An ultrasonic surgical blade has a blade body and a shank. The shank is fixed at one end to the blade body and is operatively connectable at an opposite end to a source of ultrasonic vibrations. The shank has a longitudinal axis. The blade body is eccentrically disposed relative to the axis.

Patent
   8814870
Priority
Jun 14 2006
Filed
Jun 14 2006
Issued
Aug 26 2014
Expiry
Aug 11 2030
Extension
1519 days
Assg.orig
Entity
Large
210
43
currently ok
11. An ultrasonic surgical blade comprising a blade body and a shank, the shank being fixed at one end to the blade body and operatively connectable at an opposite end to a source of ultrasonic vibrations, the shank having a longitudinal axis, the shank having a shank width in a direction substantially perpendicular to the axis, the blade body having a blade width in a direction substantially perpendicular to the axis, the blade width being substantially less than the shank width, the blade body having a thickness substantially less than the blade width, the blade body having a hook portion at a distal end and opposite the shank, the blade body and the shank defining a cutout or recess between the shank at a proximal end and the hook portion at the distal end of the blade body, the hook portion being provided with a cutting edge facing in a proximal direction toward the shank, the cutting edge being provided with a cutout or notch facing in a proximal direction and toward the shank.
4. An ultrasonic surgical blade comprising a blade body and a shank, the shank being fixed at one end to the blade body and operatively connectable at an opposite end to a source of ultrasonic vibrations, the shank having a longitudinal axis, the shank having a shank width in a direction substantially perpendicular to the axis, the blade body having a hook portion and an elongate portion connecting said hook portion to said shank, said elongate portion having a blade width in a direction substantially perpendicular to the axis, the blade width being substantially less than the shank width, said elongate portion of the blade body having a thickness substantially less than the blade width, the blade body having said hook portion at a distal end and opposite the shank, the blade body and the shank defining a cutout or recess between the shank at a proximal end and the hook portion at the distal end of the blade body, the hook portion being provided with an arcuate cutting edge facing in a distal direction, away from the shank.
16. An ultrasonic surgical blade comprising a blade body and a shank, the shank being fixed at one end to the blade body and operatively connectable at an opposite end to a source of ultrasonic vibrations, the shank having a longitudinal axis, the blade body consisting essentially of a proximal plate shaped portion, an elongate longitudinal portion, and a distal hook portion, the longitudinal portion connecting the proximal plate shaped portion and the hook portion, the longitudinal portion being disposed entirely to one side of the axis, the hook portion extending from a distal end of the longitudinal portion towards the axis, the blade body having a cutout or recess defined by the proximal plate shaped portion at a proximal side, the hook portion at a distal side and the longitudinal portion therebetween, the hook portion being formed with a sharp circularly arcuate cutting edge facing in a distal direction and away from the shank, the longitudinal portion of the blade body being provided with a sharp linear cutting edge facing laterally away from the axis, the linear cutting edge being smoothly continuous with the circularly arcuate cutting edge in a J-shaped formation having no teeth, serrations or voids.
14. An ultrasonic surgical blade comprising a blade body and a shank, the shank being fixed at one end to the blade body and operatively connectable at an opposite end to a source of ultrasonic vibrations, the shank having a central longitudinal axis, the shank having a shank width in a direction substantially perpendicular to the axis, the blade body having a blade width in a direction substantially perpendicular to the axis, the blade width being substantially less than the shank width, the blade body having a thickness substantially less than the blade width, the blade body having a hook portion at a distal end and opposite the shank, the blade body and the shank defining a cutout or recess between the shank at a proximal end and the hook portion at the distal end of the blade body, the blade body including the hook portion and an elongate portion, the elongate portion being located entirely to one side of the axis, the elongate portion having a first straight edge extending parallel to and facing the longitudinal axis, the hook portion having a second straight edge on a side of the longitudinal axis opposite the elongate portion, the second straight edge extending parallel to and facing away from the longitudinal axis.
1. An ultrasonic surgical blade comprising a blade body and a shank, the shank being fixed at one end to the blade body and operatively connectable at an opposite end to a source of ultrasonic vibrations, the shank having a longitudinal axis, the shank having a shank width in a direction substantially perpendicular to the axis, the blade body having a hook portion and an elongate portion connecting said hook portion to said shank, said elongate portion having a blade width in a direction substantially perpendicular to the axis, the blade width being substantially less than the shank width, said elongate portion of the blade body having a thickness substantially less than the blade width, the blade body having said hook portion at a distal end and opposite the shank, the blade body and the shank defining a cutout or recess between the shank at a proximal end and the hook portion at the distal end of the blade body, the shank being formed with a longitudinal bore or channel communicating directly with the cutout or recess at a proximal end thereof, the blade body including the hook portion and an elongate portion located entirely to one side of the axis, the elongate portion including a first edge and a second edge substantially parallel to one another and to the axis, at least one of the first edge and the second edge including a sharp section.
2. The surgical blade defined in claim 1 wherein the blade body is eccentrically disposed relative to the axis.
3. The surgical blade defined in claim 1 wherein at least one of the first edge and the second edge includes a blunt section.
5. The surgical blade defined in claim 4 wherein the hook portion is provided with an additional cutting edge facing in a proximal direction, toward the shank.
6. The surgical blade defined in claim 5 wherein at least one of the arcuate cutting edge and the additional cutting edge is a blunt edge.
7. The surgical blade defined in claim 4 wherein the arcuate cutting edge extends through an arc taken from the group consisting of 180 degrees and 90 degrees.
8. The surgical blade defined in claim 1 wherein the hook portion is provided with a cutting edge facing in a proximal direction toward the shank.
9. The surgical blade defined in claim 8 wherein the hook portion is further provided with a notch facing in a proximal direction and toward the shank.
10. The surgical blade defined in claim 1 wherein the blade body includes an outwardly facing substantially J-shaped cutting edge.
12. The surgical blade defined in claim 11 wherein the cutout or notch is provided with a liquid distribution surface formed as an indentation or recess in the blade body extending to the cutout or notch.
13. The surgical blade defined in claim 11 wherein the cutout or notch has an edge with a substantially smaller radius of curvature than any radius of curvature of the cutting edge.
15. The surgical blade defined in claim 14 wherein the hook portion is formed with a notch and a recessed liquid distribution surface on a proximal side, facing the shank.
17. The surgical blade defined in claim 16 wherein the shank and the plate shaped portion of the blade body are formed with a longitudinal bore or channel communicating with the cutout or recess at a proximal end thereof.
18. The surgical blade defined in claim 16 wherein the arcuate cutting edge extends through an arc taken from the group consisting of 180 degrees and about 90 degrees.
19. The surgical blade defined in claim 16 wherein the hook portion is provided with a proximally facing cutting edge and a cutout or notch adjacent the proximally facing cutting edge.

This invention relates to an ultrasonic cutting blade. The blade is particularly useful in a surgical application to cut tissue such as cartilage and bone.

In the field of orthopedics, the cutting of living bone is a prerequisite for many procedures. Such procedures include the reconstruction of damaged tissue structures due to accidents, the grafting of healthy bone into areas damaged by disease, or the correction of congenital facial abnormalities like a receding chin line. Over several centuries, these tasks were performed through the utilization of devices called bone saws.

Traditional bone saws are categorized into several basic categories. Hand powered saws or drills are just that, hand held devices which require the operator to move the device in a fashion similar to that used for carpentry tools. Powered devices, whether electric or pneumatic, are of either the reciprocating or rotary type. The reciprocating devices use a flat, sword like blade where the back and forth motion is provided by a motor instead of the hand. The rotary devices use a rotating motor to spin a drill bit or a blade which has teeth arranged around its circumference similar to a table saw blade. All of these traditional bone saws are used today in medical procedures around the world.

While traditional saws are functional, they have many disadvantages. With either the band or reciprocating saws, for instance, it is not easy to initiate and direct a cut. A cut must start from an edge or, alternatively, a starting hole must be used. To create a starting hole, a drill or similar instrument is operated to bore into the bone. Subsequently, a cutting blade is inserted into the bored hole. The user can then proceed to cut. Alternatively, a rotary type blade may be used. However, when a rotary blade is used, the cut must follow a relatively straight path to prevent the blade from binding in the cut. With all blades the ability to create a curved or compound angle cut is extremely limited by the blade chosen. The relatively thick blades have a wide kerf; so that a significant thickness of the viable bone is lost in the cutting procedure. Physicians would like this width to be as thin as possible in most procedures where reconstruction is necessary.

Above all, the relatively slow linear or tangential speeds of conventional bone saw blades coupled with the teeth necessary for cutting result in high frictional losses, which becomes manifested as heat. Heat will cause necrosis of the tissue if the bone temperatures reach 47° C. for more than a few seconds. When tissue necroses, the bone recedes after the surgery as the necrotic bone is overgrown. During such natural post-surgical tissue developments, the thickness of the cuts in the bone actually increases. The bone rescission process must be complete before healing can begin. To prevent the shortening of the length of the bone, metal plates and screws are used to fix the bone fragments in proper position. All of these factors obviously lead to increased operative time, and more importantly, to dramatically increased healing time, since the bone must knit across a greater span. Some studies have shown the strength of the bone to be effected negatively as well.

When an upper or lower jaw is to be cut in elective surgery, the heating effect of traditional saws requires even more extraordinary intervention to prevent damage. Cutting the jaw between the teeth will cause loss of teeth if the bone is damaged or does not heal quickly. To prevent the tooth loss, the teeth must be spread apart preoperatively; sometimes forcing the patient to wear braces for up to 6 months before the operation can take place. In these cases, the costs and patient discomfort increases dramatically.

To limit the tissue temperature rise in an attempt to reduce necrosis, some traditional surgical saws provide cooling liquid to the surgical site. See, for instance, U.S. Pat. No. 4,008,720 to Brinckmann et al. These devices typically introduce coolant into spaces between segments on the cutting edge or rely on spray methods to flood the cutting site with fluid. Another technique employed by clinicians is to make very light cuts and increase the time between passes of the tool. Coupled with irrigation of the area, bone temperature rise is reduced measurably. Of course, this technique increases operative time and clinician fatigue.

Several researchers have proposed the use of ultrasonic tools for bone separation. The use of ultrasonic surgical instruments for cutting through various tissues is well known. While these devices are superior to the traditional saws in several aspects such as reduced kerf size, reduced noise, and superior ability for making complex geometric cuts, the temperature rise in bone due to frictional heating at the blade/tissue interface is still a significant problem. The problem is exacerbated with the use of ultrasonics due to the rapid motion involved as compared to that of traditional reciprocating saws. Some designers have tried to reduce heating by modifying the cross-section of the cutting blade. U.S. Pat. No. 5,188,102 to Idemoto, U.S. Pat. No. 4,188,952 to Loschilov, and U.S. Pat. No. 5,261,922 to Hood all show designs for cutting which have modified cross sections to reduce frictional heating.

Several ultrasonic devices have provided cooling to the cutting blade with varied degrees of success. U.S. Pat. No. 4,823,790 to Alperovich et al. shows a design for a cryogenically cooled scalpel blade. However, this design may actually damage viable tissue by freezing. In addition, this design does not provide any coolant to surrounding tissue not in direct contact with the blade.

U.S. Pat. Nos. 5,205,817, 5,188,102, and 4,832,683 all to Idemoto show examples of ultrasonic instruments with provisions for fluid cooling. These instruments, however, either do not provide optimal coolant flow where it is needed, mainly at the cutting portion of the blade, or for ones that do provide coolant at the tip, they interrupt the cutting edge with holes for the coolant. An interrupted, uneven cutting edge hinders manipulation and makes it difficult to guide the blade on the bone surface.

One phenomenon associated with ultrasonic tooling which acts to hinder the beneficial effects of irrigating the operative site is ultrasonic atomization. When an ultrasonically vibrating body is brought into contact with fluid, that fluid is broken into small droplets which have a size inversely proportional to the frequency of vibration. In other words, the higher the frequency, the smaller and more mobile the liquid drop. Droplets created by ultrasonic vibrations can be very small in size, with some being less than 1 micron in diameter. This phenomenon is well known to the art. In fact, many devices intended to atomize liquid, such as room humidifiers, medical nebulizers, and industrial spray nozzle are based upon this principle. In the operating theater, however, the presence of nebulized particles is not appreciated, since these particles may contain viral or bacterial agents. Also, some of the fluid will be atomized before reaching the operative site, reducing the cooling efficiency. An effective way to insure the liquid transport is needed.

Two devices were developed to solve these issues. These devices are described in U.S. Pat. Nos. 6,379,371 and 6,443,969. The blades of these patents are extremely effective not only in maxillofacial applications as described above but also in other applications involving bone cutting as well.

One limitation of these blades is that the blades must be advanced into the bone tissue in a plunging or brush stroke manner, with the distal tip of the blade leading. Sideways or lateral advancement of the blade after the initial cut is made has not been shown to be practical. In addition, after a cut is made, the blades can cut only tissue facing the incision. This mode of operation is not advantageous in cases were extremely sensitive tissue, such as brain or spinal cord tissue, is beneath the bone.

It is an object of the present invention to provide an improved ultrasonic cutting blade of the above-described type.

Another object of the present invention is to provide an ultrasonic cutting blade that, in addition to cutting in a forward or distal direction away from the user, is effectively able to cut laterally, that is, in a direction substantially perpendicular to the axis of the blade and thus substantially perpendicular to the direction of propagation of ultrasonic compression waves.

A further object of the present invention is to provide an ultrasonic cutting blade that, in addition to cutting in a forward or distal direction away from the operator of the instrument, is able to cut backwards, that is in a proximal direction towards the operator.

These and other objects of the present invention will be apparent from the drawings and detailed descriptions herein. While every object of the invention is believed to be attained in at least one embodiment of the invention, there is not necessarily any single embodiment that achieves all of the objects of the invention.

The present invention provides an improved blade for use with ultrasonic cutting instruments. An embodiment of an ultrasonic cutting blade pursuant to the present invention allows thin kerf cuts, does not require predrilled holes for cutting, allows complex geometric cuts, has a continuous cutting edge, and has a hook feature that enables backward cutting, that is, cutting in a proximal direction towards the operator or user. The blade accommodates liquid irrigation at the blade/tissue interface for reducing and limiting thermal damage to living tissue. The present invention specifically targets the application of cutting viable bones in surgery, although the device is not exclusive to this application.

An ultrasonic surgical blade comprises, in accordance with the present invention, a blade body and a shank. The shank is fixed at one end to the blade body and is operatively connectable at an opposite end to a source of ultrasonic vibrations. The shank has a longitudinal axis. The blade body is eccentrically disposed relative to the axis. The blade body includes an elongate portion oriented substantially parallel to the axis and further includes a distal end portion at an end of the elongate portion opposite the shank. The distal end portion of the blade body has a cutting edge facing in a distal direction away from the shank, while the elongate portion has a cutting edge facing laterally away from the axis.

Typically, the shank has a shank width in a direction substantially perpendicular to the axis, the blade body has a blade width in a direction substantially perpendicular to the axis, and the blade width is substantially less than the shank width. Moreover, the blade body has a thickness substantially less than the blade width.

Pursuant to further features of the present invention, the distal end portion of the blade body is a hook portion, while the blade body and the shank define a cutout or recess between the shank at a proximal end and the hook portion at the distal end of the blade body.

Pursuant to another feature of the present invention, the elongate portion of the blade body is located entirely to one side of the axis. The elongate portion may include a first edge and a second edge substantially parallel to one another and to the axis, at least one of the first edge and the second edge including a blunt section. Alternatively or additionally, at least one of the first edge and the second edge includes a sharp section.

It is contemplated that the hook portion is provided with an arcuate cutting edge facing in a distal direction, away from the shank, and with an additional cutting edge facing in a proximal direction, toward the shank. The hook shaped distal end portion of the blade body may be further provided with a notch facing in a proximal direction and toward the shank. The arcuate cutting edge and/or the additional cutting edge may be a blunt edge. In particular embodiments of the present invention, the arcuate cutting edge extends through an arc of 180 degrees or 90 degrees.

The cutout or recess may be substantially rectangular.

The blade body may include an outwardly facing substantially J-shaped cutting edge.

Pursuant to one embodiment of the present invention, an ultrasonic surgical blade has at least three cutting edges including (1) an outwardly facing cutting edge with a first linear section extending substantially parallel to the axis of the shank and an arcuate section along the distal end of the blade body, (2) a rearwardly facing cutting edge defined by the hooked distal end portion of the blade body, and (3) a second linear section opposite the first linear section. Where the elongate portion of the blade body is disposed to one side of the axis, the second linear section faces the axis. Preferably, the entire blade body including three cutting edges is disposed in a single plane. The outwardly facing linear section and the arcuate section are continuous with one another to form a single smooth cutting edge. The arcuate section may comprise various sector angles and is disposed on the blade body substantially opposite the shank.

The straight or linear cutting sections are longitudinal and oriented substantially parallel to the axis of the blade. In at least one embodiment of the ultrasonic cutting blade, the elongate portion of the blade is tapered, the outwardly facing cutting edge extending at a slight angle relative to the axis.

The edges of the linear sections do not necessarily have to have the same sharpness. For instance, the outer longitudinal edge may be sharp and the inner edge may be blunt, or vice versa.

The shank is preferably provided with an axially extending bore for the conveyance of cooling fluid to the blade body. The blade body is preferably provided at an end opposite the shank with a recess communicating with the bore for distributing fluid from the slot towards the cutting edge. The recess preferably has a configuration that parallels at least a portion of the cutting edge. Where the cutting edge is circular and the blade body has a planar surface between the fluid distribution guide surface and the cutting edge, for instance, the recess has a fluid distribution surface inclined with respect to the planar blade surface and extending along a circular arc.

The cutting edges of a blade in accordance with the present invention are generally continuous, i.e., have no teeth, serrations or voids. This continuity provides a smooth contact surface essential when making precise cuts. In contrast, in an ultrasonic cutting blade having teeth, serrations or interruptions, the feel of the instrument changes and the instrument is more difficult to guide as the teeth, serrations, or interruptions are moved across the bone at the surgical site. Teeth on the blade edge not only do not improve the cutting speed but make it difficult to keep the edge on a predetermined cut line. The continuous blade edges of the present invention also give the cutting process a consistent feel to the surgeon, similar to the feel of a standard scalpel blade.

A blade in accordance with the present invention provides the user with the option of cutting sideways through a patient's tissues, that is, in a direction generally perpendicular to the axis of the blade and the shank. In addition, the user may cut tissue by pulling backward toward the proximal end of the device after hooking material on the inner hook section.

A blade in accordance with the present invention may have a particularly small width, allowing tighter radius of cuts.

A blade in accordance with the present invention results in less dead bone and a small cut kerf. This keeps the cut narrow and provides for quicker healing than if the bone were overheated to necrosis or if the cut was wider.

An ultrasonic surgical blade in accordance with the present invention may be used to perform a spinal laminectomy. In such a surgical method, an operating surgeon uses a cutting blade having a blade body and a shank, the shank being fixed at one end to the blade body, the blade body having a hook portion at a distal end and opposite the shank, the hook portion including a first cutting edge facing in a distal direction away from the shank and a second cutting edge facing in a proximal direction toward the shank. The method comprises (a) operatively connecting the shank at an end opposite the blade body to a source of ultrasonic vibrations, (b) thereafter moving the blade into a patient, (c) ultrasonically vibrating the blade during the moving of the blade into the patient, so that the first cutting edge cuts into tissues of the patient, (d) subsequently pulling the blade in a proximal direction out of the patient so that the second cutting edge engages bony tissue of the patient, and (e) ultrasonically vibrating the blade during the pulling of the blade to thereby cut through the bony tissue.

The shank may have a longitudinal axis, while the blade body includes an elongate portion connecting the shank to the hook portion, the elongate portion including a third cutting edge facing the axis. In that event, pursuant to another feature of the present invention, the method further comprises shifting the blade body laterally after the moving of the blade into the patient and prior to the pulling of the blade in a proximal direction out of the patient, and ultrasonically vibrating the blade during the shifting of the blade to thereby enable the third cutting edge to cut through tissues of the patient.

The elongate portion of the blade body is preferably disposed entirely to one side of the axis, and the vibrating of the blade during the shifting of the blade comprises vibrating the elongate portion at least partially in a direction orthogonal to the axis. The eccentric placement of the blade body relative to the shank serves to generate a transverse vibration waveform when the excitation waveform passing into the shank of the blade is entirely a longitudinal compression wave.

In the case of a spinal laminectomy, the bony tissue is a spinal lamina.

FIG. 1 is a side elevational view of an ultrasonic surgical blade in accordance with the present invention.

FIG. 2 is a side elevational view of another ultrasonic surgical blade in accordance with the present invention.

FIG. 3 is a side elevational view of a further ultrasonic surgical blade in accordance with the present invention.

FIG. 4 is a side elevational view of yet another ultrasonic surgical blade in accordance with the present invention.

As depicted in FIG. 1, an ultrasonic surgical blade 110 comprises a blade body 112 and a shank 114. Shank 114 is fixed at one end to blade body 112 and is provided at an opposite end with an externally threaded neck 115 for connecting blade 110 to a source of ultrasonic vibrations (not shown). Shank 114 includes a cylindrical body 116 provided on opposing sides with a pair of planar surfaces 118 engageable by a wrench for alternatively tightening and loosening the blade from the source of ultrasonic vibrations. Shank 118 is formed at a distal end with a pair of inclined surfaces 120 that smoothly connect to blade body 112.

Blade body 112 includes a proximal plate shaped portion 122, an elongate longitudinal portion 124, and a hook-shaped distal end portion 126 all integrally continuously formed with each other. Blade body 112 is eccentrically disposed relative to a longitudinal axis 128 of blade 110 and particularly of shank 114. Elongate blade portion 124 is slightly tapered and oriented substantially parallel to axis 128. An outer elongate cutting edge section 130 of elongate blade portion 124 is slightly inclined relative to axis 128 and is continuous at a distal end with a circularly arcuate cutting edge 132 defining a distal periphery of hook-shaped distal end portion 126.

Blade body 112 is eccentrically disposed relative to axis 128 in that elongate or longitudinal blade portion 124 is disposed entirely to one side of the axis. During use of blade 110, this eccentricity is believed to convert a portion of the energy of longitudinal ultrasonic compression waves into ultrasonic transverse waves, whereby elongate or longitudinal blade portion 124 exhibits a motion component oriented substantially transversely to axis 128 and cutting edge 130. It is believed that this transverse motion enhances a lateral cutting action of edge 130, in a direction generally transversely to axis 128. Where an ultrasonic cutting blade is symmetrically formed as disclosed in U.S. Pat. Nos. 6,379,371 and 6,443,969, the cutting action is generally limited to a forward or distal side of the blade (cutting edge 132 in FIG. 1).

Plate shaped blade portion 122, elongate longitudinal blade portion 124, and hook-shaped distal end portion 126 together define a cutout or recess 134 between shank 114 at a proximal end and hook portion 126 at the distal end of blade body 112. Cutout or recess 134 is substantially but not perfectly rectangular, owing to the tapered aspect of blade body 112 and more particular to distal end portion 126 having a smaller transverse dimension or width than proximal plate shaped portion 122.

A bore or channel 136 provided in shank 114 communicates at a distal end with a narrower bore or channel 138 in proximal blade portion 122. Channel 138 in turn communicates with recess 134. Channels 136 and 138 deliver irrigating and cooling liquid to recess 134 for distribution over blade body 112. To that end, a cutout or notch 140 and a liquid distribution surface 142 are provided in hook-shaped distal end portion 126 of blade body 112 for assisting in the conduction of a coolant liquid to cutting edge 132.

Distal end portion 126 of blade body 112 has a cutting edge 144 facing in a proximal direction toward from shank 114, while elongate blade portion 124 has a cutting edge 146 facing laterally toward from axis 128. Cutting edge 144 is sharp while cutting edge 146 is blunt, having the thickness of blade body 112 along the elongate longitudinal portion 124 thereof. Cutout or notch 140 has an edge (not separated enumerated) with a substantially smaller radius of curvature than any radius of curvature of cutting edge 144.

Shank 114 has a shank width SW1 in a direction substantially perpendicular to axis 128, while elongate portion 124 of blade body 112 has a width BW1 also measured in a direction substantially perpendicular to axis 128. Blade width BW1 is substantially less than shank width SW1, which facilitates the eccentric disposition of blade body 112 relative to shank 114. Blade body 112 has a thickness (not shown) substantially less than blade width BW1.

Arcuate cutting edge 132 of distal end portion 126 extends through an arc of 180 degrees in the embodiment of FIG. 1. Cutting edges 132 and 130 together define an outwardly facing substantially J-shaped cutting edge (not separately labeled). Ultrasonic surgical blade 110 thus has several cutting edges including (1) this outwardly facing J-shaped cutting edge with a linear section 130 and arcuate section 132, (2) rearwardly facing cutting edge 144, and (3) linear section 146 facing inwardly or oppositely to cutting edge 130. Arcuate section 132 may comprise various sector angles and is disposed on the blade body substantially opposite shank 114.

The straight or linear cutting sections or edges 130 and 146 are longitudinal and oriented substantially parallel to the axis 128 of blade 110. Elongate portion 124 of blade body 112 is tapered, the outwardly facing cutting edge 130 extending at an angle of 5-15 degrees relative to axis 128.

Cutting edges 130 and 146 do not necessarily have to have the same sharpness. For instance, the outer longitudinal edge 130 may be sharp and the inner edge 146 may be blunt, or vice versa.

Cutting edges 130, 132, 144, 146 of blade 110 are continuous (except for notch 140), i.e., have no teeth, serrations or voids. This continuity provides a smooth contact surface essential when making precise cuts.

FIG. 2 depicts another ultrasonic surgical blade 210 comprising a blade body 212 and a shank 214. Shank 214 is fixed at one end to blade body 212 and is provided at an opposite end with an externally threaded neck 215 for connecting blade 210 to a source of ultrasonic vibrations (not shown). Shank 214 includes a cylindrical body 216 provided on opposing sides with a pair of planar surfaces 218 engageable by a wrench for alternatively tightening and loosening the blade from the source of ultrasonic vibrations. Shank 218 is formed at a distal end with a pair of inclined surfaces 220 that smoothly connect to blade body 212.

Blade body 212 does not include a proximal plate shaped portion like proximal plate shaped portion 122 of blade body 112. Instead, shank 214 is directly continuous with an elongate longitudinal portion 224 of blade body 212.

Blade body 212 further includes a hook-shaped distal end portion 226 integrally continuously formed with elongate blade portion 224. Blade body 212 is eccentrically disposed relative to a longitudinal axis 228 of blade 210 and particularly of shank 214, owing to a staggered lateral disposition of elongate portion 224 relative to shank 214. During use of blade 210, this eccentricity is believed to convert a portion of the energy of longitudinal ultrasonic compression waves into ultrasonic transverse waves, whereby elongate or longitudinal blade portion 224 exhibits a motion component oriented substantially transversely to axis 228 and cutting edge 230. It is believed that this transverse motion enhances a lateral cutting action of edge 230, in a direction generally transversely to axis 228.

Elongate blade portion 224 is rectangular and has a uniform width BW2. Elongate blade portion 224 is oriented substantially parallel to axis 228. An outer elongate cutting edge section 230 of elongate blade portion 224 is parallel to axis 228 and is continuous at a distal end with a circularly arcuate cutting edge 232 defining a distal periphery of hook-shaped distal end portion 226.

The distal end of shank 214, elongate longitudinal blade portion 224, and hook-shaped distal end portion 226 together define a rectangular cutout or recess 234 between shank 214 at a proximal end and hook portion 226 at the distal end of blade body 212.

A proximal bore or channel 236 in shank 214 communicates at a distal end with a narrower bore or channel 238 in a tapered distal end (not separately labeled) of shank 214. Channel 238 in turn communicates with recess 234. Channels 236 and 238 deliver irrigating and cooling liquid to recess 234 for distribution over blade body 212. To that end, a cutout or notch 240 and a liquid distribution surface 242 are provided in hook-shaped distal end portion 226 of blade body 212 for assisting in the conduction of a coolant liquid to cutting edge 232.

Distal end portion 226 of blade body 212 has a sharp cutting edge 244 and a blunt cutting edge 245 facing in a proximal direction toward from shank 214, while elongate blade portion 224 has a blunt cutting edge 246 facing laterally toward from axis 228. Cutting edges 245 and 246 are blunt and have the thickness of blade body 212. Cutout or notch 240 has an edge (not separately designated) with a substantially smaller radius of curvature than any radius of curvature of cutting edge 244.

Shank 214 has a shank width SW2 in a direction substantially perpendicular to axis 228, while elongate portion 224 of blade body 212 has width BW2 also measured in a direction substantially perpendicular to axis 228. Blade width BW2 is substantially less than shank width SW2, which facilitates the eccentric disposition of blade body 212 relative to shank 214. Blade body 212 has a thickness (not shown) substantially less than blade width BW2.

Arcuate cutting edge 232 of distal end portion 226 extends through an arc of 180 degrees in the embodiment of FIG. 2. Cutting edges 232 and 230 together define an outwardly facing substantially J-shaped cutting edge (not separately labeled). Ultrasonic surgical blade 210 thus has several cutting edges including (1) this outwardly facing J-shaped cutting edge with a linear section 230 and arcuate section 232, (2) rearwardly facing cutting edges 244 and 245, and (3) linear section 246 facing inwardly or oppositely to cutting edge 230. On a laterally outwardly facing side, elongate blade portion 224 may also include a blunt cutting edge section 248. Arcuate section 232 may comprise various sector angles and is disposed on the blade body substantially opposite shank 214.

The straight or linear cutting sections or edges 230, 246, and 248 are longitudinal and oriented parallel to the axis 228 of blade 210. Cutting edges 230, 232, 244, 246 of blade 210 are continuous (except for notch 240), i.e., have no teeth, serrations or voids. This continuity provides a smooth contact surface essential when making precise cuts.

As depicted in FIG. 3, an ultrasonic surgical blade 310 comprises a blade body 312 and a shank 314. Shank 314 is fixed at one end to blade body 312 and is provided at an opposite end with an externally threaded neck 315 for connecting blade 310 to a source of ultrasonic vibrations (not shown). Shank 314 includes a cylindrical body 316 provided on opposing sides with a pair of planar surfaces 318 engageable by a wrench for alternatively tightening and loosening the blade from the source of ultrasonic vibrations. Shank 318 is formed at a distal end with a pair of inclined surfaces 320 that smoothly connect to blade body 312.

Blade body 312 includes a proximal plate shaped portion 322, an elongate longitudinal portion 324, and a truncated hook-shaped distal end portion 326 all integrally continuously formed with each other. Blade body 312 is eccentrically disposed relative to a longitudinal axis 328 of blade 310 and particularly of shank 314. Elongate blade portion 324 is slightly tapered and oriented substantially parallel to axis 328. An outer elongate cutting edge section 330 of elongate blade portion 324 is slightly inclined relative to axis 328 and is continuous at a distal end with a circularly arcuate cutting edge 332 defining a distal periphery of hook-shaped distal end portion 326.

Blade body 312 is eccentrically disposed relative to axis 328 in that elongate or longitudinal blade portion 324 is disposed entirely to one side of the axis. During use of blade 310, this eccentricity is believed to convert a portion of the energy of longitudinal ultrasonic compression waves into ultrasonic transverse waves, whereby elongate or longitudinal blade portion 324 exhibits a motion component oriented substantially transversely to axis 328 and cutting edge 330. It is believed that this transverse motion enhances a lateral cutting action of edge 330, in a direction generally transversely to axis 328.

Plate shaped blade portion 322, elongate longitudinal blade portion 324, and hook-shaped distal end portion 326 together define a shallow rectangular cutout or recess 334 between shank 314 at a proximal end and hook portion 326 at the distal end of blade body 312.

A bore or channel 336 provided in shank 314 communicates at a distal end with a narrower bore or channel 338 in proximal blade portion 322. Channel 338 in turn communicates with recess 334. Channels 336 and 338 deliver irrigating and cooling liquid to recess 334 for distribution over blade body 312. To that end, a notch 340 and a liquid distribution surface 342 are provided in hook-shaped distal end portion 326 of blade body 312 for assisting in the conduction of a coolant liquid to cutting edge 332.

Distal end portion 326 of blade body 312 has a cutting edge 344 facing in a proximal direction toward from shank 314, while elongate blade portion 324 has a cutting edge 346 facing laterally toward from axis 328. Cutting edge 344 is sharp (owing to the formation of notch 340 and surface 334) while cutting edge 346 is blunt, having the thickness of blade body 312 along the elongate longitudinal portion 324 thereof.

Shank 314 has a shank width SW3 in a direction substantially perpendicular to axis 328, while elongate portion 324 of blade body 312 has a width BW3 also measured in a direction substantially perpendicular to axis 328. Blade width BW3 is substantially less than shank width SW3, which facilitates the eccentric disposition of blade body 312 relative to shank 314. Blade body 312 has a thickness (not shown) substantially less than blade width BW3.

Arcuate cutting edge 332 of distal end portion 326 extends through an arc of 90 degrees in the embodiment of FIG. 3. Cutting edges 332 and 330 together define an outwardly facing substantially J-shaped cutting edge (not separately labeled). Ultrasonic surgical blade 310 thus has several cutting edges including (1) this outwardly facing J-shaped cutting edge with a linear section 330 and arcuate section 332, (2) rearwardly facing cutting edge 344, and (3) linear section 346 facing inwardly or oppositely to cutting edge 330. Also, elongate blade portion 324 may be provided with a laterally outwardly facing blunt cutting edge 348. Arcuate section 332 may comprise various sector angles and is disposed on the blade body substantially opposite shank 314.

The straight or linear cutting sections or edges 330 and 346 are longitudinal and oriented substantially parallel to the axis 328 of blade 310. Elongate portion 324 of blade body 312 is tapered, the outwardly facing cutting edge 330 extending at an angle of 5-15 degrees relative to axis 328.

Cutting edges 330, 332, 346 of blade 310 are continuous (except for notch 340), i.e., have no teeth, serrations or voids. This continuity provides a smooth contact surface essential when making precise cuts.

As shown in FIG. 4, yet another ultrasonic surgical blade 410 comprises a blade body 412 and a shank 414. Shank 414 is fixed at one end to blade body 412 and is provided at an opposite end with an externally threaded neck 415 for connecting blade 410 to a source of ultrasonic vibrations (not shown). Shank 414 includes a cylindrical body 416 provided on opposing sides with a pair of planar surfaces 418 engageable by a wrench for alternatively tightening and loosening the blade from the source of ultrasonic vibrations. Shank 418 is formed at a distal end with a pair of inclined surfaces 420 that smoothly connect to blade body 412.

Blade body 412 does not include a proximal plate shaped portion like proximal plate shaped portion 142 of blade body 112. Instead, shank 414 is directly continuous with an elongate longitudinal portion 424 of blade body 412.

Blade body 412 further includes a truncated hook-shaped distal end portion 426 integrally continuously formed with elongate blade portion 424. Blade body 412 is eccentrically disposed relative to a longitudinal axis 428 of blade 410 and particularly of shank 414, owing to a staggered lateral disposition of elongate portion 424 relative to shank 414 and axis 428. During use of blade 410, this eccentricity is believed to convert a portion of the energy of longitudinal ultrasonic compression waves into ultrasonic transverse waves, whereby elongate or longitudinal blade portion 424 exhibits a motion component oriented substantially transversely to axis 428 and cutting edge 430. It is believed that this transverse motion enhances a lateral cutting action of edge 430, in a direction generally transversely to axis 428.

Elongate blade portion 424 is rectangular and has a uniform width BW2. Elongate blade portion 424 is oriented substantially parallel to axis 428. An outer elongate cutting edge section 430 of elongate blade portion 424 is parallel to axis 428 and is continuous at a distal end with a circularly arcuate cutting edge 432 defining a distal periphery of hook-shaped distal end portion 426.

The distal end of shank 414, elongate longitudinal blade portion 424, and hook-shaped distal end portion 426 together define a shallow or thin rectangular cutout or recess 434 between shank 414 at a proximal end and hook portion 426 at the distal end of blade body 412.

A proximal bore or channel 436 in shank 414 communicates at a distal end with a narrower bore or channel 438 in a tapered distal end (not separately labeled) of shank 414. Channel 438 in turn communicates with recess 434. Channels 436 and 438 deliver irrigating and cooling liquid to recess 434 for distribution over blade body 412. To that end, a notch 440 and a liquid distribution surface 442 are provided in hook-shaped distal end portion 426 of blade body 412 for assisting in the conduction of a coolant liquid to cutting edge 432.

Distal end portion 426 of blade body 412 has a sharp cutting edge 444 (owing to the formation of notch 440 and surface 434) facing in a proximal direction toward from shank 414, while elongate blade portion 424 has a blunt cutting edge 446 facing laterally toward from axis 428. Cutting edge 446 is blunt and has the thickness of blade body 412.

Shank 414 has a shank width SW4 in a direction substantially perpendicular to axis 428, while elongate portion 424 of blade body 412 has width BW4 also measured in a direction substantially perpendicular to axis 428. Blade width BW4 is substantially less than shank width SW4, which facilitates the eccentric disposition of blade body 412 relative to shank 414. Blade body 412 has a thickness (not shown) substantially less than blade width BW4.

Arcuate cutting edge 432 of distal end portion 426 extends through an arc of 90 degrees in the embodiment of FIG. 4. Cutting edges 432 and 430 together define an outwardly facing substantially J-shaped cutting edge (not separately labeled). Ultrasonic surgical blade 410 thus has several cutting edges including (1) this outwardly facing J-shaped cutting edge with a linear section 430 and arcuate section 432, (2) rearwardly facing cutting edges 444 and 445, and (3) linear section 446 facing inwardly or oppositely to cutting edge 430. On a laterally outwardly facing side, elongate blade portion 424 may also include a blunt cutting edge section 448. Arcuate section 432 may comprise various sector angles and is disposed on the blade body substantially opposite shank 414.

The straight or linear cutting sections or edges 430, 446, and 448 are longitudinal and oriented parallel to the axis 428 of blade 410. Cutting edges 430, 432, 446 of blade 410 are continuous (except for notch 440), i.e., have no teeth, serrations or voids. This continuity provides a smooth contact surface essential when making precise cuts.

Ultrasonic surgical blade 110, 210, 310, and 410 are particularly suited for performing a spinal laminectomy. Shank 114, 214, 314, 414 is connected at an end opposite blade body 112, 212, 312, 412 to a source of ultrasonic vibrations (not shown). Thereafter blade 110, 210, 310, 410 is moved into a patient, the blade being ultrasonically vibrated during this movement, so that cutting edge 132, 232, 332, 432 cuts into tissues of the patient. Subsequently the surgeon pulls the blade 110, 210, 310, 410 in a proximal direction out of the patient so that cutting edge 144, 244, 344, 444 engages bony tissue of the patient. Blade 110, 210, 310, 410 is ultrasonically vibrated during the pulling of the blade against the bony tissue to thereby enable the cutting of the bony tissue by cutting edge 144, 244, 344, 444.

The blade body 112, 212, 312, 412 is shifted laterally after the insertion or moving of the blade 110, 210, 310, 410 into the patient and prior to the pulling of the blade in a proximal direction out of the patient. The blade 110, 210, 310, 410 is nd ultrasonically vibrated during the lateral shifting of the blade to thereby enable cutting edge 146, 246, 346, 446 to cut through tissues of the patient as required. Owing to the eccentric disposition of elongate blade portion 124, 224, 324, 424, for instance, entirely to one side of the shank axis 128, 228, 328, 428, a transmission of a longitudinal ultrasonic compression wave into the blade 110, 210, 310, 410 via shank 114, 214, 314, 414 during the shifting of the blade gives rise to a transverse ultrasonic shear wave that vibrates elongate blade portion 124, 224, 324, 424 in a direction orthogonal to the axis. Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Manna, Ronald R., Novak, Theodore A. D., Darian, Alexander L., Paraschiv, Mircea

Patent Priority Assignee Title
10117667, Feb 11 2010 Cilag GmbH International Control systems for ultrasonically powered surgical instruments
10154852, Jul 01 2015 Cilag GmbH International Ultrasonic surgical blade with improved cutting and coagulation features
10172669, Oct 09 2009 Cilag GmbH International Surgical instrument comprising an energy trigger lockout
10179022, Dec 30 2015 Cilag GmbH International Jaw position impedance limiter for electrosurgical instrument
10194973, Sep 30 2015 Cilag GmbH International Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
10201382, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
10245064, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
10245065, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10251664, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
10265094, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10265117, Oct 09 2009 Cilag GmbH International Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
10278721, Jul 22 2010 Cilag GmbH International Electrosurgical instrument with separate closure and cutting members
10285724, Jul 31 2014 Cilag GmbH International Actuation mechanisms and load adjustment assemblies for surgical instruments
10299810, Feb 11 2010 Cilag GmbH International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
10299821, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor control limit profile
10314638, Apr 07 2015 Cilag GmbH International Articulating radio frequency (RF) tissue seal with articulating state sensing
10321950, Mar 17 2015 Cilag GmbH International Managing tissue treatment
10335182, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
10335183, Jun 29 2012 Cilag GmbH International Feedback devices for surgical control systems
10335614, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
10342602, Mar 17 2015 Cilag GmbH International Managing tissue treatment
10349999, Mar 31 2014 Cilag GmbH International Controlling impedance rise in electrosurgical medical devices
10357303, Jun 30 2015 Cilag GmbH International Translatable outer tube for sealing using shielded lap chole dissector
10376305, Aug 05 2016 Cilag GmbH International Methods and systems for advanced harmonic energy
10398466, Jul 27 2007 Cilag GmbH International Ultrasonic end effectors with increased active length
10420579, Jul 31 2007 Cilag GmbH International Surgical instruments
10420580, Aug 25 2016 Cilag GmbH International Ultrasonic transducer for surgical instrument
10426507, Jul 31 2007 Cilag GmbH International Ultrasonic surgical instruments
10433865, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10433866, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10433900, Jul 22 2011 Cilag GmbH International Surgical instruments for tensioning tissue
10441308, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
10441310, Jun 29 2012 Cilag GmbH International Surgical instruments with curved section
10456193, May 03 2016 Cilag GmbH International Medical device with a bilateral jaw configuration for nerve stimulation
10463421, Mar 27 2014 Cilag GmbH International Two stage trigger, clamp and cut bipolar vessel sealer
10463887, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10485607, Apr 29 2016 Cilag GmbH International Jaw structure with distal closure for electrosurgical instruments
10517627, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
10524854, Jul 23 2010 Cilag GmbH International Surgical instrument
10524872, Jun 29 2012 Cilag GmbH International Closed feedback control for electrosurgical device
10531910, Jul 27 2007 Cilag GmbH International Surgical instruments
10537351, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with variable motor control limits
10537352, Oct 08 2004 Cilag GmbH International Tissue pads for use with surgical instruments
10543008, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned jaw assemblies
10555769, Feb 22 2016 Cilag GmbH International Flexible circuits for electrosurgical instrument
10575892, Dec 31 2015 Cilag GmbH International Adapter for electrical surgical instruments
10595929, Mar 24 2015 Cilag GmbH International Surgical instruments with firing system overload protection mechanisms
10595930, Oct 16 2015 Cilag GmbH International Electrode wiping surgical device
10603064, Nov 28 2016 Cilag GmbH International Ultrasonic transducer
10603117, Jun 28 2017 Cilag GmbH International Articulation state detection mechanisms
10610286, Sep 30 2015 Cilag GmbH International Techniques for circuit topologies for combined generator
10624691, Sep 30 2015 Cilag GmbH International Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
10639092, Dec 08 2014 Cilag GmbH International Electrode configurations for surgical instruments
10646269, Apr 29 2016 Cilag GmbH International Non-linear jaw gap for electrosurgical instruments
10687884, Sep 30 2015 Cilag GmbH International Circuits for supplying isolated direct current (DC) voltage to surgical instruments
10688321, Jul 15 2009 Cilag GmbH International Ultrasonic surgical instruments
10702329, Apr 29 2016 Cilag GmbH International Jaw structure with distal post for electrosurgical instruments
10709469, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with energy conservation techniques
10709906, May 20 2009 Cilag GmbH International Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
10716615, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
10722261, Mar 22 2007 Cilag GmbH International Surgical instruments
10729494, Feb 10 2012 Cilag GmbH International Robotically controlled surgical instrument
10736685, Sep 30 2015 Cilag GmbH International Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
10751108, Sep 30 2015 Cilag GmbH International Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
10751109, Dec 22 2014 Cilag GmbH International High power battery powered RF amplifier topology
10751117, Sep 23 2016 Cilag GmbH International Electrosurgical instrument with fluid diverter
10765470, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
10779845, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned transducers
10779847, Aug 25 2016 Cilag GmbH International Ultrasonic transducer to waveguide joining
10779848, Jan 20 2006 Cilag GmbH International Ultrasound medical instrument having a medical ultrasonic blade
10779849, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
10779876, Oct 24 2011 Cilag GmbH International Battery powered surgical instrument
10779879, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
10799284, Mar 15 2017 Cilag GmbH International Electrosurgical instrument with textured jaws
10820920, Jul 05 2017 Cilag GmbH International Reusable ultrasonic medical devices and methods of their use
10828057, Mar 22 2007 Cilag GmbH International Ultrasonic surgical instruments
10828058, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
10828059, Oct 05 2007 Cilag GmbH International Ergonomic surgical instruments
10835307, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
10835768, Feb 11 2010 Cilag GmbH International Dual purpose surgical instrument for cutting and coagulating tissue
10842522, Jul 15 2016 Cilag GmbH International Ultrasonic surgical instruments having offset blades
10842523, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument and methods therefor
10842580, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with control mechanisms
10856896, Oct 14 2005 Cilag GmbH International Ultrasonic device for cutting and coagulating
10856929, Jan 07 2014 Cilag GmbH International Harvesting energy from a surgical generator
10856934, Apr 29 2016 Cilag GmbH International Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
10874417, Aug 11 2015 REACH SURGICAL, INC Double hook ultrasonic surgical blade
10874418, Feb 27 2004 Cilag GmbH International Ultrasonic surgical shears and method for sealing a blood vessel using same
10881449, Sep 28 2012 Cilag GmbH International Multi-function bi-polar forceps
10888347, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10893883, Jul 13 2016 Cilag GmbH International Ultrasonic assembly for use with ultrasonic surgical instruments
10898256, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques based on tissue impedance
10912580, Dec 16 2013 Cilag GmbH International Medical device
10912603, Nov 08 2013 Cilag GmbH International Electrosurgical devices
10925659, Sep 13 2013 Cilag GmbH International Electrosurgical (RF) medical instruments for cutting and coagulating tissue
10932847, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
10952759, Aug 25 2016 Cilag GmbH International Tissue loading of a surgical instrument
10952788, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable algorithms
10959771, Oct 16 2015 Cilag GmbH International Suction and irrigation sealing grasper
10959806, Dec 30 2015 Cilag GmbH International Energized medical device with reusable handle
10966744, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
10966747, Jun 29 2012 Cilag GmbH International Haptic feedback devices for surgical robot
10987123, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
10987156, Apr 29 2016 Cilag GmbH International Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
10993763, Jun 29 2012 Cilag GmbH International Lockout mechanism for use with robotic electrosurgical device
11006971, Oct 08 2004 Cilag GmbH International Actuation mechanism for use with an ultrasonic surgical instrument
11020140, Jun 17 2015 Cilag GmbH International Ultrasonic surgical blade for use with ultrasonic surgical instruments
11033292, Dec 16 2013 Cilag GmbH International Medical device
11033322, Sep 30 2015 Cilag GmbH International Circuit topologies for combined generator
11033323, Sep 29 2017 Cilag GmbH International Systems and methods for managing fluid and suction in electrosurgical systems
11033325, Feb 16 2017 Cilag GmbH International Electrosurgical instrument with telescoping suction port and debris cleaner
11051840, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
11051873, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
11058447, Jul 31 2007 Cilag GmbH International Temperature controlled ultrasonic surgical instruments
11058448, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multistage generator circuits
11058475, Sep 30 2015 Cilag GmbH International Method and apparatus for selecting operations of a surgical instrument based on user intention
11090103, May 21 2010 Cilag GmbH International Medical device
11090104, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
11090110, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
11096752, Jun 29 2012 Cilag GmbH International Closed feedback control for electrosurgical device
11129669, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques based on tissue type
11129670, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
11134978, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
11141213, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable techniques
11179173, Oct 22 2012 Cilag GmbH International Surgical instrument
11202670, Feb 22 2016 Cilag GmbH International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
11229450, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor drive
11229471, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11229472, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
11253288, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
11266430, Nov 29 2016 Cilag GmbH International End effector control and calibration
11266433, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
11272952, Mar 14 2013 Cilag GmbH International Mechanical fasteners for use with surgical energy devices
11311326, Feb 06 2015 Cilag GmbH International Electrosurgical instrument with rotation and articulation mechanisms
11324527, Nov 15 2012 Cilag GmbH International Ultrasonic and electrosurgical devices
11337747, Apr 15 2014 Cilag GmbH International Software algorithms for electrosurgical instruments
11344362, Aug 05 2016 Cilag GmbH International Methods and systems for advanced harmonic energy
11350959, Aug 25 2016 Cilag GmbH International Ultrasonic transducer techniques for ultrasonic surgical instrument
11369402, Feb 11 2010 Cilag GmbH International Control systems for ultrasonically powered surgical instruments
11382642, Feb 11 2010 Cilag GmbH International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
11399855, Mar 27 2014 Cilag GmbH International Electrosurgical devices
11413060, Jul 31 2014 Cilag GmbH International Actuation mechanisms and load adjustment assemblies for surgical instruments
11419626, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
11426191, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned jaw assemblies
11439426, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11452525, Dec 30 2019 Cilag GmbH International Surgical instrument comprising an adjustment system
11471209, Mar 31 2014 Cilag GmbH International Controlling impedance rise in electrosurgical medical devices
11484358, Sep 29 2017 Cilag GmbH International Flexible electrosurgical instrument
11490951, Sep 29 2017 Cilag GmbH International Saline contact with electrodes
11497546, Mar 31 2017 Cilag GmbH International Area ratios of patterned coatings on RF electrodes to reduce sticking
11553954, Jun 30 2015 Cilag GmbH International Translatable outer tube for sealing using shielded lap chole dissector
11559347, Sep 30 2015 Cilag GmbH International Techniques for circuit topologies for combined generator
11571286, Sep 22 2015 Apparatus for tooth stain removal
11583306, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11589916, Dec 30 2019 Cilag GmbH International Electrosurgical instruments with electrodes having variable energy densities
11602371, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with control mechanisms
11607268, Jul 27 2007 Cilag GmbH International Surgical instruments
11660089, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a sensing system
11666375, Oct 16 2015 Cilag GmbH International Electrode wiping surgical device
11666784, Jul 31 2007 Cilag GmbH International Surgical instruments
11684402, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11684412, Dec 30 2019 Cilag GmbH International Surgical instrument with rotatable and articulatable surgical end effector
11690641, Jul 27 2007 Cilag GmbH International Ultrasonic end effectors with increased active length
11690643, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11696776, Dec 30 2019 Cilag GmbH International Articulatable surgical instrument
11707318, Dec 30 2019 Cilag GmbH International Surgical instrument with jaw alignment features
11717311, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11717706, Jul 15 2009 Cilag GmbH International Ultrasonic surgical instruments
11723716, Dec 30 2019 Cilag GmbH International Electrosurgical instrument with variable control mechanisms
11730507, Feb 27 2004 Cilag GmbH International Ultrasonic surgical shears and method for sealing a blood vessel using same
11744636, Dec 30 2019 Cilag GmbH International Electrosurgical systems with integrated and external power sources
11751929, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11759251, Dec 30 2019 Cilag GmbH International Control program adaptation based on device status and user input
11766276, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11766287, Sep 30 2015 Cilag GmbH International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
11779329, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a flex circuit including a sensor system
11779387, Dec 30 2019 Cilag GmbH International Clamp arm jaw to minimize tissue sticking and improve tissue control
11786291, Dec 30 2019 Cilag GmbH International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
11786294, Dec 30 2019 Cilag GmbH International Control program for modular combination energy device
11812957, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a signal interference resolution system
11839422, Sep 23 2016 Cilag GmbH International Electrosurgical instrument with fluid diverter
11864820, May 03 2016 Cilag GmbH International Medical device with a bilateral jaw configuration for nerve stimulation
11871955, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11871982, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
11877734, Jul 31 2007 Cilag GmbH International Ultrasonic surgical instruments
11883055, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
11890491, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
11896280, Jan 15 2016 Cilag GmbH International Clamp arm comprising a circuit
11903634, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable techniques
11911063, Dec 30 2019 Cilag GmbH International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
11925378, Aug 25 2016 Cilag GmbH International Ultrasonic transducer for surgical instrument
11937863, Dec 30 2019 Cilag GmbH International Deflectable electrode with variable compression bias along the length of the deflectable electrode
11937866, Dec 30 2019 Cilag GmbH International Method for an electrosurgical procedure
11944366, Dec 30 2019 Cilag GmbH International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
11950797, Dec 30 2019 Cilag GmbH International Deflectable electrode with higher distal bias relative to proximal bias
11957342, Nov 01 2021 Cilag GmbH International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation
11974772, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with variable motor control limits
11974801, Dec 30 2019 Cilag GmbH International Electrosurgical instrument with flexible wiring assemblies
11986201, Dec 30 2019 Cilag GmbH International Method for operating a surgical instrument
11986234, Dec 30 2019 Cilag GmbH International Surgical system communication pathways
11998229, Oct 14 2005 Cilag GmbH International Ultrasonic device for cutting and coagulating
11998230, Nov 29 2016 Cilag GmbH International End effector control and calibration
12053224, Dec 30 2019 Cilag GmbH International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
12064109, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a feedback control circuit
9795405, Oct 22 2012 Cilag GmbH International Surgical instrument
D847990, Aug 16 2016 Cilag GmbH International Surgical instrument
D924400, Aug 16 2016 Cilag GmbH International Surgical instrument
ER4998,
ER5091,
ER6729,
Patent Priority Assignee Title
2838049,
2874470,
3526219,
3844272,
4099529, Sep 20 1976 Wide-angle cutter vitrophage
4542741, Jul 17 1981 Surgical instrument with incorporated lighting system
4655215, Mar 15 1985 Hand control for electrosurgical electrodes
4832683, Sep 20 1985 Sumitomo Bakellite Company Limited Surgical instrument
5135528, Jun 04 1991 Hockey stick chisel
5167725, Aug 01 1990 Ethicon Endo-Surgery, Inc Titanium alloy blade coupler coated with nickel-chrome for ultrasonic scalpel
5188102, May 11 1990 Sumitomo Bakelite Company Limited Surgical ultrasonic horn
5318570, Mar 05 1991 Biomet Manufacturing Corp Ultrasonic tool
5324299, Feb 03 1992 Ethicon Endo-Surgery, Inc Ultrasonic scalpel blade and methods of application
5346502, Apr 15 1993 Ethicon Endo-Surgery, Inc Laparoscopic ultrasonic surgical instrument and methods for manufacturing the instruments
5397333, Sep 24 1993 NUSURG MEDICAL, INC Surgical hook knife
5417654, Feb 02 1994 ALCON MANUFACTURING, LTD Elongated curved cavitation-generating tip for disintegrating tissue
5776092, Mar 23 1994 ERBE ELEKTROMEDIZIN GMBH Multifunctional surgical instrument
5807392, Mar 02 1995 Resistively heated cutting and coagulating surgical instrument
5807401, Nov 07 1994 GRIESHABER & CO , AG SCHAFFHAUSEN Ophthalmic surgical apparatus for pulverizing and removing the lens nucleus from the eye of a living being
5906628, Jun 26 1996 Olympus Optical Co., Ltd. Ultrasonic treatment instrument
5935142, Feb 20 1992 Cavitation-assisted method of material separation
6117152, Jun 18 1999 Ethicon Endo-Surgery, Inc. Multi-function ultrasonic surgical instrument
6254622, Feb 20 1996 Blade for ultrasonically assisted cutting and hemostasis
6379371, Nov 15 1999 Misonix, Incorporated Ultrasonic cutting blade with cooling
6436115, Jun 29 1998 Balanced ultrasonic blade including a plurality of balance asymmetries
6443969, Aug 15 2000 Misonix, Incorporated Ultrasonic cutting blade with cooling
6497715, Nov 07 2000 Stryker Corporation Ultrasonic hand piece and ultrasonic horn for use with the same
6695847, Dec 21 1999 PIEZOSURGERY, INC Surgical device and method for bone surgery
6830555, Oct 09 2001 JOHNSON & JOHNSON SURGICAL VISION, INC Multi-functional second instrument for cataract removal
6863672, Apr 06 1998 ORTHOPHOENIX, LLC Structures and methods for creating cavities in interior body regions
7044736, Dec 12 2002 PARKELL, INC Ultrasonic dental insert having a hand grip fitted to a retaining ring
7066923, Jun 25 2004 Alcon Inc Surgical method and apparatus using dual irrigation paths
7094229, Sep 09 2004 Alcon Inc Surgical method and apparatus
7135029, Jun 29 2001 Ethicon Endo-Surgery, Inc Ultrasonic surgical instrument for intracorporeal sonodynamic therapy
7217128, Dec 12 2002 PARKELL, INC Ultrasonic dental insert having interchangeable plastic and metal tips
20040133229,
20060271077,
20100010526,
D340981, Jun 11 1991 Biomet Manufacturing Corp Ultrasonic cutting tool for medical use
D344799, Jun 11 1991 Biomet Manufacturing Corp Ultrasonic cutting tool for medical use
D346024, Jun 11 1991 Biomet Manufacturing Corp Ultrasonic cutting tool for medical use
WO9421183,
WO9942040,
//////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 14 2006Misonix, Incorporated(assignment on the face of the patent)
Sep 13 2006MANNA, RONALD R Misonix, IncorporatedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0333520472 pdf
Sep 13 2006NOVAK, THEODORE A D Misonix, IncorporatedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0333520472 pdf
Sep 13 2006PARASCHIV, MIRCEAMisonix, IncorporatedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0333520472 pdf
Sep 14 2006DARIAN, ALEXANDER L Misonix, IncorporatedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0333520472 pdf
Sep 27 2019MISONIX OPCO, INC SWK FUNDING LLCINTELLECTUAL PROPERTY SECURITY AGREEMENT0521670275 pdf
Dec 26 2019MISONIX OPCO, INC Silicon Valley BankINTELLECTUAL PROPERTY SECURITY AGREEMENT0514470334 pdf
Oct 27 2021Silicon Valley BankMISONIX OPCO, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0602200773 pdf
Oct 29 2021OYSTER MERGER SUB II, LLCMISONIX, LLCMERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0619060564 pdf
Oct 29 2021Misonix IncorporatedMISONIX, LLCMERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0619060564 pdf
Oct 29 2021SWK FUNDING, LLC, AS COLLATERAL AGENTMISONIX OPCO, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0602200792 pdf
Nov 03 2021OYSTER OPCO MERGER SUB, LLCMISONIX OPCO, LLCMERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0614330736 pdf
Nov 03 2021MISONIX OPCO, INC MISONIX OPCO, LLCMERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0614330736 pdf
Nov 05 2021MISONIX OPCO, LLCWELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0588090950 pdf
Date Maintenance Fee Events
Feb 07 2018M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jan 26 2022BIG: Entity status set to Undiscounted (note the period is included in the code).
Feb 09 2022M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Aug 26 20174 years fee payment window open
Feb 26 20186 months grace period start (w surcharge)
Aug 26 2018patent expiry (for year 4)
Aug 26 20202 years to revive unintentionally abandoned end. (for year 4)
Aug 26 20218 years fee payment window open
Feb 26 20226 months grace period start (w surcharge)
Aug 26 2022patent expiry (for year 8)
Aug 26 20242 years to revive unintentionally abandoned end. (for year 8)
Aug 26 202512 years fee payment window open
Feb 26 20266 months grace period start (w surcharge)
Aug 26 2026patent expiry (for year 12)
Aug 26 20282 years to revive unintentionally abandoned end. (for year 12)