memory cells and methods of forming the same and devices including the same. The memory cells have first and second electrodes. An amorphous semiconductor material capable of electronic switching and having a first band gap is between the first and second electrodes. A material is in contact with the semiconductor material and having a second band gap, the second band gap greater than the first band gap.
|
18. A memory device comprising:
at least one memory element comprising:
first and second electrodes;
a first portion of gallium antimide between the first and second electrodes; and
a first dielectric material in contact with the gallium antimide and between the second electrode and gallium antimide such that the gallium antimide is not in direct contact with the second electrode, the first dielectric material having a band gap greater than a band gap of gallium antimide;
the memory device configured such that during operation of the memory device to retain data, the first portion of gallium antimide remains amorphous.
47. A memory device comprising:
an array of memory cells, each memory cell comprising:
first and second electrodes;
a first semiconductor material capable of electronic switching being between the first and second electrodes and having a first band gap; and
a first material in contact with the semiconductor material and having a second band gap and between the second electrode and first semiconductor material such that the first semiconductor material is not in direct contact with the second electrode, the second band gap greater than the first band gap; and
the memory device configured such that data is retained via the modulation of the electronic switching threshold voltage.
1. A memory device comprising:
at least one memory cell comprising:
first and second electrodes;
a first semiconductor material between the first and second electrodes, the first semiconductor material being amorphous, capable of electronic switching and having a first band gap;
at least one portion of a material having a second band gap in contact with the first semiconductor material and between the second electrode and first semiconductor material such that the first semiconductor material is not in direct contact with the second electrode, the second band gap being greater than the first band gap;
the memory device configured such that during operation of the memory device to retain data, the first semiconductor material remains amorphous.
31. A method of forming a memory device, the method comprising:
forming at least one memory cell, comprising:
forming a first electrode;
forming a second electrode;
forming a semiconductor material between the first and second electrodes, the semiconductor material capable of electronic switching and having a first band gap; and
forming a material in contact with the semiconductor material and between the second electrode and first semiconductor material such that the first semiconductor material is not in direct contact with the second electrode, the material having a second band gap, the second band gap being greater than the first band gap; and
configuring the memory device such that data is retained via the modulation of the electronic switching threshold voltage.
22. A memory cell comprising:
first and second electrodes;
a first semiconductor material between the first and second electrodes, the first semiconductor material being amorphous, capable of electronic switching and having a first band gap; and
a heterogeneous structure between the first and second electrodes, the at least one heterogeneous structure comprising:
a plurality of portions of a dielectric material having a second band gap, the second band gap being greater than the first band gap, and
at least one portion of a second semiconductor material, the second semiconductor material being amorphous, capable of electronic switching and having a third band gap less than the second band gap, the plurality of portions of the dielectric material alternating with the at least one portion of the second semiconductor material.
50. A memory device comprising:
an array of memory cells, each memory cell comprising:
first and second electrodes;
a first semiconductor material capable of electronic switching being between the first and second electrodes and having a first band gap;
a first material in contact with the semiconductor material and having a second band gap, the second band gap greater than the first band gap; and
at least one heterogeneous structure between the first and second electrodes, the at least one heterogeneous structure comprising:
a plurality of portions of the material, and
at least one portion of a second semiconductor material, the second semiconductor material being amorphous, capable of electronic switching and having a third band gap less than the second band gap, the plurality of portions of the material alternating with the at least one second semiconductor material.
11. A memory cell comprising:
first and second electrodes;
a first semiconductor material between the first and second electrodes, the first semiconductor material being amorphous, capable of electronic switching and having a first band gap;
at least one portion of a material having a second band gap in contact with the first semiconductor material, the second band gap being greater than the first band gap; and
at least one heterogeneous structure between the first and second electrodes, the at least one heterogeneous structure comprising:
a plurality of portions of the material, and
at least one portion of a second semiconductor material, the second semiconductor material being amorphous, capable of electronic switching and having a third band gap less than the second band gap, the plurality of portions of the material alternating with the at least one second semiconductor material.
42. A method of forming a memory device, the method comprising:
forming at least one memory cell, comprising:
forming a first electrode;
forming a first dielectric material over the first electrode;
forming an opening within the first dielectric material to expose a surface of the first electrode;
forming a second dielectric material on sidewalls of the opening and in contact with the surface of the first electrode;
forming a semiconductor material within the opening and over the second dielectric material, the semiconductor material capable of electronic switching and having a first band gap, the second dielectric material having a second band gap greater than the first band gap; and
forming a second electrode in contact with the semiconductor material; and
configuring the memory cell such that during operation of the memory cell to retain data, the first semiconductor material remains amorphous.
39. A method of forming a memory cell, the method comprising:
forming a first electrode;
forming a second electrode;
forming a semiconductor material between the first and second electrodes, the semiconductor material capable of electronic switching and having a first band gap;
forming a material in contact with the semiconductor material, the material having a second band gap, the second band gap being greater than the first band gap; and
forming at least one heterogeneous structure between the first and second electrodes, the forming the at least one heterogeneous structure comprising:
forming a plurality of portions of the material, and
forming at least one portion of a second semiconductor material, the second semiconductor material capable of electronic switching and having a third band gap less than the second band gap, the plurality of portions of the material being formed to alternate with the at least one second semiconductor material.
7. The memory device of
8. The memory device of
10. The memory device of
12. The memory cell of
13. The memory cell of
14. The memory cell of
a third semiconductor material, the third semiconductor material being amorphous, capable of electronic switching and having a fourth band gap less than the second band gap; and
first and second heterogeneous structures, wherein the first semiconductor material is in contact with the first electrode, the first heterogeneous structure is between the first and third semiconductor materials and a portion of the material within the second heterogeneous structure is in contact with the second electrode.
15. The memory cell of
16. The memory cell of
a third semiconductor material, the third semiconductor material being amorphous, capable of electronic switching and having a fourth band gap less than the second band gap;
a fourth semiconductor material, the fourth semiconductor material being amorphous, capable of electronic switching and having a fifth band gap less than the second band gap; and
first and second heterogeneous structures, wherein the first semiconductor material is in contact with the first electrode, the first heterogeneous structure is between the first and third semiconductor materials, the fourth semiconductor material is in contact with the second electrode, and the second heterogeneous structure is between the third and fourth semiconductor materials.
17. The memory cell of
20. The memory device of
21. The memory device of
25. The memory cell of
26. The memory cell of
27. The memory cell of
28. The memory cell of
29. The memory cell of
30. The memory cell of
35. The method of
36. The method of
37. The method of
40. The method of
41. The method of
45. The method of
46. The method of
48. The device of
49. The device of
51. The device of
|
Embodiments of the invention relate to semiconductor devices and, in particular, to programmable resistance memory elements and methods of forming and using the same.
An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) having a cross point architecture has been described by Yi-Chou Chen et al., “An Access-Transistor-Free (0T/1R) Non-Volatile Resistance Random Access Memory (RRAM) Using a Novel Threshold Switching, Self-Rectifying Chalcogenide Device,” IEEE International Electron Devices Meeting 2003. The described prior art device 10 shown in
During operation of the device 10, memory is retained via the modulation of the electronic switching threshold voltage. Any semiconductor layer that experiences a field-assisted carrier-concentration dependent generation mechanism and a competitive tarp-assisted carrier recombination will show electronic switching. The threshold voltage is the point at which the generation rate exceeds the recombination rate. At this point, the amorphous material experiences snapback, and the resistance falls, as shown in
The threshold voltage for electronic switching can be modulated by controlling the occupancy state of recombination centers. It has been shown that the threshold voltage of a recently amorphized germanium-antimony-tellurium (GST) material increases in time. Agostino Pirovano, et al., “Low-Field Amorphous State Resistance and Threshold Voltage Drift in Chalcogenide Materials,” IEEE Transactions of Electron Devices, vol. 51, no. 5, May 2004. This can be explained by empty acceptor-like traps that exist immediately after the material becomes amorphous. Over time, the traps fill, resulting in an increased Fermi level.
The threshold voltage of the device 10 is changed by applying differing electronic potentials to modulate the trap states. To create a low threshold voltage, a lower bias that is greater than the threshold voltage is applied to the chalcogenide layer 14. Since the bias exceeds the threshold voltage, the generation rate exceeds the recombination rate and free carriers exist for conduction. At the same time, the acceptor-like traps empty as the holes tunnel out of the traps. Since it takes time for the traps to fill with holes, excess holes exist for conduction. While the traps remain empty, the threshold voltage remains low.
To increase the threshold voltage, the applied bias is increased resulting in filled traps. If a bias is applied that exceeds the bias used for creating the low threshold voltage, a higher electric field in the chalcogenide layer 14 will result. This field will allow for trap-assisted tunneling. The “hole” occupying the acceptor-like trap will tunnel out since its barrier will have been reduced by the high electric field. This creates a higher threshold voltage.
There are two significant problems with the
It would be desirable to have an access-transistor-free memory device that could be subjected to higher temperatures and has improved data retention.
In the following detailed description, reference is made to various embodiments of the invention. These embodiments are described with sufficient detail to enable those skilled in the art to practice them. It is to be understood that other embodiments may be employed, and that various structural, logical and electrical changes may be made. Embodiments of the disclosure are now explained with reference to the figures. Throughout the figures, like reference numbers indicate like features. For purposes of clarity, the character “′” is used to indicate a second like feature, with additional such characters indicating additional like features.
The embodiments described herein relate to memory cell structures for a resistance random access memory (RRAM). Memory cells include first and second electrodes, and a heterogeneous structure including an electronic switching semiconductor material having a first band gap and another material having a second band gap that is higher than the first band gap.
The semiconductor material 330 and the material 340 are selected such that the band offset between the semiconductor material 330 and the material 340 is approximately symmetric, i.e., the conduction band and valence band offsets are approximately equal. However, since hole mobility is significantly greater than that of electrons, it is more important to create acceptor-like traps and to select materials with a high valence band offset rather than conduction band offset. As is well known in the art, an acceptor-like trap is a trap that is neutral when filled by an excess hole and carries a negative charge when it is empty, i.e., when it has given up the excess hole. The material 340 is thin enough to allow for tunneling without rupturing.
By this structure, any traps between the electronic switching semiconductor material 330 and material 340 will have a greater lifetime as compared to those within the chalcogenide layer 14 of the
In addition, the electronic switching semiconductor material 330 should be amorphous during operation of the cell 300. It is known that certain electronic switching semiconductor materials have a low crystallization temperature. For example, GST has a crystallization temperature of about 150° C. Current technologies for forming RRAM memory devices use temperatures higher than the crystallization temperatures of certain electronic switching semiconductor materials. For example, current surface mount technology (SMT) reflow ovens use temperatures as high as 265° C., and many packaging process steps, such as encapsulation, also exceed the crystallization temperatures. Therefore, if the semiconductor material 330 has a lower crystallization temperature than the temperatures that the material 330 will be exposed to during various processing steps, the material 330 will crystallize, rather than remaining amorphous.
To address this situation, it is possible to make the material 330 amorphous after it is subjected to high temperature processing steps. For this, circuitry is provided to reset the material 330 to an amorphous state. For example, where memory cell 300 is included in a memory device 500 (
Alternatively, the material 330 is selected to have a crystallization temperature greater than the temperatures used during various processing steps that the material 330 is to be exposed to.
In one embodiment, at least one portion of the electronic switching semiconductor material 330 is gallium antimide (GaSb). In one embodiment the material 340 is a dielectric material, such as silicon dioxide.
GaSb has a crystallization temperature of about 350° C. and exhibits electronic switching. Further, the band gap of GaSb is about 0.75 eV3. Also, the conduction band offset between GaSb and silicon dioxide is about 3.25 eV, which suggests a reasonably symmetric offset with sufficient valence band offset.
Alternatively, material 330 can be a chalcogenide material, such as GST, gallium-antimony-tin, gallium-antimony-tin-germanium, germanium-tellurium, among others. Material 340 can be a dielectric material, such as a high dielectric constant material, an oxide (e.g., silicon dioxide), among others.
In one embodiment the thicknesses of the material 340 is between about 0.5 nm and about 2 nm, and may be 1 nm. In one embodiment, the thickness of the semiconductor material 330 is between about 10 nm and about 100 nm, and may be 50 nm.
The embodiment illustrated in
In one embodiment material 330 is GaSb. Alternatively, material 330 can be a chalcogenide material, such as GST, gallium-antimony-tin, gallium-antimony-tin-germanium, germanium-tellurium, among others. Materials 340, 340′ can be a dielectric material, such as a high dielectric constant material, an oxide (e.g., silicon dioxide), among others.
In one embodiment the thicknesses of the materials 340, 340′ are between about 0.5 nm and about 2 nm, and may be 1 nm. In one embodiment, the thickness of the semiconductor material 330 is between about 10 nm and about 100 nm, and may be 50 nm.
The thickness of the semiconductor materials 330, 330′ are greater than the thicknesses of the portions of semiconductor material 350 within the heterogeneous structure 360. Each portion of the materials 340, 350 within the heterogeneous structure 360, should have a thickness such that there is no sharp conduction band offset at the interface of the materials 340, 350. The heterogeneous structure 360 is engineered such that, within the electronic switching semiconductor material 350, the band gap will approach the band gap of the portions of electronic switching semiconductor material 330, 330′. The band gap will increase from the electronic switching semiconductor material 350 into the material 340 due to the increase in the conduction band. The material 340 remains thin enough to allow for tunneling without rupturing.
In one embodiment the thicknesses of the portions of semiconductor material 350 and material 340 are between about 0.5 nm and about 2 nm, and may be 1 nm. In one embodiment, the thicknesses of the semiconductor materials 330, 330′ are between about 10 nm and about 100 nm, and may be 50 nm.
Each of the semiconductor materials 330, 330′, 350 can have same stoichiometric and/or atomic compositions or different stoichiometric and/or atomic compositions. In one embodiment, at least one of the electronic switching semiconductor materials 330, 330′, 350 is GaSb. In another embodiment, each of the electronic switching semiconductor materials 330, 330′, 350 is GaSb. In another embodiment, each portion of the electronic switching semiconductor material 330 is GaSb. In one embodiment the material 340 is silicon dioxide.
Alternatively, one or more of materials 330, 330′, 350 can be a chalcogenide material, such as GST, gallium-antimony-tin, gallium-antimony-tin-germanium, germanium-tellurium, among others. Material 340 can be a dielectric material, such as a high dielectric constant material, an oxide (e.g., silicon dioxide), among others.
In one embodiment the thicknesses of the portions of semiconductor material 350 and material 340 are between about 0.5 nm and about 2 nm, and may be 1 nm. In one embodiment, the thicknesses of the semiconductor materials 330, 330′, 330″ are between about 10 nm and about 100 nm, and may be 50 nm.
Each of the semiconductor materials 330, 330′, 330″, 350 can have same stoichiometric and/or atomic compositions or different stoichiometric and/or atomic compositions. In one embodiment, at least one of the electronic switching semiconductor materials 330, 330′, 330″, 350 is GaSb. In another embodiment, each of the electronic switching semiconductor materials 330, 330′, 330″, 350 is GaSb. In one embodiment the material 340 is silicon dioxide.
Alternatively, one or more of materials 330, 330′, 330″, 350 can be a chalcogenide material, such as GST, gallium-antimony-tin, gallium-antimony-tin-germanium, germanium-tellurium, among others. Material 340 can be a dielectric material, such as a high dielectric constant material, an oxide (e.g., silicon dioxide), among others.
In one embodiment the thicknesses of the portions of semiconductor material 350 and material 340 are between about 0.5 nm and about 2 nm, and may be 1 nm. In one embodiment, the thickness of the semiconductor materials 330 is between about 10 nm and about 100 nm, and may be 50 nm.
Each of the semiconductor materials 330, 350 can have same stoichiometric and/or atomic compositions or different stoichiometric and/or atomic compositions. In one embodiment, at least one of the electronic switching semiconductor materials 330, 350 is GaSb. In another embodiment, each of the electronic switching semiconductor materials 330, 350 is GaSb. In one embodiment the material 340 is silicon dioxide.
Alternatively, one or more of materials 330, 350 can be a chalcogenide material, such as GST, gallium-antimony-tin, gallium-antimony-tin-germanium, germanium-tellurium, among others. Material 340 can be a dielectric material, such as a high dielectric constant material, an oxide (e.g., silicon dioxide), among others.
In one embodiment the thicknesses of the portions of semiconductor material 350 and material 340 are between about 0.5 nm and about 2 nm, and may be 1 nm. In one embodiment, the thicknesses of the semiconductor materials 330, 330′ are between about 10 nm and about 100 nm, and may be 50 nm.
Each of the semiconductor materials 330, 330′, 350 can have same stoichiometric and/or atomic compositions or different stoichiometric and/or atomic compositions. In one embodiment, at least one of the electronic switching semiconductor materials 330, 330′, 350 is GaSb. In another embodiment, each of the electronic switching semiconductor materials 330, 330′ 350 is GaSb. In one embodiment the material 340 is silicon dioxide.
Alternatively, one or more of materials 330, 330′, 350 can be a chalcogenide material, such as GST, gallium-antimony-tin, gallium-antimony-tin-germanium, germanium-tellurium, among others. Material 340 can be a dielectric material, such as a high dielectric constant material, an oxide (e.g., silicon dioxide), among others.
According to the embodiment depicted in
The thickness of the semiconductor material 330 is greater than the thicknesses of the portions of semiconductor material 350 within the heterogeneous structure 360. Each portion of the materials 340, 350 within the heterogeneous structure 360, should have a thickness such that there is no sharp conduction band offset at the interface of the materials 340, 350. The heterogeneous structure 360 is engineered such that, within the electronic switching semiconductor material 350, the band gap will approach the band gap of the portions of electronic switching semiconductor material 330. The band gap will increase from the electronic switching semiconductor material 350 into the material 340 due to the increase in the conduction band. The material 340 remains thin enough to allow for tunneling without rupturing.
In one embodiment the thicknesses of the portions of semiconductor material 350 and material 340 are between about 0.5 nm and about 2 nm, and may be 1 nm. In one embodiment, the thicknesses of the semiconductor material 330 is between about 10 nm and about 100 nm, and may be 50 nm.
Each of the semiconductor materials 330, 350 can have the same stoichiometric and/or atomic compositions or different stoichiometric and/or atomic compositions. In one embodiment, at least one of the electronic switching semiconductor materials 330, 350 is GaSb. In another embodiment, each of the electronic switching semiconductor materials 330, 350 is GaSb. In one embodiment the material 340 is silicon dioxide. The third/middle electrode 370 is a conductive material and can be the same material as either the first or second electrodes 313, 312.
Alternatively, one or more of materials 330, 350 can be a chalcogenide material, such as GST, gallium-antimony-tin, gallium-antimony-tin-germanium, germanium-tellurium, among others. Material 340 can be a dielectric material, such as a high dielectric constant material, an oxide (e.g., silicon dioxide), among others.
The embodiments described in connection with
As shown in
Each of the materials 313, 330, 340, 312 can be formed by any suitable technique. The conductive materials 313, 312 can be any suitable thickness and can be any suitable conductive material, for example tungsten, TiW, among others. In the illustrated embodiment, semiconductor material 330 is GaSb and formed to a thickness of about 50 nm; and the material 340 is a dielectric material, specifically, silicon dioxide and is formed having a thickness of about 1 nm.
As shown in
The memory cells 330 depicted in
Referring to
As depicted in
The opening 370 is filled with the electronic switching semiconductor material 330, as shown in
A second dielectric material 362 and second electrode 312 are formed over the semiconductor material 330 and first dielectric material 361 by known techniques, as shown in
As described above, the
Optionally, the device 500 can include circuitry 504 for supplying a current to the memory cell 300 and material 330 to reset the material 330 to an amorphous state.
It should be appreciated that the device 500 may be fabricated as part of an integrated circuit. The corresponding integrated circuits may be utilized in a processor system. For example,
In the case of a computer system, the processor system 600 may include peripheral devices such as removable media devices 650 (e.g., CD-ROM drive or DVD drive) which communicate with CPU 610 over the bus 690. Memory device 602 can be constructed as an integrated circuit, which includes one or more phase change memory devices. If desired, the memory device 500 may be combined with the processor, for example CPU 610, as a single integrated circuit.
The above description and drawings should only be considered illustrative of exemplary embodiments that achieve the features and advantages described herein. Modification and substitutions to specific process conditions and structures can be made. Accordingly, the claimed invention is not to be considered as being limited by the foregoing description and drawings, but is only limited by the scope of the appended claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4433342, | Apr 06 1981 | Harris Corporation | Amorphous switching device with residual crystallization retardation |
7060586, | Apr 30 2004 | Xenogenic Development Limited Liability Company | PCMO thin film with resistance random access memory (RRAM) characteristics |
8339834, | Feb 22 2010 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device including a variable resistance element |
8441062, | Mar 23 2010 | Samsung Electronics Co., Ltd. | Nonvolatile memory devices having memory cell transistors therein with lower bandgap source/drain regions |
20030235073, | |||
20060175596, | |||
20060246270, | |||
20070064468, | |||
20070269683, | |||
20080105861, | |||
20080116440, | |||
20080164504, | |||
20080246078, | |||
20090003034, | |||
20090014707, | |||
20090081825, | |||
20090095985, | |||
20100323491, | |||
20110205781, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 14 2009 | MOULI, CHANDRA | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023700 | /0654 | |
Dec 15 2009 | MEADE, ROY | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023700 | /0654 | |
Dec 24 2009 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 043079 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 038954 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 038669 | /0001 | |
Jun 29 2018 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 047243 | /0001 | |
Jul 03 2018 | MICRON SEMICONDUCTOR PRODUCTS, INC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 03 2018 | Micron Technology, Inc | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | MICRON SEMICONDUCTOR PRODUCTS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 050937 | /0001 |
Date | Maintenance Fee Events |
Mar 15 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 22 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 30 2017 | 4 years fee payment window open |
Mar 30 2018 | 6 months grace period start (w surcharge) |
Sep 30 2018 | patent expiry (for year 4) |
Sep 30 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 30 2021 | 8 years fee payment window open |
Mar 30 2022 | 6 months grace period start (w surcharge) |
Sep 30 2022 | patent expiry (for year 8) |
Sep 30 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 30 2025 | 12 years fee payment window open |
Mar 30 2026 | 6 months grace period start (w surcharge) |
Sep 30 2026 | patent expiry (for year 12) |
Sep 30 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |