A compound for an organic thin film transistor having a structure represented by the following formula (1):
##STR00001##
wherein R1 and R2, and R3 and R4 are respectively combined with each other to form an aromatic hydrocarbon ring having 6 to 60 carbon atoms or an aromatic heterocyclic ring having 3 to 60 carbon atoms; the ring being fused to the ring to which the groups are bonded, whereby the structure of the formula (1) has 5 or more aromatic rings that are fused; and the fused rings formed by R1 and R2, and R3 and R4 each may have a substituent.
|
##STR00041##
wherein R20 and R21 are independently a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 2 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms, in which the alkyl groups are optionally combined with each other to form a ring structure containing the nitrogen atom, an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, each of which optionally having a substituent.
##STR00042##
wherein R30 and R31 are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms, in which the alkyl groups are optionally combined with each other to form a ring structure containing the nitrogen atom, an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, each of which optionally having a substituent, provided that the compound in which all of R30 and R31 are hydrogen atoms is excluded.
##STR00043##
wherein X is independently O or S; R40 to R41 and Z are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms, in which the alkyl groups are optionally combined with each other to form a ring structure containing the nitrogen atom, an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, each of which optionally having a substituent; and
R40 and R42, or R41 and R43 are optionally bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 60 carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 3 to 60 carbon atoms, which is fused to the ring to which the groups are bonded.
1. A compound for an organic thin film transistor having a structure represented by the following formula (3):
##STR00039##
wherein X is independently O or S; R11 to R16 and Z are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms, in which the alkyl groups are optionally combined with each other to form a ring structure containing the nitrogen atom, an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, each of which optionally having a substituent; and
R11 and R12, R12 and R13, R14 and R15 or R15 and R16 are optionally bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 52 carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 3 to 52 carbon atoms which is fused to the ring to which the groups are bonded.
5. An organic thin film transistor comprising:
a substrate and
three terminals of a gate electrode, a source electrode and a drain electrode, an insulator layer and an organic semiconductor layer being provided on the substrate,
source-drain current being controllable by applying a voltage to the gate electrode,
the organic semiconductor layer comprising a compound having a structure represented by the following formula (2):
##STR00040##
wherein R5 to R10 are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms, in which the alkyl groups are optionally combined with each other to form a ring structure containing the nitrogen atom, an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, each of which optionally having a substituent; and
R5 and R6, R6 and R7, R8 and R9 or R9 and R10 are optionally bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 54 carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 3 to 54 carbon atoms, which is fused to the ring to which the groups are bonded;
provided that the compound in which all of R5 to R10 are hydrogen atoms is excluded.
2. A material for an organic thin film transistor comprising the compound for an organic thin film transistor according to
3. An organic thin film transistor comprising:
a substrate and
three terminals of a gate electrode, a source electrode and a drain electrode, an insulator layer and an organic semiconductor layer being provided on the substrate,
source-drain current being controllable by applying a voltage to the gate electrode,
the organic semiconductor layer comprising the compound for an organic thin film transistor according to
6. The organic thin film transistor according to
7. The organic thin film transistor according to
8. The organic thin film transistor according to
11. The fused ring compound according to
13. The fused ring compound according to
15. A fused ring compound according to
17. An organic compound according to
|
The invention relates to a compound for an organic thin film transistor and an organic thin film transistor using it in an organic semiconductor layer.
A thin film transistor (TFT) has been used widely as a switching device for a display of a liquid crystal display apparatus or the like. A representative TFT comprises a gate electrode, an insulating layer and a semiconductor layer sequentially on a substrate, and a source electrode and a drain electrode formed on the semiconductor layer with a predetermined interval. The organic semiconductor layer constitutes a channel region, and a TFT performs an on-off operation by adjusting current flowing between the source electrode and the drain electrode by a voltage applied to the gate electrode.
Conventionally, a TFT was fabricated by using amorphous or polycrystalline silicon. However, a CVD apparatus which is used for fabricating a TFT using silicon is very expensive. Therefore, there was a problem that an increase in size of a display apparatus or the like using a TFT resulted in a significant increase in production cost. Further, since forming an amorphous or polycrystalline silicon into a film is conducted at a significantly high temperature, kind of materials which can be used as a substrate is limited, which makes the use of a light-weight resin substrate or the like impossible.
In order to solve such problem, a TFT which uses an organic substance instead of amorphous or polycrystalline silicon (hereinafter often abbreviated as an organic TFT) has been proposed. As the film-formation method when a TFT is fabricated by using an organic substance, a vacuum vapor deposition method, a coating method or the like are known. According to these film-formation methods, a device can be increased in size while suppressing an increase in production cost, and the process temperature necessary for film formation can be suppressed to a relatively low temperature. Therefore, an organic TFT has advantages that less restriction is imposed on the selection of materials used in a substrate. As a result, practical application of an organic TFT is expected, and intensive studies have been made thereon.
As for the organic semiconductor used in an organic TFT, as the material for a p-type FET (field effect transistor), a polymer such as a conjugated polymer and thiophene, a metal phthalocyanine compound, a fused aromatic hydrocarbon such as pentacene or the like are used singly or in the form of a mixture with other compounds. As the material for an n-type FET, 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA), 11,11,12,12-tetracyanonaphtho-2,6-quinodimethane (TCNNQD), 1,4,5,8-naphthalene tetracarboxylic diimide (NTCDI) or fluorinated phthalocyanine are known, for example.
On the other hand, as the device which similarly utilizes electric conductance, an organic electroluminescence (EL) device is known. In an organic EL device, generally, electric charge is flown forcibly by applying a strong electric field of 105V/cm or more in the film thickness direction of an ultrathin film of 100 nm or less. In the case of an organic TFT, electric charge is required to be flown at a high speed in an electric field of 105V/cm or less for a distance of several μm or more. Therefore, an organic substance itself used in an organic TFT is required to be further conductive. However, the above-mentioned compounds used in conventional organic TFTs have a small field effect mobility and a slow response speed, and hence, the high-speed responsiveness thereof as a transistor is not satisfactory. In addition, it has a small on-off ratio.
The “on-off ratio” as referred to herein means a value obtained by dividing current flowing between a source and a drain when applying a gate voltage (ON state) by current flowing between a source and a drain when applying no gate voltage (OFF state). The ON current normally means a current value (saturation current) at the time when current flowing between a source and a drain is saturated when the gate voltage is increased.
As the representative example of the material for this organic TFT, pentacene can be given. In Patent Documents 1 and 2, an organic TFT using pentacene in an organic semiconductor layer is fabricated. Since pentacene has a defect that its stability is low in the atmosphere, although the mobility of a device is significantly high immediately after the device fabrication, it falls with the passage of time. Non-Patent Document 1 reports an organic TFT which uses picene which is a fused aromatic ring. Non-Patent Document 1 states that, since picene has a lower ionization potential than pentacene, it has superior oxidation stability in the air. This document states that, since picene has a lower ionization potential than pentacene, it has superior oxidation stability in the air. However, when picene was used, although a device showed a mobility of 1.0 cm2/Vs, the use of picene had such defects that a high driving voltage of −67V is required to be applied. Non-Patent Document 2 shows optical properties of an acenedithiophene compound. However, this document does not show the performance of an organic TFT.
The invention is aimed at providing an organic thin film transistor which has a high mobility and a low driving voltage or can be applied to a coating method, and also aimed at providing a compound for an organic thin film transistor used for producing the organic thin film transistor.
As a result of intensive studies for attaining the above-mentioned object, the inventors have found that an organic compound represented by the following formula (1) in which the 7 conjunction system is enlarged by allowing an aromatic ring to be further fused to the anthracene structure is preferable as a material of an organic thin film transistor having a high mobility and a low driving voltage. The invention has been made on this finding.
That is, the invention is a compound for an organic thin film transistor having a structure of the following formula (1):
##STR00002##
In the formula (1), R1 and R2, and R3 and R4 are respectively combined with each other to form an aromatic hydrocarbon ring having 6 to 60 carbon atoms or an aromatic heterocyclic ring having 3 to 60 carbon atoms; the ring being fused to the ring to which the groups are bonded, whereby the structure of the formula (1) has 5 or more aromatic rings that are fused; and the fused rings formed by R1 and R2, and R3 and R4 each may have a substituent which is a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent.
The invention is a compound for an organic thin film transistor having a structure represented by the following formula (2):
##STR00003##
In the formula (2), R5 to R10 are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent; and
R5 and R6, R6 and R7, R8 and R9 or R9 and R10 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 54 carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 3 to 54 carbon atoms which is fused to the ring to which the groups are bonded.
Further, the invention is a compound for an organic thin film transistor having a structure shown by the following formula (3):
##STR00004##
In the formula (3), X is independently O, S or N—Z; R11 to R16 and Z are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent; and
R11 and R12, R12 and R13, R14 and R15 or R15 and R16 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 52 carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 3 to 52 carbon atoms which is fused to the ring to which the groups are bonded.
The material for an organic thin film transistor of the invention comprises the above-mentioned compound for an organic thin film transistor.
The invention is a compound for an organic thin film transistor which can be used in an organic layer of an organic thin film transistor.
Further, an organic thin film transistor can be produced by using the above-mentioned compound for an organic thin film transistor.
The invention also provides an organic thin film transistor comprising: a substrate and three terminals of a gate electrode, a source electrode and a drain electrode, an insulator layer and an organic semiconductor layer being provided on the substrate, source-drain current being controlled by applying a voltage to the gate electrode, the organic semiconductor layer comprising the organic compound having a structure represented by the formulas (1) to (3).
The invention provides a fused ring compound represented by the following formula (4):
##STR00005##
In the formula (4), R20 and R21 are independently a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 2 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent.
The invention provides an organic compound represented by the following formula (5):
##STR00006##
In the formula (5), R30 and R31 are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent, provided that the compound in which all of R30 to R31 are a hydrogen atom is excluded.
The invention provides an organic compound represented by the following formula (6):
##STR00007##
In the formula (6), X is independently O, S or N—Z; R40 to R41 and Z are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent; and
R40 and R42, or R41 and R43 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 60 carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 3 to 60 carbon atoms which is fused to the ring to which the groups are bonded.
Further, the invention provides an organic compound represented by the following formula (7):
##STR00008##
In the formula (7), X is independently O, S or N—Z; R50, R51 and Z are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent; provided that the compound in which all of R50 and R51 are a hydrogen atom is excluded.
The invention can provide an organic thin film transistor having a high mobility and a low driving voltage or can be applied to a coating process, and a compound for an organic thin film transistor used for producing the organic thin film transistor.
The compound for an organic thin film transistor of the invention has a structure represented by the following formula (1):
##STR00009##
In the formula (1), R1 and R2, and R3 and R4 are respectively combined to each other to form an aromatic hydrocarbon ring having 6 to 60 carbon atoms or an aromatic heterocyclic ring having 3 to 60 carbon atoms; the ring being fused to the ring to which the groups are bonded, whereby the structure of the formula (1) has 5 or more aromatic rings that are fused; and the fused rings formed by R1 and R2, and R3 and R4 each may have a substituent, which is a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent.
It is preferred that the compound have a structure in which R1 and R2 and R3 and R4 are respectively combined, whereby 5 to 7 aromatic rings are fused.
When two adjacent groups are bonded to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 60 carbon atoms which is fused to a ring to which these groups are bonded, the 6 to 60 carbons include two carbons of the ring to which these groups are bonded. When two adjacent groups are bonded to form a substituted or unsubstituted aromatic heterocyclic ring having 3 to 60 carbon atoms which is fused to the ring to which these groups are bonded, the 3 to 60 carbons include two carbons of the ring to which these groups are bonded.
Specific examples of the above-mentioned aromatic hydrocarbon ring include benzene, naphthalene, anthracene, phenanthrene, chrysene, phenanthrene and tetracene.
Examples of the above-mentioned aromatic heterocyclic ring include pyridine, pyrazine, quinoline, naphthyridine, quinoxaline, phenazine, diazaanthracene, pyridoquinoline, pyrimidoquinazoline, pyrazinoquinoxaline, phenanthroline, carbazole, thiophene, benzothiophene, dibenzothiophene, benzodithiophene, [1]benzothieno[3,2-b]benzothiophene, thienothiophene, dithienothiophene, furan, benzofuran, dibenzofuran, benzodifuran, thiazole, benzothiazole, dithiaindacene, dithiaindenoindene, dibenzoselenophene, diselena-indacene, diselena-indenoindene and dibenzosilole.
A molecule as shown in
Further, it is preferred that the above-mentioned structure of fused 5 or more aromatic rings, which is shown in the formula (1), is symmetrical with respect to the black point as shown below, since the molecular interaction is enhanced to increase crystallinity.
##STR00010##
It is further preferred that the structure of the formula (1) in which 5 or more aromatic rings are fused and a substituent bonded thereto be symmetrical with respect to the black point as shown above.
It is preferred that the fused ring have a substituent, since, due to the presence of a substituent, this compound can be dissolved and applied. A linear substituent is more preferable.
Further, the compound for an organic thin film transistor of the invention has a structure represented by the following formula (2):
##STR00011##
In the formula (2), R5 to R10 are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent; and
R5 and R6, R6 and R7, R8 and R9 or R9 and R10 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 54 carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 3 to 54 carbon atoms which is fused to the ring to which the groups are bonded.
As examples of the substituent to be bonded to the aromatic hydrocarbon ring having 6 to 54 carbon atoms or the aromatic heterocyclic ring having 3 to 54 carbon atoms, the same examples as those for the substituent to be bonded to the fused ring in the formula (1) can be given.
The compound for an organic thin film transistor of the invention has a structure represented by the following formula (3):
##STR00012##
In the formula (3), X is independently O, S or N—Z; R11 to R16 and Z are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent; and
R11 and R12, R12 and R13, R14 and R15 or R15 and R16 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 52 carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 3 to 52 carbon atoms which is fused to the ring to which the groups are bonded.
As examples of the substituent to be bonded to the aromatic hydrocarbon ring having 6 to 52 carbon atoms or the aromatic heterocyclic ring having 3 to 52 carbon atoms, the same examples as those for the substituent to be bonded to the fused ring in the formula (1) can be given.
The fused ring compound of the invention has a structure represented by the following formula (4). This compound is included in the compound represented by the formula (1).
##STR00013##
In the formula (4), R20 and R21 are independently, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 2 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent.
The fused ring compound of the invention has a structure represented by the following formula (5). This compound is included in the compound represented by the formula (1).
##STR00014##
In the formula (5), R30 and R31 are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent; provided that the compound in which all of R30 to R31 are a hydrogen atom is excluded.
The fused ring compound of the invention has a structure represented by the following formula (6). This compound is included in the compound represented by the formula (1).
##STR00015##
In the formula (6), X is independently O, S or N—Z; R40 to R41 and Z are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent; and
R40 and R42, or R41 and R43 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 60 carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 3 to 60 carbon atoms which is fused to the ring to which the groups are bonded.
The fused ring compound of the invention has a structure represented by the following formula (7). This compound is included in the compound represented by the formula (1).
##STR00016##
In the formula (7), X is independently O, S or N—Z; R50 and R51 and Z are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, a haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be combined with each other to form a ring structure containing the nitrogen atom), an alkylsulfonyl group having 1 to 30 carbon atoms, a haloalkylsulfonyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, an aromatic heterocyclic group having 3 to 60 carbon atoms, an alkylsilyl group having 3 to 20 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group, which each may have a substituent; provided that the compound in which all of R50 and R51 are a hydrogen atom is excluded.
In the formulas (1) to (7), the substituent to be bonded to the fused ring is preferably a halogen atom, an alkyl group having 1 to 30 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, an alkylsilylacetylene group having 5 to 60 carbon atoms or a cyano group. Each of these groups may further have a substituent.
Specific examples of the substituent to be bonded to the fused ring in the formulas (1) to (7) will be explained hereinbelow.
Specific examples of the halogen atom include fluorine, chlorine, bromine and iodine atoms.
Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-icosane, n-henicosane, n-docosane, n-tricosane, n-tetracosane, n-pentacosane, n-hexacosane, n-heptacosane, n-octacosane, n-nonacosane and n-triacontane.
Examples of the haloalkyl group include chloromethyl, 1-chloroethyl, 2-chloroethyl, 2-chloroisobutyl, 1,2-dichloroethyl, 1,3-dichloroisopropyl, 2,3-dichloro-t-butyl, 1,2,3-trichloropropyl, bromomethyl, 1-bromoethyl, 2-bromoethyl, 2-bromoisobutyl, 1,2-dibromoethyl, 1,3-dibromoisopropyl, 2,3-dibromo-t-butyl, 1,2,3-tribromopropyl, iodomethyl, 1-iodoethyl, 2-iodoethyl, 2-iodoisobutyl, 1,2-diiodoethyl, 1,3-diiodoisopropyl, 2,3-diiodo-t-butyl, 1,2,3-triiodopropyl, fluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2-fluoroisobutyl, 1,2-difluoroethyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, perfluoroisopropyl, perfluorobutyl and perfluorocyclohexyl.
The alkoxyl group is a group shown by —OY1. As examples of Y1, the same examples as those given for the alkyl group can be given. The haloalkoxyl group is a group shown by —OY2. As examples of Y2, the same examples as those given for the haloalkyl group can be given.
The alkylthio group is a group shown by —SY1. As examples of Y1, the same examples as those given for the alkyl group can be given. The haloalkylthio group is a group shown by —SY2. As examples of Y2, the same examples as those given for the haloalkyl group can be given.
The alkylamino group is a group shown by —NHY1. The dialkylamino group is a group shown by —NY1Y3. As examples of Y1 and Y3, the same examples as those given for the alkyl group can be given. The alkyl groups of the dialkylamino group may be combined with each other to form a ring structure containing the nitrogen atom. As the ring structure, pyrrolidine, piperidine or the like can be given, for example.
The alkylsulfonyl group is a group shown by —SO2Y1. As examples of Y1, the same examples as those given for the alkyl group can be given. The haloalkylsulfonyl group is a group shown by —SO2Y2. As examples of Y2, the same examples as those given for the haloalkyl group can be given.
As examples of the aromatic hydrocarbon group and the aromatic heterocyclic group mentioned above, the same examples as those given for the aromatic hydrocarbon ring and the aromatic heterocyclic ring can be given.
The alkylsilyl group is a group shown by —SiY1Y3Y4, and as examples of Y1, Y3 and Y4, the same examples as those given for the alkyl group can be given, respectively.
The alkylsilylacetylene group is a group obtained by connecting the above-mentioned alkylsilyl group with an ethylenylene group, and the examples thereof include a trimethylsilylacetylene group, a triethylacetylene group and a triisopropylsilylacetylene group.
The organic compound having a specific structure to be used in the organic thin film transistor of the invention is basically of bipolar type, showing both the p-type (hole conductance) and n-type (electron conductance) properties. Therefore, it can be driven both as a p-type device and an n-type device in combination with a source electrode and a drain electrode, which will be mentioned later.
By using an electron-accepting group as the substituent to be bonded to the fused ring in the formulas (1) and (7), it is possible to lower the level of the lowest unoccupied molecular orbital (LUMO), thereby allowing the compound to function as an n-type semiconductor. Preferable electron-accepting groups include a hydrogen atom, a halogen atom, a cyano group, a haloalkyl group having 1 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms and a haloalkylsulfonyl group having 1 to 30 carbon atoms. By using an electron-donating group as the substituent to be bonded to the fused ring in the formula (1) and as R6 and R7 in the formula (2), it is possible to increase the level of the highest occupied molecular orbital (HOMO), thereby allowing the compound to function as a p-type semiconductor. Preferable examples of the electron-donating group include a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an alkoxyl group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms and a dialkylamino group having 2 to 60 carbon atoms (the amino groups may be combined with each other to form a ring structure containing the nitrogen atom).
As the substituent which may further substitute each group as the substituent to be bonded to the fused ring in the formulas (1) to (7), an aromatic hydrocarbon group, an aromatic heterocyclic group, an alkyl group, an alkoxyl group, a haloalkyl group, an alkylthio group, an alkylsulfonyl group, an aryloxy group, an arylthio group, an alkoxycarbonyl group, an amino group, a halogen atom, a cyano group, a nitro group, a hydroxyl group and a carboxyl group can be given.
Specific examples of the compound for an organic thin film transistor of the invention will be given below. The invention is, however, not limited thereto.
##STR00017## ##STR00018## ##STR00019## ##STR00020## ##STR00021## ##STR00022## ##STR00023## ##STR00024## ##STR00025## ##STR00026## ##STR00027## ##STR00028##
The compound for an organic thin film transistors of the invention can be synthesized by a known method, for example, by a Suzuki coupling reaction using a transition metal as shown in (A), a Sonogashira reaction using a copper catalyst and a desilylation reaction as shown in (B), an annulation reaction using a transition metal as shown in (C) or a Negishi coupling reaction using a transition metal as shown in (D).
##STR00029##
TMS: Trimethylsilylacetylene
In an electric device such as a transistor, it is possible to obtain a device with a high field effect mobility or an on-off ratio by using a raw material having a high purity. Therefore, according to need, it is desirable to purify raw materials by techniques such as column chromatography, recrystallization, distillation and sublimation. It is preferably possible to improve the purity by using these purification methods repeatedly or by using a plurality of methods in combination. Further, it is desirable that purification by sublimation be repeated at least twice or more as the final step of the purification. By using these techniques, it is preferable to use a raw material with a purity of 90% or more which is measured by HPLC. By using a raw material with a purity of further preferably 95% or more, particularly preferably 99% or more, it is possible to increase the field effect mobility or the on/off ratio of the organic thin film transistor, and the performance intrinsic to the raw material can be enhanced.
Next, the device structure of the organic thin film transistor of the invention will be explained.
As for the device configuration of the organic thin film transistor of the invention, it is a thin film transistor comprising a substrate, three terminals of a gate electrode, a source electrode and a drain electrode, an insulating layer and an organic semiconductor layer being provided on the substrate, source-drain current being controlled by applying a voltage to a gate electrode. The organic thin film transistor of the invention is characterized in that the organic semiconductor layer comprises the above-mentioned compound for an organic thin film transistor of the invention.
There are no particular restrictions on the structure of the transistor. It may have a known device structure except for the component of the organic semiconductor layer. Specific examples of the device structure of the organic thin film transistor will be explained with reference to the drawings.
An organic thin film transistor 1 shown in
An organic thin film transistor 2 shown in
An organic thin film transistor 3 shown in
An organic thin film transistor 4 shown in
The organic thin film transistor of the invention has a field effect transistor (FET: Field Effect Transistor) structure. As mentioned above, several structures can be made by the position of electrodes, the order of stacking the layers or the like. The organic thin film transistor has an organic semiconductor layer (organic compound layer), a source electrode and a drain electrode which are formed so that they are opposed with a predetermined interval, and a gate electrode which is formed with a predetermined interval from each of the source electrode and the drain electrode. By applying a voltage to the gate electrode, current flowing between the source-drain electrodes is controlled. Here, the distance between the source electrode and the drain electrode is determined according to the application where the organic thin film transistor of the invention is used, and is normally 0.1 μm to 1 mm, preferably 1 μm to 100 μm, and further preferably 5 μm to 100 μm.
As for the organic thin film transistor of the invention, in addition to the above-mentioned device structure, various structures as the organic thin film transistor have been proposed. As long as the transistor has a mechanism that effects such as an on-off operation and amplification are exhibited by controlling current flown between the source electrode and the drain electrode due to a voltage applied to the gate electrode, the device structure is not limited to those mentioned above.
For example, it may have a device structure, such as a top and bottom contact type organic thin film transistor (see
The constituting elements of the organic thin film transistor will be mentioned below.
(Organic Semiconductor Layer)
The organic semiconductor layer of the organic thin film transistor of the invention comprises the above-mentioned compound for an organic thin film transistor of the invention. The thickness of the organic semiconductor layer is not particularly limited, but normally 0.5 nm to 1 μm, and preferably 2 nm to 250 nm.
The method for forming the organic semiconductor layer is not particularly restricted, and known methods can be applied. For example, the organic semiconductor layer can be formed from the above-mentioned material for the organic semiconductor layer by, for example, the molecular beam evaporation (MBE) method, the vacuum vapor evaporation method, the chemical deposition method, a printing/coating method such as the dipping method of a solution in which materials are dissolved, the spin coating method, the casting method, the bar coating method, the roll coating method and the ink-jet method, or by baking, electropolymerization, the molecular beam evaporation method, self-assembly from a solution, or by combination of these methods.
Since the field effect mobility is improved by improving the crystallinity of the organic semiconductor layer, it is preferable to perform annealing after the completion of the film formation regardless of the film-formation method. By doing this, a high-performance device can be obtained. The temperature of annealing is preferably 50 to 200° C., further preferably 70 to 200° C., and the duration of annealing is preferably 10 minutes to 12 hours, further preferably 1 to 10 hours. In the invention, in the organic semiconductor layer, one of the compounds represented by the formula (1) may be used. A plurality of the compounds represented by the formula (1) may be used in combination. The organic semiconductor layer may be formed of a mixed thin film or stacked layers by using a known semiconductor such as pentacene and a thiophene oligomer.
(Substrate)
The substrate in the organic thin film transistor of the invention serves to support the organic thin film transistor structure. As the materials thereof, in addition to glass, inorganic compounds such as metal oxides and metal nitrides, plastic films (PET, PES, PC), a metal substrate or a composite or a stack thereof or the like may be used. If the structure of the organic thin film transistor can be fully supported by constituting elements other than the substrate, the use of a substrate may be omitted. As the material for the substrate, silicon (Si) wafer may be frequently used. In this case, Si itself can be used as a substrate serving also as a gate electrode. Further, SiO2, formed by oxidizing the surface of Si, can be used as an insulator layer. In this case, a metal layer such as an Au layer is often formed on an Si substrate serving also as a gate electrode so as to serve as an electrode for connecting a lead wire.
(Electrode)
The material for the gate electrode, the source electrode and the drain electrode of the organic thin film transistor of the invention is not particularly limited as long as it is a conductive material. Usable materials include platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony, lead, tantalum, indium, palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten, tin antimony oxide, indium tin oxide (ITO), fluorine-doped zinc oxide, zinc, carbon, graphite, glassy carbon, silver paste and carbon paste, lithium, beryllium, sodium, magnesium, potassium, calcium, scandium, titanium, manganese, zirconium, gallium, niobium, a sodium-potassium alloy, a magnesium/copper mixture, a magnesium/silver mixture, a magnesium/aluminum mixture, a magnesium/indium mixture, an aluminum/aluminum oxide mixture and a lithium/aluminum mixture.
Examples of the method for forming the above-mentioned electrodes include deposition, electron beam deposition, sputtering, atmospheric-pressure plasma method, ion plating, chemical vapor deposition, electrodeposition, electroless plating, spin coating, printing and ink-jetting. As the method for patterning which is conducted if necessary, a method for forming an electrode by photolithography or lift-off, which are known methods, using conductive thin films formed by the above-mentioned methods and a method for forming a resist on metallic foil such as aluminum foil and copper foil, by thermal transfer or ink-jetting, followed by etching, may be mentioned.
Although the film thickness of the electrode thus formed is not particularly limited as long as electric current is passed therethrough, it is preferably 0.2 nm to 10 μm, further preferably 4 nm to 300 nm. If the film thickness falls within this preferable range, there is no case where a thin film causes a rise in resistance and a drop in voltage. If the film thickness is in this preferable range, since the film is not too thick, a shorter time is consumed in film formation, and a stacked film can be formed smoothly without forming a step when another layer such as a protective layer and an organic semiconductor layer is stacked.
In the organic thin film transistor of the invention, as for other materials for the source electrode, the drain electrode and the gate electrode and the method for forming thereof, it is preferable to use a fluid electrode material, such as a solution, paste, ink or a dispersion liquid, which contains the above-mentioned conductive materials. It is particularly preferable to use a fluid electrode material containing fine metal particles containing a conductive polymer or platinum, gold, silver or copper. In order to prevent damage to the organic semiconductor, as the solvent or the dispersion medium, it is preferable to use a solvent or a dispersion medium which contains 60 mass % or more, preferably 90 mass % or more of water. As the dispersion containing fine metal particles, although a known conductive paste or the like may be used, it is preferable to use a dispersion containing fine metal particles each normally having a particle diameter of 0.5 nm to 50 nm or 1 nm to 10 nm. Examples of the material for the fine metal particles include platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony, lead, tantalum, indium, palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten and zinc. It is preferable to form electrodes by using a dispersion obtained by dispersing these fine metal particles in a dispersion medium which is water or an arbitral organic solvent by using a dispersion stabilizer composed mainly of an organic material. Examples of the method for producing such dispersion of fine metal particles include a physical production method such as the in-gas evaporation method, the sputtering method and the metal vapor synthesis method, and a chemical production method such as the colloid method and the co-precipitation method, in which metal ions are reduced in the liquid phase to form fine metal particles. It is preferable to use a dispersion of fine metal particles produced by the colloid method disclosed in JP-A-H11-76800, JP-A-H11-80647, JP-A-H11-319538 or JP-A-2000-239853 and by the in-gas evaporation method disclosed in JP-A-2001-254185, JP-A-2001-53028, JP-A-2001-35255, JP-A-2000-124157 or JP-A-2000-123634.
The electrode may be formed by directly performing patterning according to the ink-jet method by using a dispersion containing these fine metal particles, or may be formed from a coating film by lithography, laser ablation or the like. Further, it is possible to use a method for patterning according to the printing method such as relief printing, intaglio printing, planographic printing or screen printing. The electrode is formed, and the solvent is dried. Thereafter, according to need, the electrode is heated along with the shape thereof at a temperature of 100° C. to 300° C., preferably 150° C. to 200° C., whereby fine metal particles are thermally bonded, thus making it possible to form an electrode pattern having an intended shape.
Further, it is also preferable to use known conductive polymers of which the conductivity is improved by doping or the like as the other materials for the gate electrode, the source electrode and the drain electrode. For example, electroconductive polyaniline, electroconductive polypyrrole, electroconductive polythiophene, a complex of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid or the like can be preferably used. These materials can reduce contact resistance between the source and drain electrodes, and the organic semiconductor layer. To form the electrode, patterning may be performed according to the inkjet method, and the electrode may be formed from the coating film by lithography or laser ablation. Further, it is possible to use a method for patterning according to the printing method such as relief printing, intaglio printing, planographic printing or screen printing.
In particular, as the material for forming the source electrode and the drain electrode, of the above-mentioned materials, materials having a low electric resistance in a surface being in contact with the organic semiconductor layer, are preferable. That is, this electric resistance corresponds to a field effect mobility when an electric-current control device is manufactured, and, in order to obtain a high mobility, resistance is required to be as small as possible. Generally, this depends on the magnitude relationship between the work function of electrode materials and the energy level of the organic semiconductor layer.
It is preferred that the following relationship be satisfied, in which a is the work function (W) of materials for the electrodes, b is the ionization potential (Ip) of the organic semiconductor layer, and c is the electron affinity (Af) of the organic semiconductor layer. Herein, a, b, and c are all positive values based on the vacuum level.
In the case of a p-type organic thin film transistor, it is preferred that the relationship b−a<1.5 eV (formula (1)) be satisfied, further preferably b−a<1.0 eV. If this relationship is kept in the relationship with the organic semiconductor layer, a high-performance device can be obtained. It is preferable to select as large a work function as possible especially for the work function of the electrode materials. It is preferred that the work function of the electrode material be 4.0 eV or more, further preferably 4.2 eV or more. The value of the work function of the metal is described, for example, in Chemistry Manual Basic Edition II, page 493 (Revised third edition, edited by Chemical Society of Japan, issued by Maruzen Co., Ltd., 1983). Selection may be made from the above-mentioned list of effective metals having a work function of 4.0 eV or more. Examples of such metals having a large work function include Ag (4.26, 4.52, 4.64, 4.74 eV), Al (4.06, 4.24, 4.41 eV), Au (5.1, 5.37, 5.47 eV), Be (4.98 eV), Bi (4.34 eV), Cd (4.08 eV), Co (5.0 eV), Cu (4.65 eV), Fe (4.5, 4.67, 4.81 eV), Ga (4.3 eV), Hg (4.4 eV), Ir (5.42, 5.76 eV), Mn (4.1 eV), Mo (4.53, 4.55, 4.95 eV), Nb (4.02, 4.36, 4.87 eV), Ni (5.04, 5.22, 5.35 eV), Os (5.93 eV), Pb (4.25 eV), Pt (5.64 eV), Pd (5.55 eV), Re (4.72 eV), Ru (4.71 eV), Sb (4.55, 4.7 eV), Sn (4.42 eV), Ta (4.0, 4.15, 4.8 eV), Ti (4.33 eV), V (4.3 eV), W (4.47, 4.63, 5.25 eV) and Zr (4.05 eV).
Of these, noble metals (Ag, Au, Cu, Pt), Ni, Co, Os, Fe, Ga, Ir, Mn, Mo, Pd, Re, Ru, V and W are preferable. In addition to metals, ITO, conductive polymers such as polyanilline and PEDOT:PSS and carbon are preferable. No particular restrictions are imposed on the electrode materials as long as the work function satisfies the formula (1) even if the material contains one or more kinds of the above-mentioned substances having a large work function.
In the case of an n-type organic thin film transistor, it is preferred that the relationship a−c<1.5 eV (formula (II)) be satisfied, further preferably a−c<1.0 eV. If this relationship is kept, in the relationship with the organic semiconductor layer, a high-performance device can be obtained. It is preferable to select as small a work function as possible especially for the work function of the electrode material. It is preferable to select a work function of the electrode material of 4.3 eV or less, further preferably 3.7 eV or less.
As for the specific examples of such metals having a small work function, selection may be made from the list of effective metals having a work function of 4.3 eV or less described in Chemistry Manual Basic Edition II, page 493 (Revised third edition, edited by Chemical Society of Japan, issued by Maruzen Co., Ltd., 1983). Specific examples include Ag (4.26 eV), Al (4.06, 4.28 eV), Ba (2.52 eV), Ca (2.9 eV), Ce (2.9 eV), Cs (1.95 eV), Er (2.97 eV), Eu (2.5 eV), Gd (3.1 eV), Hf (3.9 eV), In (4.09 eV), K (2.28 eV), La (3.5 eV), Li (2.93 eV), Mg (3.66 eV), Na (2.36 eV), Nd (3.2 eV), Rb (4.25 eV), Sc (3.5 eV), Sm (2.7 eV), Ta (4.0, 4.15 eV), Y (3.1 eV), Yb (2.6 eV), and Zn (3.63 eV). Among these metals, preferred metals are Ba, Ca, Cs, Er, Eu, Gd, Hf, K, La, Li, Mg, Na, Nd, Rb, Y, Yb, and Zn. No particular restrictions are imposed on the electrode material as long as the work function thereof satisfies the formula (II) even if the material contains one or a plurality of the above-mentioned substances having a small work function. However, metals having a small work function easily deteriorate when they are brought into contact with moisture or oxygen in the atmosphere, and hence, it is preferable to coat these small-work-function metals with metals, such as Ag or Au, which are stable in the air, if necessary. The film thickness necessary for coating is 10 nm or more, and films can be more surely protected from oxygen and water in proportion to an increase in film thickness. However, in practical use, it is preferable to set the film thickness to be 1 μm or less from the viewpoint of productivity enhancement or the like.
In the organic thin film transistor according to the invention, a buffer layer may be provided between the organic semiconductor layer and the source and drain electrodes in order to improve injection efficiency, for example. As the buffer layer, for an n-type organic thin film transistor, compounds having an alkaline metal, or alkaline earth metal ionic bonds such as LiF, Li2O, CsF, Na2CO3, KCl, MgF2, or CaCO3 used for a cathode of an organic EL device are preferable. In addition, a compound, such as Alq, which is used as an electron-injecting layer or as an electron-transporting layer in an organic EL device may be inserted as the buffer layer.
For a p-type organic thin film transistor, it is desirable to use FeCl3, a cyano compound such as TCNQ, F4-TCNQ and HAT, CFx, metal oxides other than oxides of alkaline metals and alkaline earth metals such as GeO2, SiO2, MoO3, V2O5, VO2, V2O3, MnO, Mn3O4, ZrO2, WO3, TiO2, In2O3, ZnO, NiO, HfO2, Ta2O5, ReO3, and PbO2, or an inorganic compound such as ZnS or ZnSe. In many cases, these oxides cause oxygen deficiency, and hence is suitable for hole injection. Further, this buffer layer may be made of an amine-based compound, such as TPD or NPD, or a compound, such as CuPc, which is used as a hole-injecting layer or as a hole-transporting layer in an organic EL device. Further, two or more of the above-mentioned compounds may be used in combination.
It is known that the buffer layer has the effect of lowering a threshold voltage by lowering the injection barrier of carriers and the effect of driving the transistor at a low voltage. With respect to the compounds of the invention, we have found that the buffer layer has not only the effect of lowering the voltage but also the effect of improving mobility. The reason therefor is that carrier traps exist in an interface between the organic semiconductor layer and the insulator layer, and, when carrier injection is caused by application of a gate voltage, a carrier that has been injected first is used to bury the traps, and the traps are buried at a low voltage by inserting a buffer layer, whereby mobility is improved. It suffices that the buffer layer be present as a thin film between the electrodes and the organic semiconductor layer, and the thickness thereof is 0.1 nm to 30 nm, and, preferably 0.3 nm to 20 nm.
(Insulator Layer)
No particular restrictions are imposed on materials used for an insulator layer in the organic thin film transistor of the invention as long as these materials have electric insulating properties and can be formed as thin films. It is possible to use materials, such as metallic oxides (including oxides of silicon), metal nitrides (including nitrides of silicon), polymers, or organic low molecules, whose electrical resistivity is 10 Ωcm or more at room temperature. Especially, an inorganic oxide film having a high relative dielectric constant is preferable.
Examples of inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, lead lanthanum titanate, strontium titanate, barium titanate, lanthanum oxide, fluorine oxide, magnesium oxide, bismuth oxide, bismuth titanate, niobium oxide, strontium bismuth titanate, strontium bismuth tantalate, tantalum pentoxide, bismuth tantalate niobate, trioxide yttrium, and combinations of these compounds. Silicon oxide, aluminum oxide, tantalum oxide and titanium oxide are preferable.
Further, inorganic nitrides, such as silicon nitride (Si3N4, SixNy (x, y>0)) and aluminum nitride, can be preferably used.
The insulator layer may be made of a precursor containing a metal alkoxide. In this case, for example, the substrate is covered with a solution of the precursor, and is subjected to a chemical solution process including a heat treatment, and, as a result, an insulator layer is formed.
The metals forming the metal alkoxide are selected from transition metals, lanthanoids or main group elements. Specific examples of such metals include barium (Ba), strontium (Sr), titanium (Ti), bismuth (Bi), tantalum (Ta), zirconium (Zr), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), lanthanum (La), lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium (Ca), niobium (Nb), thallium (T1), mercury (Hg), copper (Cu), cobalt (Co), rhodium (Rh), scandium (Sc) and yttrium (Y). Examples of alkoxides forming the metal alkoxide include those derived from alcohols including methanol, ethanol, propanol, isopropanol, butanol and isobutanol, and those derived from alkoxy alcohols including methoxyethanol, ethoxyethanol, propoxyethanol, butoxyethanol, pentoxyethanol, heptoxyethanol, methoxypropanol, ethoxypropanol, propoxypropanol, butoxypropanol, pentoxypropanol and heptoxypropanol.
In the invention, if the insulator layer is made of the above-mentioned materials, polarization tends to occur easily in the insulator layer, and the threshold voltage of transistor operation can be reduced. If the insulator layer is made of silicon nitride, in particular, Si3N4, SixNy, or SiONx (x, y>0) of the above-mentioned materials, a depletion layer tends to be formed more easily, and the threshold voltage of transistor operation can be further decreased.
Examples of materials for the insulator layer using organic compounds include polyimide, polyamide, polyester, polyacrylate, a photo-curable resin such as a photoradical polymerization resin and a photocationic polymerization resin, a copolymer containing acrylonitrile components, polyvinylphenol, polyvinylalcohol, novolac resin and cyanoethylpullulan.
Other examples thereof include wax, polyethylene, polychloropyrene, polyethylene terephthalate, polyoxymethylene, polyvinyl chloride, polyvinylidene fluoride, polysulfone, polyimidecyanoethyl pullulan, poly(vinylphenol) (PVP), poly(methylmethacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), polyolefin, polyacrylamide, poly(acrylic acid), a novolac resin, a resol resin, polyimide, polyxylylene, and an epoxy resin. In addition to these resins, polymer materials having a high dielectric constant such as pullulan can be used.
A particularly suitable organic compound material or polymer material for the insulator layer is a material having water repellency. The use of a material having such water repellency makes it possible to control interaction between the insulator layer and the organic semiconductor layer, and makes it possible to enhance the crystallinity of the organic semiconductor layer by utilizing cohesive properties intrinsic to an organic semiconductor, whereby device performance can be improved. A polyparaxylylene derivative described in Yasuda et al., Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 6614-6618 or a compound described in Janos Veres et al., Chem. Mater., Vol. 16 (2004) pp. 4543-4555 can be mentioned as an example of the organic compound.
When the top gate structure shown in
The insulator layer may be a mixed layer in which the above-mentioned inorganic or organic compound materials are used in combination, and may be a stacked layer composed of these materials. In this case, device performance can also be controlled by mixing or stacking a material having a high dielectric constant and a material having water repellency, according to need.
Further, the insulator layer may be formed of an anodic oxidized film, or this anodic oxidized film may be used as a part of the structure of the insulator layer. Preferably, the anodic oxidized film is subjected to a sealing process. The anodic oxide film is formed by anodizing a metal, which can be anodized, by a known method. Aluminum or tantalum can be mentioned as a metal which can be anodized. No particular restrictions are imposed on the anodizing method, and a known method can be used. An oxidized film is formed by performing an anodizing process. Any type of solution can be used as the electrolytic solution used for the anodizing process as long as a porous oxidized film can be formed. In general, sulfuric acid, phosphoric acid, oxalic acid, chromic acid, boric acid, sulfamic acid, benzenesulfonic acid, or a mixed acid produced by combining two or more kinds of acids of the above-mentioned acids, or salts of the above-mentioned acids are used. Anodizing process conditions cannot be absolutely specified because they variously change depending on an electrolytic solution to be used. In general, appropriate conditions are an electrolyte concentration of 1 to 80 mass %, an electrolyte temperature of 5 to 70° C., an electric current density of 0.5 to 60 A/cm2, a voltage of 1 to 100 volts, and an electrolysis time of 10 seconds to 5 minutes. A preferred anodizing process is to use an aqueous solution of sulfuric acid, phosphoric acid or boric acid as the electrolytic solution and to perform the process by using direct current. Alternating current can also be used instead of direct current. Preferably, the concentration of these acids is 5 to 45 mass %, and the electrolytic process is performed for 20 to 250 seconds under the conditions of an electrolyte temperature of 20 to 50° C. and an electric current density of 0.5 to 20 A/cm2.
As for the thickness of the insulator layer, if the thickness is small, an effective voltage to be applied to the organic semiconductor will be increased, and hence, the driving voltage and threshold voltage of the device itself can be lowered. However, since current leakage between the source electrode and the gate electrode is increased if the thickness is small, an appropriate film thickness is required to be selected. Normally, the thickness of the insulator layer is 10 nm to 5 μm, and, preferably 50 nm to 2 μm, and more preferably 100 nm to 1 μm.
An arbitrary orientation process may be applied between the insulator layer and the organic semiconductor layer. A preferred example thereof is a method of applying a water-repellent process or the like to the surface of the insulator layer to reduce the interaction between the insulator layer and the organic semiconductor layer, thereby improving the crystallinity of the organic semiconductor layer. Specifically, a method in which a silane coupling agent such as hexamethyldisilazane, octadecyltrichlorosilane and trichloromethylsilazane, or a material for a self-assembled oriented film such as alkanephosphic acid, alkanesulfonic acid and alkanecarboxylic acid are brought into contact with the surface of the insulating film in the liquid phase state or the vapor phase state to form a self-assembled film, followed by an appropriate dry process. A method is also preferable in which a film made of, for example, polyimide is formed on the surface of the insulating film as in case of the orientation of liquid crystals, and the surface of the film is subjected to a rubbing process.
Examples of methods employed for forming the insulator layer include dry processes, e.g., the vacuum vapor deposition method, the molecular beam epitaxial growth method, the ion cluster beam method, the low energy ion beam method, the ion plating method, the CVD method, the sputtering method and the atmospheric-pressure plasma method disclosed in JP-A-H11-61406, JP-A-H11-133205, JP-A-2000-121804, JP-A-2000-147209 and JP-A-2000-185362, and wet processes, e.g., the coating method, such as the spray coating method, the spin coating method, the blade coating method, the dip coating method, the casting method, the roll coating method, the bar coating method and the die coating method, and the patterning method such as printing and ink-jetting. An adequate process may be used in accordance with materials. For example, as for the wet process, a method of applying and drying a liquid obtained by dispersing fine particles of an inorganic oxide into an arbitrary organic solvent or water by using a dispersion assisting agent, such as a surfactant, as necessary, or the so-called sol-gel method in which an oxide precursor, for example, an alkoxide solution, is applied and dried, are used.
No particular restrictions are imposed on the method for forming the organic thin film transistor of the invention, and a known method can be used. It is preferred that a series of device forming steps consisting of substrate mounting, gate electrode formation, insulator layer formation, organic semiconductor layer formation, source electrode formation, and drain electrode formation be carried out while completely avoiding contact with the atmosphere according to a desired device structure, because device performance can be prevented from being impaired by moisture or oxygen in the atmosphere as a result of contact with the atmosphere. Even when the device must be formed by being unavoidably brought into contact with the atmosphere once, steps subsequent to the step of organic semiconductor layer formation are performed while completely avoiding contact with the atmosphere, and, immediately before the step of organic semiconductor layer formation, a surface on which the organic semiconductor layer is stacked (for example, in device B, a surface in which the source electrode and the drain electrode are partially stacked on the insulator layer) is purified and activated by, for example, ultraviolet light irradiation, ultraviolet light/ozone irradiation, oxygen plasma, argon plasma or the like, and then the organic semiconductor layer is stacked thereon. Some of the materials for a p-type TFT can improve the performance thereof by being brought into contact with the atmosphere once so as to absorb oxygen and other gases. Accordingly, contact with the atmosphere is conducted appropriately depending on materials to be used.
Further, a gas barrier layer may be formed on the entire or part of the outer peripheral surface of the organic transistor device, for example, taking into consideration an influence exerted on the organic semiconductor layer by oxygen or water contained in the atmosphere. Materials normally used in this field can be used for forming the gas barrier layer. Examples of such materials include polyvinyl alcohol, an ethylene-vinyl alcohol copolymer, polyvinyl chloride, polyvinylidene chloride and polychlorotrifluoroethylene. Further, inorganic substances having insulation properties exemplified regarding the above-mentioned insulator layer can also be used.
According to the invention, an organic thin film light-emitting transistor which can emit light by using electric current flowing between the source electrode and the drain electrode and can control light emission by applying a voltage to the gate electrode can be provided. That is, the organic thin film transistor can be used as a light-emitting device (organic EL device). Since the transistor for controlling light emission and the light-emitting device can be integrated, cost can be reduced by increasing the aperture ratio of a display and by simplifying the manufacturing process, and as a result, a practically great advantage can be brought about. When the organic thin film transistor is used as an organic light-emitting transistor, a hole is required to be injected from one of the source electrode and the drain electrode whereas an electron is required to be injected from the remaining electrode, and the following conditions are satisfied to improve light-emission performance.
In order to improve hole-injecting properties, in the organic thin film light-emitting transistor of the invention it is preferred that at least one of the source electrode and the drain electrode serve as a hole-injecting electrode. The hole-injecting electrode means an electrode containing a material having a work function of 4.2 eV or more as mentioned above.
In order to improve electron-injection properties, it is preferred that at least one of the source electrode and the drain electrode be an electron-injecting electrode. The electron-injecting electrode means an electrode containing a material having a work function of 4.3 eV or less as mentioned above.
More preferably, the device is an organic thin film light-emitting transistor having one electrode serving as a hole-injecting electrode and the other electrode serving as an electron-injecting electrode.
In order to improve hole-injection properties, it is preferred that a hole-injecting layer be inserted between at least one of the source electrode and the drain electrode and the organic semiconductor layer. For example, an amine-based material, which is used as a hole-injecting material or a hole-transporting material in an organic EL device, can be used in the hole-injecting layer.
In order to improve electron-injecting properties, it is preferred that an electron-injecting layer be inserted between at least one of the source electrode and the drain electrode and the organic semiconductor layer. As in the case of the hole, an electron-injecting material used in an organic EL device can be used in the electron-injecting layer.
It is more preferred that the device be an organic thin film light-emitting transistor in which one of the electrodes is provided with a hole-injecting layer and the remaining electrode is provided with an electron-injecting layer.
An apparatus using the organic thin film transistor of the invention may be an apparatus which uses the organic thin film transistor of the invention. Examples thereof include a circuit, a personal computer, a display and a mobile phone.
The invention will be described in more detail with reference to the Examples.
The compound (A-3) was synthesized as follows.
##STR00030##
In a reaction container, 62 ml of a dimethoxyether solution of 5.0 g (10.3 mmol) of dibromodiiodobenzene, 0.60 g (0.515 mmol) of tetrakistriphenylphosphine palladium (0) and 3.1 g (20.6 mmol) of 4-ethylphenylboronic acid was put. 31 ml of a 2M aqueous solution of sodium carbonate was added, and the reaction mixture was refluxed with heating at 70° C. for 8 hours. The reaction mixture was filtered, washed with water and methanol, whereby 3.2 g (yield 70%) of a crude product of the compound (a) was obtained. This crude product was used in a subsequent reaction as it was.
##STR00031##
In a reaction container, 15 ml of a triethylamine solution of 3.2 g (7.2 mmol) of the compound (a), 0.42 g (0.36 mmol) of tetrakistriphenylphosphine palladium (0) and 0.12 g (0.72 mmol) of copper iodide (I) were put. 1.56 g (15.8 mmol) of trimethylsilylacetylene was added, and the reaction mixture was refluxed with heating at 80° C. for 16 hours. The reaction mixture was filtered, washed with methanol and hexane, whereby a crude product was obtained. To the crude product thus obtained, 25 ml of a methanol/tetrahydrofuran mixed solution of 2.2 g (15.8 mmol) of potassium carbonate and 1.0 ml of water were added, followed by stirring at room temperature for 5 hours. The reaction mixture was filtered, and the filtrate was washed with saturated saline, followed by distillation off under reduced pressure, whereby a crude product was obtained. This crude product was purified by column chromatography (hexane:ethyl acetate), whereby 1.9 g (yield 80%) of the compound (b) was obtained.
##STR00032##
1.9 g (5.68 mmol) of the compound (b) and 20 ml of a toluene solution of 0.076 g (0.284 mmol) of platinum chloride were mixed, and the resulting mixture was refluxed with heating at 120° C. for 20 hours. The reaction mixture was filtered, washed with dichloromethane, whereby a crude product was obtained. The crude product thus obtained was purified by sublimation, whereby 1.1 g (yield 60%) of the compound (A-3) was obtained.
As a result of the measurement by FD-MS (field desorption mass spectrometry), the compound was confirmed to be an intended product. The measurement results of FD-MS are given below.
FD-MS, calcd for C26H22=334. found, m/z=334 (M+, 100)<
<FD-MS Measurement>
Apparatus: HX110 (manufactured by JEOL Ltd.)
Conditions: accelerated voltage 8 kV
Scan range m/z=50 to 1500
A compound (A-20) was obtained in the same manner as in Example 1, except that 4-dodecyloxyphenylboronic acid was used instead of 4-ethylphenylboronic acid used in Example 1.
As a result of the measurement by FD-MS (field desorption mass spectrometry), the compound was confirmed to be an intended product. The measurement results of FD-MS are given below.
FD-MS, calcd for C46H62O2=646. found, m/z=646 (M+, 100)<
<FD-MS Measurement>
Apparatus: HX110 (manufactured by JEOL Ltd.)
Conditions: accelerated voltage 8 kV
Scan range m/z=50 to 1500
Compounds (A-7) to (A-16) were obtained in the same manner as in Example 1, except that corresponding 4-alkylphenylboronic acid was used instead of 4-ethylphenylboronic acid used in Example 1.
4-alkylphenylboronic acid can be synthesized by a method described in Journal of the American Chemical Society, 107, 2380 (1985), Chemistry-A European Journal, 7, 2197 (2001) or the like.
As a result of the measurement by FD-MS (field desorption mass spectrometry), the compound was confirmed to be an intended product. The measurement results of FD-MS are given below.
Compound (A-7)
FD-MS, calcd for C34H38=446. found, m/z=446 (M+, 100)
Compound (A-8)
FD-MS, calcd for C36H42=474. found, m/z=474 (M+, 100)
Compound (A-9)
FD-MS, calcd for C38H46=502. found, m/z=502 (M+, 100)
Compound (A-10)
FD-MS, calcd for C40H50=530. found, m/z=530 (M+, 100)
Compound (A-11)
FD-MS, calcd for C42H54=558. found, m/z=558 (M+, 100)
Compound (A-12)
FD-MS, calcd for C44H58=586. found, m/z=586 (M+, 100)
Compound (A-13)
FD-MS, calcd for C46H62=614. found, m/z=614 (M+, 100)
Compound (A-14)
FD-MS, calcd for C48H66=642. found, m/z=642 (M+, 100)
Compound (A-15)
FD-MS, calcd for C50H70=670. found, m/z=670 (M+, 100)
Compound (A-16)
FD-MS, calcd for C52H74=698. found, m/z=698 (M+, 100)
##STR00033##
In a reaction container, 100 ml of a tatrahydrofuran solution of 5.0 g (16 mmol) of 2-bromo-6-octylnaphthalene was put. After cooling the mixture to −78° C., 10 ml (1.60M) of N-butyllithium was added dropwise, and stirred for 1 hour. 3.0 g (16.0 mmol) of triisopropyl borate was added dropwise to the reaction solution, followed by stirring for 1 hour. Diluted hydrochloric acid was added to the reaction mixture, and the resulting mixture was filtered, washed with water, and dried, whereby 2.5 g (yield 55%) of a crude product of the compound (c) was obtained.
A compound (C-9) was obtained in the same manner as in Example 1, except that the boronic acid (c) obtained in this example was used instead of 4-ethylphenylboronic acid used in Example 1.
As a result of the measurement by FD-MS (field desorption mass spectrometry), the compound was confirmed to be an intended product. The measurement results of FD-MS are given below.
Compound (C-9)
FD-MS, calcd for C46H50=602. found, m/z=602 (M+, 100)
A compound (C-13) was obtained in the same manner as in Example 13, except that 2-bromo-6-dodecylnaphthalene was used instead of 2-bromo-6-octylnaphthalene used in Example 13.
2-bromo-6-alkylnaphthalene can be synthesized by a method described in Helvetica Chimica Acta, 68, 1406 (1985), or the like.
As a result of the measurement by FD-MS (field desorption mass spectrometry), the compound was confirmed to be an intended product. The measurement results of FD-MS are given below.
Compound (C-13)
FD-MS, calcd for C54H66=714. found, m/z=714 (M+, 100)
##STR00034##
In a reaction container, 150 ml of a triethylamine solution of 15 g (72 mmol) of 5-bromobenzothiophene, 1.0 g (0.86 mmol) of tetrakistriphenylphosphine palladium (0) and 0.29 g (1.7 mmol) of copper iodide (I) was put. 11 g (100 mmol) of octyne was added thereto, and the reaction mixture was refluxed with heating at 80° C. for 16 hours. The reaction mixture was filtered, and the filtrate was washed with saturated saline, and the solvent was distilled off under reduced pressure, whereby a crude product was obtained. This crude product was purified by chromatography (hexane), whereby 13 g (yield 75%) of compound (d) was obtained.
##STR00035##
In a reaction container, 150 ml of a toluene solution of 13 g (54 mmol) of the compound (d) was put. 1.0 g of 5% palladium on carbon was added, the reaction mixture was stirred at 80° C. for 10 hours under hydrogen (one atmospheric pressure). The reaction mixture was filtered under reduced pressure, and the solvent was distilled off from the filtrate, whereby a crude product was obtained. This crude product was purified by column chromatography (hexane), whereby 12 g (yield 92%) of the compound (e) was obtained.
##STR00036##
In a reaction container, 100 ml of a tetrahydrofuran solution of 12 g (49 mmol) of the compound (e) was put. After cooling the mixture to −78° C., 31 ml (1.60M) of N-butyllithium was added dropwise, followed by stirring for one hour. 9.2 g (49 mmol) of triisopropyl borate was added dropwise to the reaction solution. After stirring for one hour, diluted hydrochloric acid was added to the reaction mixture. The mixture was then filtered, washed with water and dried, whereby 8.5 g (yield 60%) of a crude product of the compound (f) was obtained.
A compound (B-9) was obtained in the same manner as in Example 1, except that the boronic acid (f) obtained in this example was used instead of 4-ethylphenylboronic acid used in Example 1.
As a result of the measurement by FD-MS (field desorption mass spectrometry), the compound was confirmed to be an intended product. The measurement results of FD-MS are given below.
Compound (B-9)
FD-MS, calcd for C42H46S2=614. found, m/z=614 (M+, 100)
A compound (B-44) was obtained in the same manner as in Example 15, except that 6-bromobenzothiophene was used instead of 5-bromobenzothiophene used in Example 15.
As a result of the measurement by FD-MS (field desorption mass spectrometry), the compound was confirmed to be an intended product. The measurement results of FD-MS are given below.
Compound (B-44)
FD-MS, calcd for C50H62S2=726. found, m/z=726 (M+, 100)
##STR00037##
In a reaction container, 21.0 g (76.3 mmol) of 4-bromo-2-octylthiophene and 200 ml of dehydrated tetrahydrofuran were put. After cooling the mixture to −78° C., 100 ml of t-butyllithium (1.76M) was added dropwise. The resulting mixture was stirred for 2.5 hours at −78° C. 62.3 g (457 mmol) of zinc chloride was dissolved in 300 ml of dehydrated tetrahydrofuran and the resulting solution was added dropwise thereto. The mixture was stirred at −78° C. for 30 minutes, and then heated to room temperature. Further, in the reaction container, 16.8 g (34.4 mmol) of dibromoiodobenzene and 5.3 g (4.6 mmol) of tetrakistriphenylphosphine palladium (0) was added, and refluxed with heating for 5 hours. Pure water was added to the reaction mixture, and extraction was conducted with dichloromethane, whereby a crude product of the compound (g) was obtained. This crude product was purified by column chromatography (hexane), whereby 11.4 g (yield 53%) of the compound (g) was obtained.
A compound (D-9) was obtained in the same manner as in Example 1, except that the compound (g) synthesized above was used instead of the compound (a) used in Example 1.
As a result of the measurement by FD-MS (field desorption mass spectrometry), the compound was confirmed to be an intended product. The measurement results of FD-MS are given below.
FD-MS, calcd for C34H42S2=514. found, m/z=514 (M+, 100)
An organic thin film transistor was manufactured through the following steps. First, the surface of an Si substrate (also served as a p-type gate electrode with a specific resistance of 1 Ωcm) was oxidized by the thermal oxidation method, whereby a 300 nm-thick thermally oxidized film was formed on the substrate to form an insulator layer. Further, an SiO2 film formed on one side of the substrate was completely removed by dry etching, and thereafter, chromium was formed into a film of 20 nm by the sputtering method. Further, gold (Au) was formed thereon into a film of 100 nm by the sputtering method, whereby an outcoupling electrode was formed. This substrate was subjected to ultrasonic cleaning for 30 minutes each with a neutral detergent, pure water, acetone and ethanol. The substrate was further subjected to ozone cleaning.
The substrate was then subjected to a surface treatment by heating for 3 hours in the atmosphere of hexamethyldisilazane. The substrate thus surface-treated was mounted in a vacuum vapor deposition apparatus (EX-400, manufactured by ULVAC, Inc.), and, on the insulator layer, the above-mentioned compound (A-3) was formed into a 50 nm-thick film at a deposition speed of 0.05 nm/s to form an organic semiconductor layer. Subsequently, gold was formed into a film with a thickness of 50 nm through a metal mask, whereby a source electrode and a drain electrode, which were not in contact with each other, were formed such that an interval therebetween (channel length L) became 75 μm. The film formation was conducted such that the width (channel width W) of the source electrode and the drain electrode became 5 mm, whereby an organic thin film transistor was fabricated (see
A gate voltage (VG) of −70V was applied to the gate electrode of the resulting organic thin film transistor, whereby a voltage was applied between the source electrode and the drain electrode to cause electric current to flow therebetween. In this case, holes were induced in the channel region (a region between the source electrode and the drain electrode) of the organic semiconductor layer, and the transistor was operated as a p-type transistor. The on-off ratio of electric current flowing between the source electrode and the drain electrode in the current saturated region was 2×106. The field effect mobility (μ) of the hole and the gate threshold voltage VT was calculated from the following formula (A), and they were found to be 1.5 cm2/Vs and −50V, respectively.
ID=(W/2L)·Cμ·(VG−VT)2 (A)
In the formula, ID is source-drain current, W is a channel width, L is a channel length, C is an electric capacitance per unit area of the gate insulator layer, VT is a gate threshold voltage and VG is a gate voltage.
The substrate was cleaned, the gate electrode and the insulator layer were formed in the same manner as in Example 18. Subsequently, the above-mentioned compound (A-20) was dissolved in chloroform at a concentration of 0.5 mass %, and formed into a film on the substrate on which the gate electrode and the insulating layer had been formed by means of a spin coater (1H-D7, manufactured by Mikasa Co., Ltd.) and dried at 80° C. in the nitrogen atmosphere, thereby to form an organic semiconductor layer. Subsequently, gold (Au) was formed into a film with a thickness of 50 nm through a metal mask in a vacuum vapor deposition apparatus, thereby to form a source electrode and a drain electrode, which were not in contact with each other, whereby an organic thin film transistor was fabricated. The resulting organic thin film transistor was allowed to drive as a p-type transistor by applying a gate voltage VG of −70V in the same manner as in Example 18. The on/off of the current flowing between the source electrode and the drain electrode was measured, thereby to calculate the field effect mobility μ of the hole. The results are shown in Table 1.
A glass substrate was subjected to ultrasonic cleaning for 30 minutes each with a neutral detergent, pure water, acetone and ethanol. Then, gold (Au) was formed into a film of 40 nm by sputtering, thereby to form a gate electrode. Subsequently, this substrate was installed on the film-forming part of a thermal CVD apparatus. 250 mg of a polyparaxylene derivative [polyparaxylene chloride (Parylene)] (trade name: diX-C; manufactured by Daisan KASEI CO., LTD.) as a material for an insulator layer was placed in a petri dish and installed in the evaporation part of the raw material. After vacuuming the thermal CVD apparatus by means of a vacuum pump to a pressure of 5 Pa, the evaporation part was heated to 180° C. and a polymerization part was heated to 680° C., and the material was allowed to stand for 2 hours, whereby an insulator layer with a thickness of 1 μm was formed on the gate electrode.
Then, the substrate was installed in a vacuum vapor deposition apparatus (EX-400; manufactured by ULVAC Co.) and the compound (A-9) was formed into a film of an organic semiconductor layer with a thickness of 50 nm at a deposition rate of 0.05 nm/second on the insulator layer. Subsequently, an organic thin film transistor was fabricated and was allowed to drive as a p-type transistor by applying a gate voltage VG of −70V in the same manner as in Example 18. The on/off of the current flowing between the source electrode and the drain electrode was measured, thereby to calculate the field effect mobility μ of the hole. The results are shown in Table 1.
Organic thin film transistors were fabricated and evaluated in the same manner as in Example 20, except that the compounds (A-13), (A-14), (A-15), (B-9) and (C-9) were respectively used instead of the compound (A-9). The results are shown in Table 1.
The substrate was cleaned and the gate electrode and the insulator layer were formed in the same manner as in Example 20. Subsequently, the compound (A-13) was dissolved in chloroform at a concentration of 0.5 wt %, and formed into a film on the substrate on which the gate electrode and the insulating layer had been formed by means of a spin coater (1H-D7; manufactured by Mikasa Co., Ltd.) and dried at 80° C. in the nitrogen atmosphere, thereby to form an organic semiconductor layer. Subsequently, an organic thin film transistor was fabricated and allowed to drive as a p-type transistor by applying a gate voltage VG of −70V in the same manner as in Example 20. The on/off of the current flowing between the source electrode and the drain electrode was measured, thereby to calculate the field effect mobility μ of the hole. The results are shown in Table 1.
Organic thin film transistors were fabricated and evaluated in the same manner as in Example 6, except that the compounds (A-14), (A-15) and (D-9) were respectively used instead of the compound (A-13). The results are shown in Table 1.
An organic thin film transistor was fabricated in the same manner as in Example 18, except that, as the material for the organic semiconductor layer, the following comparative compound (I) was used instead of the compound (A-3). The resulting organic thin film transistor was allowed to drive as a p-type transistor by applying a gate voltage VG of −70V in the same manner as in Example 18. The on/off ratio of the current flowing between the source electrode and the drain electrode was measured, thereby to calculate the field effect mobility μ of the hole. The results are shown in Table 1.
##STR00038##
An organic thin film transistor was fabricated in the same manner as in Example 19, except that, as the material for the organic semiconductor layer, the above comparative compound (I) was used instead of the compound (A-20). Since the comparative compound (I) was not dissolved completely in chloroform, film formation was conducted by using a suspension. The transistor thus fabricated did not show properties as an organic thin film transistor.
An organic thin film transistor was fabricated in the same manner as in Example 20, except that, as the material for the organic semiconductor layer, the above-mentioned comparative compound (I) was used instead of the compound (A-9). The resulting organic thin film transistor was allowed to drive as a p-type transistor by applying a gate voltage VG of −70V in the same manner as in Example 18. The on/off ratio of the current flowing between the source electrode and the drain electrode was measured, thereby to calculate the field effect mobility μ of the hole. The results are shown in Table 1.
TABLE 1
Organic
Type
Field effect mobility
Threshold voltage
semiconductor layer
of transistor
(cm2/Vs)
On-off ratio
(V)
Example 18
Compound
P type
1.5
2 × 106
−50
(A-3)
Example 19
Compound
P type
4 × 10−1
1 × 105
−53
(A-20)
Example 20
Compound
P type
2.5
5 × 106
−37
(A-9)
Example 21
Compound
P type
2.4
5 × 106
−32
Example 22
Compound
P type
1.5
2 × 106
−46
(A-14)
Example 23
Compound
P type
1.5
2 × 106
−48
(A-15)
Example 24
Compound
P type
1.2
1 × 106
−30
(B-9)
Example 25
Compound
P type
1.4
1 × 106
−28
(C-9)
Example 26
Compound
P type
1.7
2 × 106
−34
(A-13)
Example 27
Compound
P type
2.0
3 × 106
−45
(A-14)
Example 28
Compound
P type
1.6
2 × 106
−34
(A-15)
Example 29
Compound
P type
1 × 10−1
1 × 105
−40
(D9)
Com. Ex. 1
Com. Compound (1)
P type
1.0
1 × 105
−67
Com. Ex. 2
Com. Compound (1)
—
—
—
—
Com. Ex. 3
Com. Compound (1)
P type
1 × 10−1
1 × 105
−62
As explained hereinabove in detail, the compound of the invention can be used as a material for an organic semiconductor layer of an organic thin film transistor. If the compound of the invention is used in an organic semiconductor layer, an organic thin film transistor having a high mobility, a high response speed (driving speed) and a high on-off ratio. This organic thin film transistor can be used as an organic thin film light-emitting transistor which can emit light.
Although only some exemplary embodiments and/or examples of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments and/or examples without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention.
The documents described in the specification are incorporated herein by reference in its entirety.
Nakano, Yuki, Nakamura, Hiroaki, Kondo, Hirofumi, Saito, Masatoshi
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5942340, | Oct 02 1997 | LG DISPLAY CO , LTD | Indolocarbazole electroluminescent devices |
5989737, | Feb 27 1997 | LG DISPLAY CO , LTD | Organic electroluminescent devices |
7061010, | Aug 09 2001 | Asahi Kasei Kabushiki Kaisha | Organic semiconductor element |
20040076853, | |||
20050258417, | |||
20060214155, | |||
20090256145, | |||
20100001262, | |||
CN1541288, | |||
JP2001094107, | |||
JP2009267133, | |||
JP2009267140, | |||
JP2009302463, | |||
JP5055568, | |||
WO2008059816, | |||
WO2008013399, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 20 2009 | Idemitsu Kosan Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Oct 28 2017 | 4 years fee payment window open |
Apr 28 2018 | 6 months grace period start (w surcharge) |
Oct 28 2018 | patent expiry (for year 4) |
Oct 28 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 28 2021 | 8 years fee payment window open |
Apr 28 2022 | 6 months grace period start (w surcharge) |
Oct 28 2022 | patent expiry (for year 8) |
Oct 28 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 28 2025 | 12 years fee payment window open |
Apr 28 2026 | 6 months grace period start (w surcharge) |
Oct 28 2026 | patent expiry (for year 12) |
Oct 28 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |