A valve apparatus and methods associated thereof are provided. The valve apparatus includes a valve housing structure. A first valve portion is connected to the valve housing structure, wherein the first valve portion has a sealing edge. A second valve portion is positioned at least partially within the valve housing structure. A constrictable membrane has a pressurizable interior compartment, wherein the constrictable membrane supported by the second valve portion and positioned proximate to the first valve portion, wherein at least a portion of the constrictable membrane is movable to engageable with the sealing edge of the first valve portion.
|
1. A valve apparatus comprising:
a valve housing structure;
a first valve portion connected to the valve housing structure, wherein the first valve portion has a sealing edge;
a second valve portion positioned at least partially within the valve housing structure, wherein the second valve portion further comprises an upper valve part and a lower valve part having a gap positioned between the upper and lower valve parts; and
a constrictable membrane having a pressurizable interior compartment, the constrictable membrane supported by the second valve portion and positioned proximate to the first valve portion, wherein at least a portion of the constrictable membrane is movable to be engageable with the sealing edge of the first valve portion, wherein the constrictable membrane is affixed between the upper and lower valve parts and across the gap, wherein the sealing edge of the first valve portion is positioned within the gap formed between the upper and lower valve parts, wherein the constrictable membrane is movable between at least a first position where the constrictable membrane engages the sealing edge of the first valve portion to create a seal, and a second position where the constrictable membrane does not contact the sealing edge of the first valve portion.
11. A system for sterilizing medical instruments comprising:
a sterilization container having a plurality of walls, a base, and a top, wherein at least a portion of the plurality of walls, the base, and the top substantially enclose an interior area of the sterilization container;
a valve housing structure positioned within at least one of the plurality of walls, the base, and the top;
a first valve portion connected to the valve housing structure, wherein the first valve portion has a sealing edge;
a second valve portion positioned at least partially within the valve housing structure, wherein the second valve portion further comprises an upper valve part and a lower valve part having a gap positioned between the upper and lower valve parts; and
a constrictable membrane having a pressurizable interior compartment, the constrictable membrane supported by the second valve portion and positioned proximate to the first valve portion, wherein the constrictable membrane is affixed between the upper and lower valve parts and across the gap, wherein the sealing edge of the first valve portion is positioned within the gap formed between the upper and lower valve parts, wherein the constrictable membrane is movable between at least a first position where the constrictable membrane engages the sealing edge of the first valve portion to create a seal, and a second position where the constrictable membrane does not contact the sealing edge of the first valve portion.
2. The valve apparatus of
3. The valve apparatus of
4. The valve apparatus of
5. The valve apparatus of
6. The valve apparatus of
7. The valve apparatus of
8. The valve apparatus of
9. The valve apparatus of
10. The valve apparatus of
12. The system for sterilizing medical instruments of
|
The present disclosure is generally related to valves and more particularly is related to a constricting pressure valve apparatus for use with a medical sterilization container.
Articles such as medical instruments and the like are usually sterilized in an autoclave in which the articles are exposed to high-pressure saturated steam for a relatively brief interval. Unless the articles are to be used immediately and in close proximity to the autoclave, it is desirable to sterilize the articles while they are inside a valved container as described, for example, in U.S. Pat. No. 4,748,003. During the sterilization process, the valves open under the influence of high pressure steam in the autoclave exposing the contents of the container to the hot steam. At the end of the sterilization cycle, when the pressure in the autoclave outside the container is returned to normal, i.e. atmospheric pressure, the valves close so that when the container is removed from the autoclave, the now sterilized articles are maintained in a completely sealed sterile environment until they are needed.
The sterilization container described in the above patent has pressure-actuated valves in the top and bottom walls of the sterilization container. Each valve has a large valve opening and a closure therefor, the latter being supported by a bellows capsule mounted inside the container. A return spring mechanism normally maintains the valve closure in its closed position. However, when the pressure outside the container exceeds that within the container by a few pounds per square inch, the force on the valve closure exceeds that exerted by the return spring with the result that the valve closure opens sufficiently to allow high-pressure steam to enter the container. That steam collapses the bellows, which thereupon moves the valve closure to its fully open position. Both valves being open, high-pressure steam can sweep through the container and sterilize the articles therein. When the pressure inside the autoclave returns to normal after completion of the sterilization cycle, the return spring moves the valve closure of each valve to its closed position thereby sealing the container. As also described in that patent, pressure equalization occurs through a special filter member mounted in the container wall so that a sterile environment at ambient pressure is maintained in the container until the container is opened to remove the articles therefrom.
While the valve described in the above patent operates satisfactorily, it does have certain to drawbacks. First and foremost, the bellows capsule has a relatively small diameter in relation to the valve opening and a large length-to-diameter ratio, e.g. 1.3 in./1 in.=1.3. This means that when the valve member starts to open in response to a given pressure differential outside and inside the container and the bellows is collapsed lengthwise, there is a relatively large reduction in the volume of the bellows, i.e. in excess of 20%, and a correspondingly large increase in gas pressure inside the bellows which resists further opening of the valve member. To avoid this problem, the bellows capsule in the prior value has to be evacuated. This necessitates the use of an elaborate return spring mechanism in order to overcome the increased back pressure and close the valve. Also, the requirement for a bellows that must be evacuated makes the valve somewhat more difficult and expensive to manufacture. In addition, sometimes a small leak may develop in the bellows so that air enters the bellows. Resultantly, during the next sterilization cycle, when the valve member begins to open, that air will be compressed, effectively increasing the spring constant of the bellows so that the valve member does not open as much for a given pressure differential outside and inside the container.
Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.
Embodiments of the present disclosure provide a valve apparatus. Briefly described, in architecture, one embodiment of the apparatus, among others, can be implemented as follows. The valve apparatus includes a valve housing structure. A first valve portion is connected to the valve housing structure, wherein the first valve portion has a sealing edge. A second valve portion is positioned at least partially within the valve housing structure. A constrictable membrane has a pressurizable interior compartment, wherein the constrictable membrane supported by the second valve portion and positioned proximate to the first valve portion, wherein at least a portion of the constrictable membrane is movable to engageable with the sealing edge of the first valve portion.
The present disclosure can also be viewed as providing systems for sterilizing medical instruments. Briefly described, in architecture, one embodiment of the system, among others, can be implemented as follows. The system for sterilizing medical instruments includes a sterilization container having a plurality of walls, a base, and a top, wherein at least a portion of the plurality of walls, the base, and the top substantially enclose the sterilization container. A valve housing structure is positioned within at least one of the plurality of walls, the base, and the top. A first valve portion is connected to the valve housing structure, wherein the first valve portion has a sealing edge. A second valve portion is positioned at least partially within the valve housing structure. A constrictable membrane has a pressurizable interior compartment, wherein the constrictable membrane supported by the second valve portion and positioned proximate to the first valve portion, wherein at least a portion of the constrictable membrane is movable to engageable with the sealing edge of the first valve portion.
The present disclosure can also be viewed as providing methods of sterilizing a medical instrument. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: placing a sterilization container having the medical instrument positioned therein within a sterilization environment; heating the sterilization environment, thereby opening a constricting valve positioned within the sterilization container; transferring a sterilant through the constricting valve to sterilize the medical instrument positioned within the sterilization container; after the medical instrument is sterilized, decreasing a temperature of the sterilization environment to close the constricting valve, whereby the closed constricting valve seals the sterilization container and prevents a biological contaminant from accessing the medical instrument therein; and removing the sterilization container from the sterilization environment.
Other systems, methods, features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The valve apparatus 10 may include any type of valve used with any type of structure. Preferably, the valve apparatus 10 is used with a medical instrument sterilization container used to sterilize medical instruments before and after medical procedures. The valve apparatus 10, however, can be used with other structures conventionally used with a sterilization process, and/or capable of enduring a sterilization process, or structures that are not used for sterilization processes.
The valve housing structure 40 may include any device, structure, portion of a structure or combination thereof that supports or is connected to one of the first and second valve portions 30, 20. For example, the valve housing structure 40 may be integral with the first valve portion 30 and may be affixed, by any means, such as bonding, gluing and/or ultrasonic welding to the sterilization container. Alternatively, the valve housing structure 40 may be affixed with any type of fastener to the second valve portion 20. In
The first valve portion 30 and the second valve portion 20 may include any type of valve portions that are positioned proximate to each other. As is illustrated in
The first and second valve portions 30, 20 may be characterized as any type of structures within a valve that are positioned proximate to one another. The identifications of a ‘first’ and/or ‘second’ portion are included to convey the details of the present disclosure, and should not be read to limit the scope valve apparatus 10. The first and second valve portions 30, 20 may include a variety of designs and structures, all of which are considered within the scope of the present disclosure. For example, in
The constrictable membrane 50 may include any type of membrane, flexible material, substantially flexible material and/or any other device or material capable of constricting. For example, the constrictable membrane 50 may include a rubber material and/or a silicone material that is able to flex, bend and move. The constrictable membrane 50 may be attached to at least a portion of the second valve portion 20, wherein the constrictable membrane 50 is positioned on an exterior surface of the second valve portion 20, such as by stretching the constrictable membrane 50 over the exterior surface. In accordance with this disclosure, a constrictable membrane 50 attached to the second valve portion 20 may include a constrictable membrane 50 that is integral with, bonded to, coupled to, fastened to and/or engaged with any part of the first valve portion. In
As is illustrated in
Movement between the closed position shown in
The valve apparatus 110 may function substantially similar to the valve apparatus 10 of the first exemplary embodiment, in that the constrictable membrane 150 may move between at least a first position where the constrictable membrane 150 engages the sealing edge 132 of the first valve portion 130 to create a seal, and a second position where the constrictable membrane 150 does not contact the sealing edge 132 of the first valve portion 130. However, the valve apparatus 110 differs in that the constrictable membrane 150 may be a sphere or spheroid shape and not stretched over parts of the second valve apparatus 120. The constrictable membrane 150 as a sphere or spheroid shape may decrease and increase in size with the varying pressure and temperature inside an autoclave, and in ambient atmospheric temperatures and pressures. As is shown in
Movement between the closed position shown in
As is shown by block 202, a sterilization container having the medical instrument positioned therein is placed within a sterilization environment. The sterilization environment is heated, thereby opening a constricting valve positioned within the sterilization container (block 204). A sterilant is transferred through the constricting valve to sterilize the medical instrument positioned within the sterilization container (block 206). After the medical instrument is sterilized, a temperature of the sterilization environment is decreased to close the constricting valve, whereby the closed constricting valve seals the sterilization container and prevents a biological contaminant from accessing the medical instrument therein (block 208). The sterilization container is removed from the sterilization environment (block 210).
The method may include any additional number of steps, variations, or functions, including any steps, variations, or functions disclosed with respect to
It should be emphasized that the above-described embodiments of the present disclosure, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications, including variations of devices, structures, processes and methods, may be made to the above-described embodiment(s) of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claims.
Kennedy, III, James J., Taylor, Jon B., Hannafin, George P., LaRue, Paul
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4381019, | Jul 06 1981 | Sid Harvey, Inc. | Pressure responsive valve |
4748003, | Mar 11 1986 | Riley Medical Incorporated | Container for flash sterilization |
5019345, | May 22 1986 | WAGNER, HANS | Method for sterilizing containers |
5097865, | Mar 13 1991 | Symmetry Medical USA | Valved flash sterilization container |
6317477, | Apr 07 1999 | WESTINGHOUSE ELECTRIC CO LLC | Floating pool seal assembly with leak limiting annular support structure |
20030091471, | |||
20050238530, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 29 2012 | HANNAFIN, GEORGE P | SYMMETRY MEDICAL MANUFACTURING, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027835 | /0295 | |
Mar 01 2012 | LARUE, PAUL | SYMMETRY MEDICAL MANUFACTURING, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027835 | /0295 | |
Mar 01 2012 | KENNEDY, JAMES J , III | SYMMETRY MEDICAL MANUFACTURING, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027835 | /0295 | |
Mar 05 2012 | TAYLOR, JON B | SYMMETRY MEDICAL MANUFACTURING, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027835 | /0295 | |
Mar 09 2012 | Symmetry Medical Manufacturing, Inc. | (assignment on the face of the patent) | / | |||
Nov 26 2014 | SYMMETRY MEDICAL MANUFACTURING, INC | SPECIALTY SURGICAL INSTRUMENTATION INC | CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER FROM 12 370,856 TO 12 370,956 PREVIOUSLY RECORDED AT REEL: 034311 FRAME: 0711 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 034533 | /0031 | |
Nov 26 2014 | SYMMETRY MEDICAL MANUFACTURING, INC | SPECIALTY SURGICAL INSTRUMENTATION INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034311 | /0711 | |
Dec 05 2014 | SYMMETRY MEDICAL MANUFACTURING INC | CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS AGENT | SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT | 034546 | /0049 | |
Dec 05 2014 | SYMMETRY MEDICAL MANUFACTURING INC | CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS AGENT | FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT | 034546 | /0001 | |
Jul 01 2016 | SYMMETRY SURGICAL INC | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS ADMINISTRATIVE AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE S ADDRESS PREVIOUSLY RECORDED ON REEL 039376 FRAME 0627 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 042138 | /0125 | |
Jul 01 2016 | Specialty Surgical Instrumentation, Inc | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS ADMINISTRATIVE AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE S ADDRESS PREVIOUSLY RECORDED ON REEL 039376 FRAME 0627 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 042138 | /0125 | |
Jul 01 2016 | SYMMETRY SURGICAL INC | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 039376 | /0627 | |
Jul 01 2016 | Specialty Surgical Instrumentation, Inc | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 039376 | /0627 | |
May 01 2017 | CREDIT SUISSE AG, CAYMAN ISIANDS BRANCH | NEIPAL ENTERPRISES, INC | RELEASE OF FIRST LIEN SECURITY INTEREST | 042386 | /0363 | |
May 01 2017 | CREDIT SUISSE AG, CAYMAN ISIANDS BRANCH | TECOMET INC | RELEASE OF FIRST LIEN SECURITY INTEREST | 042386 | /0363 | |
May 01 2017 | CREDIT SUISSE AG, CAYMAN ISIANDS BRANCH | Symmetry Medical Inc | RELEASE OF FIRST LIEN SECURITY INTEREST | 042386 | /0363 | |
May 01 2017 | CREDIT SUISSE AG, CAYMAN ISIANDS BRANCH | SYMMETRY MEDICAL MANUFACTURING INC | RELEASE OF FIRST LIEN SECURITY INTEREST | 042386 | /0363 | |
May 01 2017 | CREDIT SUISSE AG, CAYMAN ISIANDS BRANCH | MOUNTAINSIDE MEDICAL COLORADO, LLC | RELEASE OF FIRST LIEN SECURITY INTEREST | 042386 | /0363 | |
May 01 2017 | Credit Suisse AG, Cayman Islands Branch | NEIPAL ENTERPRISES, INC | RELEASE OF SECOND LIEN SECURITY INTEREST | 042386 | /0407 | |
May 01 2017 | Credit Suisse AG, Cayman Islands Branch | MOUNTAINSIDE MEDICAL COLORADO, LLC | RELEASE OF SECOND LIEN SECURITY INTEREST | 042386 | /0407 | |
May 01 2017 | Credit Suisse AG, Cayman Islands Branch | SYMMETRY MEDICAL MANUFACTURING INC | RELEASE OF SECOND LIEN SECURITY INTEREST | 042386 | /0407 | |
May 01 2017 | Credit Suisse AG, Cayman Islands Branch | Symmetry Medical Inc | RELEASE OF SECOND LIEN SECURITY INTEREST | 042386 | /0407 | |
May 01 2017 | Credit Suisse AG, Cayman Islands Branch | TECOMET INC | RELEASE OF SECOND LIEN SECURITY INTEREST | 042386 | /0407 | |
Oct 25 2022 | CAPITAL ONE, NATIONAL ASSOCIATION | SYMMETRY SURGICAL INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061770 | /0816 | |
Oct 25 2022 | CAPITAL ONE, NATIONAL ASSOCIATION | Specialty Surgical Instrumentation, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061770 | /0816 | |
Oct 19 2023 | Specialty Surgical Instrumentation, Inc | ASPEN SURGICAL PRODUCTS, INC | MERGER SEE DOCUMENT FOR DETAILS | 065535 | /0673 |
Date | Maintenance Fee Events |
Jun 04 2018 | REM: Maintenance Fee Reminder Mailed. |
Nov 26 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 21 2017 | 4 years fee payment window open |
Apr 21 2018 | 6 months grace period start (w surcharge) |
Oct 21 2018 | patent expiry (for year 4) |
Oct 21 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 21 2021 | 8 years fee payment window open |
Apr 21 2022 | 6 months grace period start (w surcharge) |
Oct 21 2022 | patent expiry (for year 8) |
Oct 21 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 21 2025 | 12 years fee payment window open |
Apr 21 2026 | 6 months grace period start (w surcharge) |
Oct 21 2026 | patent expiry (for year 12) |
Oct 21 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |