A method for forming fine patterns of a semiconductor device employs a double patterning characteristic using a mask for forming a first pattern including a line pattern and a mask for separating the line pattern, and a reflow characteristic of a photoresist pattern.
|
1. A method for forming fine patterns of a semiconductor device, the method comprising:
forming a first pattern including at least two line patterns having sidewalls over an underlying layer in a cell region;
forming first spacers on the sidewalls of the at least two line patterns;
forming a gap-fill insulating film between the first spacers;
removing the first spacers between the at least two line patterns and the gap-fill insulating film to form a second pattern including the gap-fill insulating film;
forming a first photoresist pattern that defines a contact hole;
reducing a critical dimension (CD) of the contact hole;
etching the first pattern and the second pattern using the first photoresist pattern as a mask to divide each of the first pattern and the second pattern; and,
etching the underlying layer using the divided first and second patterns as a mask.
2. The method according to
forming a hard mask layer over the underlying layer;
forming a second photoresist pattern over the hard mask layer using a first exposure mask having a shading region having the line type; and
etching the hard mask layer using the second photoresist pattern as a mask to pattern the hard mask layer.
3. The method according to
4. The method according to
5. The method according to
forming a photoresist film over the first pattern and the second pattern; and
patterning the photoresist film using an exposure mask having a transmitting region that defines the contact hole.
6. The method according to
7. The method according to
forming a first hard mask layer and a second hard mask layer over the underlying layer;
forming a second photoresist pattern over the second hard mask layer using an exposure mask having a line type shading region; and
etching the second hard mask layer using the second photoresist pattern as a mask to pattern the second hard mask layer.
8. The method according to
9. The method according to
10. The method according to
forming an insulating material to fill a space between the first spacers; and
planarizing the insulating material until the first spacers are exposed.
11. The method according to
planarizing the insulating material by an etch-back or a chemical mechanical polishing process.
|
This is a division of U.S. application Ser. No. 12/272,192 filed Nov. 17, 2008, which claims the priority benefit of Korean patent application number 10-2008-0057870 filed Jun. 19, 2008, the entire respective disclosures of which are incorporated by reference.
The disclosure relates to a method for forming fine patterns of a semiconductor device.
Due to the high degree of integration of semiconductor devices, the resolution required in semiconductor devices is smaller than the minimum resolution (1F) that can be resolved using photolithography equipment.
For example, when the minimum resolution that can be resolved by a single exposure process using the photolithography equipment is 45 nm, a semiconductor device requires a resolution smaller than 40 nm. (“Single exposure process” means an exposure process using one exposure mask.)
In order to overcome limits of the photolithography equipment, various patterning technologies have been developed and suggested.
Of these patterning technologies, double patterning technology divides patterns having a small pitch into two masks and repeating photo and etching processes twice using the two masks to obtain a desired target pattern.
Referring to
The conventional double patterning method comprises repeating an exposing process twice using two masks, so that an actual pattern has a different size from that of the target pattern depending on mis-alignment of exposure equipment and process change.
Various embodiments of the disclosure are directed at providing a method for forming fine patterns of a semiconductor device. The fine pattern may have a smaller resolution than the minimum resolution (1F) of photolithography equipment.
According to an embodiment of the disclosure, a method for forming fine patterns of a semiconductor device comprises: forming a first pattern having a line type that connects an active region of a cell region to an upper portion of an underlying layer in a longitudinal direction; forming a spacer insulating film over the resulting structure including the first pattern; forming a planarized gap-fill insulating film that exposes the spacer insulating film; removing the spacer insulating film using the gap-fill insulating film as a mask to form a second pattern between the first pattern; forming a first photoresist pattern that defines a contact hole for separating the first pattern and the second pattern; reducing a critical dimension (CD) of the contact hole; and etching the first pattern and the second pattern using the first photoresist pattern as a mask, and etching the underlying layer using the first and second patterns as a mask.
Preferably, the first pattern is formed by: forming a hard mask layer over the underlying layer; forming a second photoresist pattern over the hard mask layer using a first exposure mask having a shading region having the line type; and etching the hard mask layer using the second photoresist pattern as a mask to pattern the hard mask layer.
Preferably, the spacer insulating film comprises a material having a higher etching selectivity than those of the hard mask layer and the gap-fill insulating film, and the gap-fill insulating film comprises a material having a lower etching selectivity than that of the hard mask layer.
Preferably, the gap-fill insulating film is planarized by an etch-back process or a chemical mechanical polishing process.
Preferably, the first photoresist pattern is formed by: forming a photoresist film over the first pattern and the second pattern; and patterning the photoresist film using a second exposure mask including the contact hole region as a transmitting region.
Preferably, the CD of the contact hole is reduced by a method selected from the group consisting of reflowing the first photoresist pattern, forming a resolution enhancement lithography assisted by chemical shrink (RELACS) material in the first photoresist pattern, and forming a spacer of the first photoresist pattern.
Preferably, the first pattern is formed by: forming a first hard mask layer and a second hard mask layer over the underlying layer; forming a second photoresist pattern over the second hard mask layer using the first exposure mask having a line type shading region; and etching the second hard mask layer using the second photoresist pattern as a mask to pattern the second hard mask layer.
Preferably, the spacer insulating film comprises a material having a higher etching selectivity than those of the first hard mask layer, the second hard mask layer, and the gap-fill insulating film, and the gap-fill insulating film comprises a material having a lower etching selectivity than that of the first hard mask layer.
According to an embodiment of the disclosure, a method for forming fine patterns of a semiconductor device comprises: forming a first pattern having a line type that connects an active region of a cell region over an underlying layer in a longitudinal direction; forming a spacer insulating film over the resulting structure including the first pattern; forming a planarized gap-fill insulating film that exposes the spacer insulating film; removing the spacer insulating film using the gap-fill insulating film as a mask to form a second pattern between the first pattern; forming a first photoresist pattern that defines a contact hole for separating the first pattern and the second pattern in the cell region and defines an active region in a peripheral circuit region; reducing a critical dimension (CD) between the first photoresist pattern; and etching the first pattern and the second pattern of the cell region, and the spacer insulating film and the gap-fill insulating film of the peripheral circuit region using the first photoresist pattern as a mask, and etching the underlying layer using the first pattern, the second pattern, the spacer insulating film, and the gap-fill insulating film as a mask.
Preferably, the first pattern is formed by: forming a hard mask layer over the underlying layer; forming a second photoresist pattern over the hard mask layer using a first exposure mask having a line-type shading region; and etching the hard mask layer using the second photoresist pattern as a mask to pattern the hard mask layer.
The disclosure provides a method for forming patterns in a cell region using a spacer depositing and spacer removing and forming a patterns in a peripheral region (or core region) using a reflow characteristic, that is, a resist shrink characteristic of a photoresist film using a double patterning process.
The disclosed method for forming a semiconductor device is described in detail below using reference to the accompanying drawings.
In a first exposure mask 100, a shading pattern 120 for forming a line pattern in a cell region 3000 is formed with a line type over a quartz substrate 110. The shading pattern 120 is formed to have the same size as a critical dimension (CD) of an active region in a longitudinal direction of the active region. No patterns are formed in a peripheral circuit region 4000.
In a second exposure mask 200, line patterns of a cell region 5000 are separated to form an active region while a shading pattern 220 for shading an active region of a peripheral circuit region 600 is formed over a quartz substrate 210.
Referring to
A photoresist pattern 17 is formed over the second hard mask layer 15.
Specifically, a photoresist film is coated over the second hard mask layer 15, exposed and developed using the first exposure mask 100 of
The second hard mask layer 15 is etched until the first hard mask layer 13 is exposed using the photoresist pattern 17 as a mask, thereby obtaining a second hard mask layer 15 pattern. Generally, the photoresist pattern 17 is completely removed by the etching process. However, when the photoresist pattern 17 remains, the remaining photoresist pattern 17 is removed.
Referring to
The spacer insulating film 19 comprises an insulating material having a higher etching selectivity than those of the first hard mask layer 13, the second hard mask layer 15 pattern, and a gap-fill insulating film 21 (see
Referring to
The gap-fill insulating film 21 comprises a material having a lower etching selectivity than that of the first hard mask layer 13. The gap-fill insulating film 21 has the same or similar etching selectivity to that of the second hard mask layer 15 pattern.
The gap-fill insulating film 21 that fills a space between the spacer insulating films 19 is positioned between the second hard mask layer 15 patterns.
The gap-fill insulating film 21 is planarized by an etch-back process or a chemical mechanical polishing process.
Referring to
The gap-fill insulating film 21 pattern remains between the second hard mask layer 15 patterns using a stacked structure over the un-etched spacer insulating film 19.
Referring to
The photoresist pattern 23 partially exposes the second hard mask layer 15 pattern or the gap-fill insulating film 21 pattern in the cell region 10000, and is formed using an island type over the active region to have the minimum interval (F) in the peripheral circuit region 20000.
Referring to
The process of reflowing the photoresist pattern 25 may be replaced using a process of forming a RELACS (resolution enhancement lithography assisted by chemical shrink) material over the photoresist pattern 25 or of forming a spacer at sidewalls of the photoresist pattern 23. The reflowed photoresist pattern 25 is formed so that an interval between the patterns can be smaller than the minimum interval using photolithography equipment.
Referring to
When the reflowed photoresist pattern 25 remains, an additional removing process is performed to remove the residual photoresist pattern 25.
Referring to
As a subsequent process, the underlying layer (not shown) is etched using the first hard mask layer 13 pattern as a mask, thereby obtaining a fine underlying pattern.
In a first exposure mask 300, a shading pattern 320 for forming a line pattern in a cell region 7000 is formed with a line type over a quartz substrate 310. The shading pattern 320 is formed to have the same size as a CD of an active region in a longitudinal direction. No patterns are formed in a peripheral circuit region 8000.
In a second exposure mask 400, a shading pattern 420 for shading the cell region 700 and the active region of the peripheral circuit region 8000 is formed over a quartz substrate 410. No patterns are formed in the cell region 700.
In a third exposure mask 500, a shading pattern 520 for separating the line pattern of the cell region 7000 and shading the peripheral circuit region 8000 is formed over a quartz substrate 510.
Referring to
A photoresist pattern 47 is formed over the second hard mask layer 45. Specifically, a photoresist film is coated over the second hard mask layer 45, exposed and developed using the first exposure mask 300 of
The second hard mask layer 45 is etched until the first hard mask layer 43 is exposed using the photoresist pattern 47 as a mask, thereby obtaining a second hard mask layer 45 pattern. Generally, the photoresist pattern 17 is completely removed by the etching process. However, when the photoresist pattern 17 remains, the remaining photoresist pattern 17 is removed.
Referring to
The spacer insulating film 49 comprises an insulating material having a higher etching selectivity than that of the first hard mask layer 43 and the second hard mask layer 45 pattern.
Referring to
Referring to
The process of reflowing the photoresist pattern 53 may be replaced using a process of forming a RELACS material over the photoresist pattern 53 or of forming a spacer at sidewalls of the photoresist pattern 51. The reflowed photoresist pattern 53 is formed so that an interval between the patterns can be smaller than the minimum interval.
Referring to
Referring to
Referring to
The third exposure mask 500 exposes the spacer 49A formed in a region except the active region so that the spacer 49A remains only over the active region.
Referring to
Referring to
The underlying layer (not shown) is etched using the first hard mask layer pattern 43 as a mask to obtain a fine underlying pattern.
Referring to
A photoresist pattern 67 is formed over the second hard mask layer 65.
Specifically, a photoresist film is coated over the second hard mask layer 65, exposed and developed using the first exposure mask 100 of
The second hard mask layer 65 is etched using the photoresist pattern 67 as a mask until the first hard mask layer 63 is exposed, thereby obtaining a second hard mask layer 65 pattern. Generally, the photoresist pattern 67 is completely removed by the etching process. However, when the photoresist pattern 67 remains, the remaining photoresist pattern 67 is removed.
Referring to
The spacer insulating film 69 comprises an insulating material having a higher etching selectivity than that of the first hard mask layer 63, the second hard mask layer 65 pattern and a gap-fill insulating film 71 of
Referring to
The gap-fill insulating film 71 that fills a space between the spacer insulating films 69 is positioned between the second hard mask layer 65 patterns.
The spacer insulating film 69 is planarized by an etch-back process or a chemical mechanical polishing process.
Referring to
The gap-fill insulating pattern remains between the second hard mask layer 65 patterns using a stacked type over the un-etched spacer insulating film 69.
Referring to
The photoresist pattern 73 partially exposes the second hard mask pattern or the gap-fill insulating pattern in the cell region 50000, and is formed over the active region using an island type formed using the minimum interval in the peripheral circuit region 60000.
Referring to
The process of reflowing the photoresist pattern 75 may be replaced using a process of forming a RELACS material over the photoresist pattern 75 or of forming a spacer at sidewalls of the photoresist pattern 73. The reflowed photoresist pattern 75 is formed so that an interval between the patterns can be smaller than the minimum interval using photolithography equipment.
Referring to
When the photoresist pattern 73 or the reflowed photoresist pattern 75 remains, an additional removal process is performed.
Referring to
The underlying layer (not shown) is etched using the first hard mask pattern as a mask, thereby obtaining a fine underlying pattern.
As described above, the disclosed method for forming fine patterns of a semiconductor device employs a double patterning process for forming small pitch patterns simultaneously in the cell region, the peripheral circuit region and the core region, thereby preventing mis-aligned exposures.
The above embodiments of the disclosure are illustrative and not limitative. Various alternatives and equivalents are possible. The invention is not limited by the type of deposition, etching polishing, and patterning steps described herein, nor is the invention limited to any specific type of semiconductor device. For example, the disclosure may be implemented in a dynamic random access memory (DRAM) device or nonvolatile memory device. Other additions, subtractions, or modifications are obvious in view of the present disclosure and are intended to fall within the scope of the appended claims.
Patent | Priority | Assignee | Title |
9502306, | Aug 01 2014 | Canon Kabushiki Kaisha | Pattern formation method that includes partially removing line and space pattern |
Patent | Priority | Assignee | Title |
7510973, | Dec 28 2006 | Hynix Semiconductor Inc. | Method for forming fine pattern in semiconductor device |
7531449, | Nov 10 2006 | Samsung Electronics Co., Ltd. | Method of forming fine patterns using double patterning process |
7536671, | Oct 02 2006 | Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD | Mask for forming fine pattern and method of forming the same |
20080160771, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 15 2013 | SK Hynix Inc. | (assignment on the face of the patent) | / | |||
May 27 2013 | CHOI, JAE SEUNG | SK HYNIX INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030495 | /0311 |
Date | Maintenance Fee Events |
Dec 01 2014 | ASPN: Payor Number Assigned. |
Apr 02 2018 | REM: Maintenance Fee Reminder Mailed. |
Sep 24 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 19 2017 | 4 years fee payment window open |
Feb 19 2018 | 6 months grace period start (w surcharge) |
Aug 19 2018 | patent expiry (for year 4) |
Aug 19 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 19 2021 | 8 years fee payment window open |
Feb 19 2022 | 6 months grace period start (w surcharge) |
Aug 19 2022 | patent expiry (for year 8) |
Aug 19 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 19 2025 | 12 years fee payment window open |
Feb 19 2026 | 6 months grace period start (w surcharge) |
Aug 19 2026 | patent expiry (for year 12) |
Aug 19 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |