Nov 12 1999 Hewlett Packard Enterprise Development LP Operating system independent method and apparatus for graphical remote access
6701380, Aug 22 1997 Avocent Redmond Corp. Method and system for intelligently controlling a remotely located computer
6754241, Jan 06 1999 SRI International Computer system for statistical multiplexing of bitstreams
6785424, Aug 13 1999 Canon Kabushiki Kaisha Encoding method and apparatus for compressing a data structure having two or more dimensions, decoding method, and storage medium
6829301, Jan 16 1998 DIGIMEDIA TECH, LLC Enhanced MPEG information distribution apparatus and method
6833875, Sep 02 1999 Techwell LLC Multi-standard video decoder
6871008, Jan 03 2000 TAMIRAS PER PTE LTD , LLC Subpicture decoding architecture and method
6898313, Mar 06 2002 Sharp Laboratories of America, Inc. Scalable layered coding in a multi-layer, compound-image data transmission system
6940900, Dec 27 2000 NEC Corporation Data compression, control program for controlling the data compression
6972786, Dec 30 1994 Pragmatus AV LLC Multimedia services using central office
7006700, Jun 25 2004 Vertiv Corporation Digital video compression command priority
7013255, Jun 09 2000 AVAYA Inc Traffic simulation algorithm for asynchronous transfer mode networks
7020732, Oct 30 1998 VERTIV IT SYSTEMS, INC ; Avocent Corporation Split computer architecture
7031385, Oct 01 1999 BASS AERO PTE LTD Method and apparatus for detecting scene change of a compressed moving-picture, and program recording medium therefor
7085319, Apr 17 1999 Altera Corporation Segment-based encoding system using segment hierarchies
7093008, Nov 30 2000 Intel Corporation Communication techniques for simple network management protocol
7143432, Oct 01 1999 ADAPTIVE STREAMING INC System for transforming streaming video data
7221389, Feb 15 2002 Vertiv Corporation Automatic equalization of video signals
7222306, May 02 2001 BITSTREAM INC Methods, systems, and programming for computer display of images, text, and/or digital content
7272180, Oct 01 2002 Vertiv Corporation Video compression system
7277104, Feb 26 2002 ADDER TECHNOLOGY LTD Video signal skew
7321623, Oct 01 2002 Vertiv Corporation Video compression system
7336839, Jun 25 2004 Vertiv Corporation Digital video compression command priority
7373008, Mar 28 2002 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Grayscale and binary image data compression
7457461, Jun 25 2004 Vertiv Corporation Video compression noise immunity
7466713, Oct 29 2004 Vertiv Corporation Service processor gateway system and appliance
7515632, Oct 01 2002 VERTIV IT SYSTEMS, INC Video compression system
7515633, Oct 01 2002 VERTIV IT SYSTEMS, INC Video compression system
7542509, Oct 01 2002 VERTIV IT SYSTEMS, INC Video compression system
7609721, Jul 23 2004 Citrix Systems, Inc Systems and methods for adjusting the maximum transmission unit for encrypted communications
7720146, Oct 01 2002 VERTIV IT SYSTEMS, INC Video compression system
7782961, Apr 28 2006 Vertiv Corporation DVC delta commands
7941634, Dec 01 2006 InterDigital VC Holdings, Inc Array of processing elements with local registers
20010048667,
20020075412,
20030005186,
20030048943,
20030202594,
20030231204,
20040017514,
20040062305,
20040064198,
20040122931,
20040228526,
20050005102,
20050025248,
20050057777,
20050069034,
20050089091,
20050108582,
20050135480,
20050157799,
20050198245,
20050231462,
20050249207,
20050286790,
20060039404,
20060092271,
20060120460,
20060126718,
20060126720,
20060126721,
20060126722,
20060126723,
20060161635,
20060262226,
20070019743,
20070165035,
20070180407,
20070248159,
20070253492,
20090290647,
EP270896,
EP395416,
EP495490,
EP780773,
EP844567,
EP899959,
GB2318956,
GB2350039,
GB2388504,
JP10215379,
JP10257485,
JP11184800,
JP11184801,
JP11203457,
JP11308465,
JP11313213,
JP1162480,
JP1303988,
JP2000125111,
JP2001053620,
JP2001148849,
JP2001169287,
JP2002043950,
JP2002165105,
JP2003174565,
JP2003244448,
JP2003250053,
JP2004032698,
JP2004220160,
JP3130767,
JP3192457,
JP62077935,
JP63108879,
JP64077374,
JP677858,
JP8033000,
JP8223579,
JP8263262,
JP9233467,
JP9321672,
TW220036,
TW589871,
WO122628,
WO2062050,
WO3055094,
WO3071804,
WO2004032356,
WO2004081772,
WO9741514,
WO9826603,
WO9854893,
WO9950819,
//////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 22 2004GILGEN, ROBERTAvocent CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0405960192 pdf
Aug 14 2007Avocent Corporation(assignment on the face of the patent)
Feb 28 2017Avocent CorporationJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTABL SECURITY AGREEMENT0419410363 pdf
Feb 28 2017LIEBERT NORTH AMERICA, INC JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTABL SECURITY AGREEMENT0419410363 pdf
Feb 28 2017AVOCENT HUNTSVILLE, LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTABL SECURITY AGREEMENT0419410363 pdf
Feb 28 2017AVOCENT REDMOND CORP JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTABL SECURITY AGREEMENT0419410363 pdf
Feb 28 2017EMERSON NETWORK POWER, ENERGY SYSTEMS, NORTH AMERICA, INC JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTABL SECURITY AGREEMENT0419410363 pdf
Feb 28 2017Liebert CorporationJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTABL SECURITY AGREEMENT0419410363 pdf
Feb 28 2017ASCO POWER TECHNOLOGIES, L P JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0419440892 pdf
Feb 28 2017Avocent CorporationJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0419440892 pdf
Feb 28 2017AVOCENT FREMONT, LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0419440892 pdf
Feb 28 2017LIEBERT NORTH AMERICA, INC JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0419440892 pdf
Feb 28 2017Liebert CorporationJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0419440892 pdf
Feb 28 2017ASCO POWER TECHNOLOGIES, L P JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTABL SECURITY AGREEMENT0419410363 pdf
Feb 28 2017EMERSON NETWORK POWER, ENERGY SYSTEMS, NORTH AMERICA, INC JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0419440892 pdf
Feb 28 2017AVOCENT FREMONT, LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTABL SECURITY AGREEMENT0419410363 pdf
Feb 28 2017AVOCENT REDMOND CORP JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0419440892 pdf
Feb 28 2017AVOCENT HUNTSVILLE, LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0419440892 pdf
Oct 31 2018Avocent CorporationVERTIV IT SYSTEMS, INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0477880620 pdf
May 13 2019VERTIV IT SYSTEMS, INC THE BANK OF NEW YORK MELLON TRUST COMPANY, N A SECOND LIEN SECURITY AGREEMENT0494150262 pdf
May 13 2019Vertiv CorporationTHE BANK OF NEW YORK MELLON TRUST COMPANY, N A SECOND LIEN SECURITY AGREEMENT0494150262 pdf
May 13 2019VERTIV ENERGY SYSTEMS, INC THE BANK OF NEW YORK MELLON TRUST COMPANY, N A SECOND LIEN SECURITY AGREEMENT0494150262 pdf
May 13 2019ELECTRICAL RELIABILITY SERVICES, INC THE BANK OF NEW YORK MELLON TRUST COMPANY, N A SECOND LIEN SECURITY AGREEMENT0494150262 pdf
May 13 2019VERTIV NORTH AMERICA, INC THE BANK OF NEW YORK MELLON TRUST COMPANY, N A SECOND LIEN SECURITY AGREEMENT0494150262 pdf
Mar 02 2020Vertiv CorporationCITIBANK, N A SECURITY AGREEMENT0520760874 pdf
Mar 02 2020ENERGY LABS, INC CITIBANK, N A SECURITY AGREEMENT0520760874 pdf
Mar 02 2020ELECTRICAL RELIABILITY SERVICES, INC CITIBANK, N A SECURITY AGREEMENT0520760874 pdf
Mar 02 2020THE BANK OF NEW YORK MELLON TRUST COMPANY N A ELECTRICAL RELIABILITY SERVICES, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0520710913 pdf
Mar 02 2020JPMORGAN CHASE BANK, N A VERTIV IT SYSTEMS, INC F K A AVOCENT CORPORATION RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0520650757 pdf
Mar 02 2020JPMORGAN CHASE BANK, N A VERTIV IT SYSTEMS, INC F K A AVOCENT REDMOND CORP RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0520650757 pdf
Mar 02 2020JPMORGAN CHASE BANK, N A VERTIV CORPORATION F K A EMERSON NETWORK POWER, ENERGY SYSTEMS, NORTH AMERICA, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0520650757 pdf
Mar 02 2020JPMORGAN CHASE BANK, N A VERTIV CORPORATION F K A LIEBERT CORPORATION RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0520650757 pdf
Mar 02 2020JPMORGAN CHASE BANK, N A VERTIV IT SYSTEMS, INC F K A AVOCENT FREMONT, LLC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0520650757 pdf
Mar 02 2020VERTIV IT SYSTEMS, INC CITIBANK, N A SECURITY AGREEMENT0520760874 pdf
Mar 02 2020THE BANK OF NEW YORK MELLON TRUST COMPANY N A VERTIV IT SYSTEMS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0520710913 pdf
Mar 02 2020THE BANK OF NEW YORK MELLON TRUST COMPANY N A Vertiv CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0520710913 pdf
Mar 02 2020JPMORGAN CHASE BANK, N A VERTIV IT SYSTEMS, INC F K A AVOCENT HUNTSVILLE, LLC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0520650757 pdf
Oct 22 2021Vertiv CorporationUMB BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0579230782 pdf
Oct 22 2021VERTIV IT SYSTEMS, INC UMB BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0579230782 pdf
Oct 22 2021ELECTRICAL RELIABILITY SERVICES, INC UMB BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0579230782 pdf
Oct 22 2021ENERGY LABS, INC UMB BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0579230782 pdf
Dec 04 2024VERTIV IT SYSTEMS, INC Vertiv CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0696950620 pdf
Date Maintenance Fee Events
Feb 12 2018M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 14 2022M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Aug 12 20174 years fee payment window open
Feb 12 20186 months grace period start (w surcharge)
Aug 12 2018patent expiry (for year 4)
Aug 12 20202 years to revive unintentionally abandoned end. (for year 4)
Aug 12 20218 years fee payment window open
Feb 12 20226 months grace period start (w surcharge)
Aug 12 2022patent expiry (for year 8)
Aug 12 20242 years to revive unintentionally abandoned end. (for year 8)
Aug 12 202512 years fee payment window open
Feb 12 20266 months grace period start (w surcharge)
Aug 12 2026patent expiry (for year 12)
Aug 12 20282 years to revive unintentionally abandoned end. (for year 12)