Embodiments disclose a two imager biometric sensor. In some embodiments, the two imagers can include a direct imager and a TIR imager. In some embodiments, multispectral light sources can be used to illuminate target tissue imaged by two imagers. In some embodiments, composite images can be created from images detected using both imagers.
|
10. A method comprising:
illuminating an object positioned at an image region of a first facet with light that undergoes total internal reflectance at a second facet, the image region is smaller than the first facet;
illuminating the object positioned at the image region of the first facet with light that passes through the second facet;
imaging light scattered by the object that passes through the image region of the first facet at an angle less than the critical angle and undergoes total internal reflectance at the second facet; and
imaging light scattered by the object that passes through the image region of the first facet at an angle greater than the critical angle, wherein the critical angle is defined by an interface of the first facet with an external environment and is measured relative to the normal of the first facet.
30. A method comprising:
illuminating an object located at an image region of a first facet of a prism at an angle less than the critical angle with light that internally reflects off of a second facet of the prism prior to illuminating the object, the image region being smaller than the first facet;
illuminating the object at the image region of the first facet at an angle greater than the critical angle, wherein the light enters the prism through the second facet of the prism;
imaging light that is scattered by the object at an angle less than the critical angle relative to the first facet and totally internally reflected at the second facet using a first imaging system; and
imaging light from the image region of the first facet using a second imaging system, wherein the critical angle is defined by an interface of the first facet with an external environment and is measured relative to the normal of the first facet.
1. A biometric system comprising:
first illumination means for illuminating an object through an image region of a first facet of a multifaceted prism, wherein light from the first illumination means undergoes total internal reflectance at a second facet of the multifaceted prism prior to illuminating the object, and the image region is smaller than the first facet;
second illumination means for illuminating the object through the second facet of the multifaceted prism; and
first imaging means for imaging light scattered from the object and passing though the image region of the first facet at an angle less than the critical angle and undergoing total internal reflectance at the second facet, wherein the scattered light originates from both the first and second illumination means, and the critical angle is defined by an interface of the first facet with an external environment and is measured relative to the normal of the first facet.
20. A system comprising:
first illumination means for illuminating an object located at an image region of a first facet of a multifaceted prism, the image region being smaller than the first facet, light from the first illumination means internally reflecting off of a second facet of the multifaceted prism prior to illuminating the object;
second illumination means for illuminating the object through the second facet and through the image region of the first facet at an angle greater than the critical angle of the first facet;
first imaging means for imaging light scattered by the object, passes through the image region of the first facet at an angle less than the critical angle, and undergoes total internal reflectance at the second facet; and
second imaging means for imaging light totally internally reflected from the image region of the first facet, wherein the critical angle is defined by an interface of the first facet with an external environment and is measured relative to the normal of the first facet.
15. A multifaceted prism comprising:
a first facet having an image region that is smaller than the first facet; and
a second facet, wherein the first facet and the second facet are oriented relative to each other such that:
an object positioned at the image region of the first facet can be illuminated with light that undergoes total internal reflectance at the second facet and by light that passes through the second facet, a portion of light scattered by the object that passes through the image region of the first facet at an angle less than the critical angle can be imaged after undergoing total internal reflectance at the second facet, and a portion of light scattered by the object positioned at the image region of the first facet that passes through the image region of the first facet at an angle greater than the critical angle can be imaged without interacting with the second facet, wherein the critical angle is defined by an interface of the first facet with an external environment and is measured relative to the normal of the first facet.
25. A system comprising:
first illumination means for illuminating an object located at an image region of a first facet of a multifaceted prism, the image region being smaller than the first facet, light from the first illumination means internally reflecting off of a second facet of the multifaceted prism prior to illuminating the object;
second illumination means for illuminating the object through the second facet and through the image region of the first facet at an angle greater than the critical angle of the first facet;
first imaging means for imaging light scattered by the object, passes through the image region of the first facet at an angle less than the critical angle, and undergoes total internal reflectance at the second facet; and
second imaging means for imaging light scattered from the object at points where the object is in contact with the platen, wherein the critical angle is defined by an interface of the image region of the first facet with an external environment and is measured relative to the normal of the first facet.
36. A system comprising:
a multifaceted prism having a first and second facet, the first facet having an image region that is smaller than the first facet;
a first illumination source configured to illuminate the image region of the first facet at an angle less than the critical angle with light that internally reflects off of the second facet prior to illuminating the image region of the first facet;
a second illumination source configured to illuminate the image region of the first facet at an angle greater than the critical angle, wherein light from the second illumination source enters the prism through the second facet;
a first imager configured to image light from the image region of the first facet that is totally internally reflected by the second facet; and
a second imager configured to image light scattered from the interface of the object and the image region of the first facet, wherein the critical angle is defined by an interface of the first facet with an external environment and is measured relative to the normal of the first facet.
35. A system comprising:
a multifaceted prism having a first and second facet, the first facet having an image region that is smaller than the first facet;
a first illumination source configured to illuminate the image region of the first facet at an angle less than the critical angle, light from the first illumination source internally reflecting off of the second facet of the multifaceted prism prior to illuminating the image region of the first facet;
a second illumination source configured to illuminate the image region of the first facet at an angle greater than the critical angle, wherein light from the second illumination source enters the prism through the second facet;
a first imager configured to image light from the image region of the first facet that is totally internally reflected by the second facet; and
a second imager configured to image light from the first illumination source that is totally internally reflected from the image region of the first facet, wherein the critical angle is defined by an interface of the first facet with an external environment and is measured relative to the normal of the first facet.
2. The system of
3. The system
4. The system of
instructions to illuminate the finger with the first and second illumination means during a single illumination session;
instructions to generate a total-internal reflectance image of the finger from light received by the second imaging means; and
instructions to generate a direct image of the finger from light received by the first imaging means.
5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
11. The method of
12. The method of
13. The method of
16. The multifaceted prism of
a third facet oriented with respect to the first and second facets such the portion of light scattered by the object that passes through the first facet at an angle less than the critical angle and undergoing total internal reflectance at the second facet then passes through the third facet.
17. The multifaceted prism of
18. The multifaceted prism of
a fourth facet oriented with respect to the first and second facets such that the portion of light scattered by the object positioned at the first facet that passes through the first facet at an angle greater than the critical angle passes through the fourth facet.
19. The multifaceted prism of
21. The system according to
22. The system according to
23. The system according to
24. The system according to
26. The system according to
27. The system according to
28. The system according to
29. The system according to
31. The method of
32. The method of
33. The method of
34. The method of
37. The system according to
38. The system according to
39. The system according to
40. The system of
41. The system of
|
This application is a non-provisional, and claims the benefit, of commonly assigned U.S. Provisional Application No. 61/237,189, filed Aug. 26, 2009, entitled “Multiplexed Biometric Imaging and Dual-Imager Biometric Sensor,” the entirety of which is herein incorporated by reference for all purposes.
Multispectral sensors can acquire images of an object under a plurality of distinct illumination and/or imaging conditions. Images from multispectral sensors can be used for various purposes such as for biometric imaging, bar code reading and authentication, documentation authentication, and quality assurance, to name a few.
Conventional optical fingerprint sensors typically incorporate a single total internal reflectance (TIR) imager, which can require that a number of conditions be met to provide a good fingerprint image. These conditions can include the requirement that the fingerprint ridges are intact, clean, in optical contact with the sensor surface, and that the skin is of proper moisture content, i.e., neither too dry nor too wet. If any of these conditions aren't met, the resulting fingerprint image can be degraded or even missing entirely. However, when these conditions are met, the resulting image is generally of high quality and useful for both automated analysis and analysis by a human observer.
Multispectral sensors and others based on direct imaging can acquire images under a much broader range of conditions of the skin, the local environment, and the nature of the interface between the skin and sensor. However, such images are generally of lower contrast than the corresponding TIR image, if the TIR image is of high quality.
It can be a time consuming process for a sensor to illuminate and acquire images from the plurality of distinct optical and/or imaging conditions. Multispectral sensors often have difficulty determining when an object is properly placed at the sensor for imaging, determining whether an object is a proper object for imaging, and/or distinguishing between an object for imaging and background objects.
Various embodiments of the invention are described herein involving multispectral dual imaging.
In various embodiments of the invention, a multispectral dual imaging system is disclosed. Two imagers can be used to simultaneously collect two images of a skin site under different imaging conditions. For example, one imager can directly image the skin site, while another images the skin site under TIR conditions. Various illuminators can be included to illuminate the skin site. In some embodiments, a prism can be used that allows the two imagers to image the skin site under both direct and TIR conditions.
Various configuration can be used. For instance, a first illumination source (e.g. an LED) can be used to illuminating a finger through a first facet of a multifaceted prism. Light from the first illumination source can undergo total internal reflectance at a second facet of the multifaceted prism prior to illuminating the object. A first imager can image light scattered from the finger and passing through the first facet at an angle less than the critical angle and undergoing total internal reflectance at the second facet. A second imager can image light scattered from the finger and passing though the first facet at an angle less than the critical angle. In some embodiments, the second imager can be located in a position such that it does not image light from the second illumination source that is totally internally reflected at the first facet.
In some embodiments, the second imager can be located out of phase from the second illumination source. That is light from the second illumination source can only image light from the second imager after it is absorbed and/or scattered by the object. And, in this embodiment, light totally internally reflected at the first facet is not imaged by the second imager. For example, the second imager can be located at an azimuthal angle out of line with the second illumination source; such as an angle less than 170°. In some embodiments, this angle is 90°. The second imager can also be located to image light at greater or less than the critical angle.
In another embodiment, a first illumination source can illuminate an object located at a first facet of a multifaceted prism. The system can include a second illumination source that can illuminate the object through a second facet and through the first facet at an angle greater than the critical angle of the first facet. A first imager can image light scattered by the object that passes through the first facet at an angle less than the critical angle and undergoes total internal reflectance at the second facet. A second imager can be used to image light totally internally reflected from the first facet.
In some embodiments, the fingerprint sensor of the present invention may be used to collect non-fingerprint images; for example, money, documents, bar codes, manufactured parts, etc. In some of these images optical security markings such as holograms, color-changing ink and other such markings may be present and used to confirm that the documents or barcodes by assessing the images that correspond to different illumination conditions.
In some embodiments, the dual imager of the present invention may be used to collect finger or hand print images as well as iris images, facial images, surveillance images, detect motion, detect ambient lighting conditions, barcode images, security document images, and perform a variety of other such functions. In some embodiments the direct imager may include an automatic, variable focus (“autofocus”) mechanism to facilitate additional imaging functionality.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
The present disclosure is described in conjunction with the appended figures.
The ensuing description provides preferred exemplary embodiment(s) only, and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the preferred exemplary embodiment(s) will provide those skilled in the art with an enabling description for implementing a preferred exemplary embodiment. It being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope as set forth in the appended claims.
Embodiments of the present invention provide improvements to biometric imaging and multispectral imaging systems, process, and/or techniques. These improvements can extend to other realms of endeavor.
Conventional optical fingerprint sensors acquire a single image of the fingerprint (or a set of images taken under substantially similar optical conditions) during a single measurement session. On the other hand, multispectral imagers acquire multiple images during a single measurement session under different optical conditions. Collecting such a set of images can require more acquisition time than collecting a single image. Embodiments of the invention provide methods and systems capable of solving this problem by acquiring multispectral images in a more efficient manner than with traditional serial acquisition; for example, by using multiplexed techniques.
In some cases, it is also desirable to initiate a fingerprint acquisition sequence automatically. Conventional optical sensors based on TIR imaging are often able to perform such a function by analyzing an image sequence and initiating an acquisition when a significant change in the image is detected. Such a method works because TIR imagers are substantially unable to view objects that are not in direct contact with the optical sensor and have certain other required characteristics. In contrast, direct imaging sensors such as multispectral fingerprint sensors are able to view the external environment and any nearby objects directly through the sensor surface. As such, direct imaging sensors see a finger that is in contact with the sensor as well as a finger that is nearby but not in contact with the sensor. The resulting image may be in focus or out of focus depending on the distance and the depth of field of the imaging system as well as the motion of the finger. In an effort to achieve maximum image quality, it is therefore often preferable to initiate a fingerprint image acquisition only after the finger is in firm contact with the sensor. Embodiments of the invention to solve this problem by providing a reliable means of making such determination using direct imaging are desirable.
Conventional optical fingerprint sensors typically incorporate a single TIR imager, which can require that a number of conditions be met to provide a good fingerprint image. These conditions can include the requirement that the fingerprint ridges are intact, clean, in optical contact with the sensor surface, and that the skin is of proper moisture content, i.e., neither too dry nor too wet. If any of these conditions aren't met, the resulting fingerprint image can be degraded or even missing entirely. However, when these conditions are met, the resulting image is generally of high quality and useful for both automated analysis and analysis by a human observer.
Multispectral fingerprint sensors and others based on direct imaging are able to acquire images under a much broader range of conditions of the skin, the local environment, and the nature of the interface between the skin and sensor. However, such images are generally of lower contrast than the corresponding TIR image, if the TIR image is of high quality. Some embodiments of the invention solve this problem by providing a fingerprint sensor that is able to collect both TIR and direct images during the same measurement session to ensure that biometric images are always collected regardless of the conditions of the finger, sensor surface and/or the local environment.
For purposes of this disclosure, the terms “finger,” “fingerprint,” and “fingerprint image” are meant to include sites and images collected from a single finger, multiple fingers, intermediate finger joints, the palm, the entire palmar surface of the hand, and/or any other skin site on the body, as well as other animate or inanimate objects such as documents, barcodes, credentials, and the like.
The terms “multispectral imaging,” “MSI,” and “multi-imaging” refer to methods and systems for acquiring multiple images of a finger during a single measurement session, wherein at least two of the multiple images are collected under different optical conditions. Different optical conditions may include, but not limited to, different illumination wavelengths, different illumination angles (both in azimuth and elevation and may include elevations on either side of the optical critical angle defined by the sensor imaging surface and the air or other surrounding medium), different illumination polarization conditions, different imaging angles (both in azimuth and elevation and may include elevations on either side of the optical critical angle defined by the sensor imaging surface and the air or other surrounding medium), different imaging focal planes, different imaging spatial resolutions, different imaging temporal resolutions, different imaging polarization conditions, and other such conditions that substantially alter the resulting images. Also, unless otherwise specified, the angle of incidence, angle of illumination, angle of imaging, etc. is measured relative to the normal of the incident surface.
The terms “total internal reflectance imaging” and “TIR imaging” refer to a method of imaging known in the art wherein the optical axis of the imaging system lies at an angle relative to the normal of the sensor imaging surface and that is greater than the optical critical angle of that surface. A block diagram showing TIR imaging is shown in
Various configurations of illumination and imaging are shown in
The critical angle is a function of the index of refraction of the two media on either side of an interface and is approximately 42 degrees for a glass-air interface. Because the optical axis of the TIR imaging system lies beyond the critical angle of the sensor surface, the surface acts as a mirror (as seen by the imager) when untouched, and can cease to act as a mirror in those locations in which a material with suitable optical characteristics comes into direct contact with the sensor surface.
In locations where a finger or other material contacts a sensor surface, a new critical angle is established. However, for purposes of the present disclosure, the term “critical angle” will refer to the angle established by the sensor (i.e., the platen surface) and the surrounding environment, which is assumed to be air for most purposes. Also, as known in the art, light will change angles at boundaries between media due to phenomena such as refraction, reflection, diffraction and other such effects. When a ray angle is referred to in the present application as being greater than or less than the critical angle, for example, the statement refers to the angle of the ray at the operative boundary such as the sensor imaging surface rather than the angle of the same ray at any other boundary or media, unless explicitly stated as such.
The term “direct imaging” refers to a method of imaging wherein the optical axis of the imaging system lies at an angle relative to the sensor imaging surface that is less than the optical critical angle of that surface. For example, the system shown in
Multiplexed Biometric Imaging
Multiplexed biometric imaging systems and methods are provided according to some embodiments of the invention. Multiplexed imaging systems can acquire images under different illumination conditions more efficiently than simply acquiring a sequence of image frames under each of the desired conditions. Such image data may be collected in a multiplexed manner. In some embodiments, the wavelength or spectral characteristics of an imaged object can be used to multiplex information from different illumination angles and/or optical polarizations together into a single image.
Finger 110 can be illuminated using a plurality of illumination sources. Three illumination sources 120, 121, and 122 are shown in this embodiment. In some embodiments, only two illumination sources may be used. In others as many as four or five can be used. There is no limit on the number of sources that can be used. Each illumination source can illuminate imaging surface 105 at a different illumination angle relative to the normal of imaging surface 105. For instance, illumination source 120 illuminates imaging surface 105 at angle θ120, illumination source 121 illuminates imaging surface 105 at angle θ120, and illumination source 122 illuminates imaging surface 105 at angle θ122. Where θ120≠θ121≠θ122. These angles can be greater than or less than the critical angle at the interface near the platen as measured relative to the normal to the platen. And these angles can be called “elevation angles”.
Furthermore, each of illumination sources 120, 121, and 122 are also placed at different azimuth angles φ120, φ121, and φ122 around a central portion of the platen. An azimuth angle can be measured from any arbitrary point. As shown in
Furthermore, illumination sources 120, 121, and 122 can each provide unique monochromatic light. For example, illumination source 120 can illuminate imaging surface 105 with blue light (e.g., 440-490 nm), illumination source can illuminate imaging surface 105 with green light (e.g., 520-570 nm), and illumination source 122 can illuminate imaging surface 105 with red light (e.g., 630-740 nm). Monochromatic light sources can provide light of single wavelength (e.g., a laser) or light within a narrow light band surrounding a single wavelength (e.g. LED or filtered broad-band source). In some embodiments, the light sources can provide light outside the visible spectrum in spectral regions that may include ultraviolet and/or infrared wavelengths. The main wavelength or wavelength band of light from each illumination source, in some embodiments, is different from the other sources. In the preceding example, each light source provides red, blue, or green light.
Illumination sources 120, 121, and 122 can include a quasimonochromatic light sources having a narrow band of primary-color wavelengths. Illumination sources 120, 121, and 122 can also include LEDs, laser diodes, or lasers.
Imager 150 is used to image the light scattered and/or reflected from any object placed at imaging surface 105, such as finger 110. Imager 150 can be a color or black and white imager. Imager 150 can image an object through various optical elements 140 and 145, as well as through color filter array 130. Color filter array 130 can be integrated within imager 150 or be a stand alone element. Color filter array 130 is a mosaic of tiny color filters that separates the color response based on the arrangement of the mosaic. Various types of color filter arrays can be used such as, for example, a Bayer filter, a RGBE filter, a CYYM filter, a CYGM filter, or any type of RGBW filter.
An example of a Bayer color filter array is shown in
As an alternative to a color filter the imager or other optics may incorporate chromatic and/or polarizing beam splitters to separate the multiplexed light from the finger. The separated light may then be directed to individual monochromatic imagers where the number of imagers corresponds to the number of illumination conditions so separated.
Regardless of the type of color filter array that is used, in some embodiments, the wavelength of light provided by illumination sources 120, 121, and 122 should be aligned or closely aligned with the elements of the filter array. And, in some embodiments, the number of illumination sources can be, but not necessarily, aligned with the number of different filter elements in the array. For example, for a Bayer array, there are three filter colors. Hence, three illumination sources can be used. Each illumination source can then provide light in a red, blue, or green wavelength band to be consistent with the array.
Thus, imager 150 can create a multiplexed image of an object illuminated by multiple illumination sources arranged to illuminate light of different wavelengths at different illumination angles. This can be done during a single illumination session and, in some embodiments, a single image can be created. This single image can be considered a multiplexed image that can later be demultiplexed by color to provide information regarding the object that depends on the illumination angle of the illumination source. Furthermore, the multiplexed image can be considered a multispectral image because it contains information not only about the illumination wavelength but also the illumination angle.
In some embodiments, the illumination sources can include different polarization effects instead of or in addition to the differences in illumination angle. The resulting multiplexed image can then be a multispectral image that includes polarization information as well.
An example of a sensor with multiplexed image data using a color filter array is shown in
In addition to the two illuminators 203, 205, other illuminators 207, 209 could be used to provide for similar multiplexed illumination during earlier or later image frames. In addition, illuminators of colors other than the blue and green can be incorporated into other embodiments of the present invention. For example, a red illuminator in a different spatial and angular position from illuminators 203, 205 could be used.
Process 500, for example, can be executed by the computational device shown in
Presence and Object Detection
Some embodiments of the invention can be used to detect the presence and/or location of an object prior to imaging.
In
In some embodiments, the intensity profile of the illumination pattern changes as the finger approaches the platen. Because of the exit angle of illumination and the rounded cross-sectional shape of a finger, while the finger is above the platen the intensity profile will be sharper on one side of the finger and more gradual on the other. As the finger moves closer the intensity profile becomes more and more symmetric. In some embodiments, this intensity profile can be used as further evidence of the position of the finger. Other information such as the spectral content, the shape, and the position can be used to determine the location and the object type. For example, the width of the illumination pattern may widen as the finger approaches the platen.
A video sequence of images can be acquired and analyzed to determine the location of the illumination pattern. If the illumination pattern is not located in the proper location then another image can be collected and/or analyzed until the illumination pattern is in the proper location. Once in the proper location, biometric imaging or other processes may begin that require the object to be in a certain location.
In some embodiments, the shape of illumination pattern can indicate the type of object being imaged. For example, in
In biometric imaging of fingerprints, for example, if the illumination pattern is inconsistent with the known illumination pattern of a finger, then it can be determined that a foreign object is being placed on the platen and biometric imaging should not start. If the illumination pattern is consistent with the known illumination pattern of a finger, then it can be determined that a finger is being placed on the platen and biometric imaging can begin. This technique can be used in conjunction with the presence detection techniques to determine when the finger is in contact with the platen prior to triggering the start of biometric imaging.
Various other objects can have correspondingly unique illumination patterns that can be used. The particular illumination pattern is not critical, as long as it is easily recognized and distinct from objects in the background. In order to achieve this, the shape of the illumination pattern may be altered using appropriate optics in the illumination assembly as well as elsewhere along the optical path.
In addition, the spectral properties of the illumination pattern may be distinguished from background materials and/or ambient lighting conditions (“background noise”). For example, the illumination source can be a blue LED that emits light strongly detected by the blue pixels of a color filter array and weakly detected by the other pixels of the color filter array used in the imager. The illumination pattern can then be analyzed. And if it is determined that there illumination pattern provides a strong signal in the blue pixels and a weak signal in the other pixels, then the illumination pattern can safely be determined to not be background noise. If, however, the blue pixels do not register a strong signal relative to the other pixels, then the illumination pattern is likely a background and can be ignored. While this example uses a blue LED relative to blue pixels, other wavelengths can be used.
Using various embodiments described herein sequential images of the skin site can be acquired while being illuminated with a single illumination source having a steep illumination angle. Prior to operating a function that requires the presence of a specific type of object at a platen for imaging, such as in biometric imaging or multispectral imaging, the following can occur in any order and with or without any one step:
1. Analyzing the illumination pattern to ensure that the shape of the illumination pattern is consistent with the shape of the expected object.
2. Analyzing the location of the illumination pattern to determine if it's location is consistent with the expected object being in contact with the platen. The illumination pattern can include the geometric pattern and/or the intensity profile.
3. Analyzing the illumination pattern to determine if it has a strong signal for the pixels that are consistent with the wavelength of the illumination source and/or determine if the illumination pattern has a weak signal for pixels not consistent with the wavelength of the illumination source.
At block 1415 the area near the imaging surface is imaged. At block 1420 the image is analyzed to determine if the shape of the illumination pattern is consistent with the expected object. This illumination pattern may be a geometric illumination pattern and/or an intensity pattern. If the illumination patter is inconsistent with the expected pattern, then process 600 returns to block 1415 and another image is acquired. In some embodiments, process 600 pauses a short time period prior to returning to block 1410. If the pattern is consistent with the expected object, then process 1400 proceeds to block 1425.
At block 1425 process 1400 determines whether the illumination pattern is formed in a location consistent with the expect object being placed on the platen. If the location is inconsistent, then process 1400 returns to block 1415 and another image is acquired. If it is consistent, then process 1400 proceeds to block 1430. At block 1430 process 1400 determines whether the illumination pattern is consistent with background noise. This can be done by analyzing the pixels of the image in conjunction with the color filter array. If the pixels within the illumination pattern are strongly associated with light illumination wavelength and/or weakly associated with light associated with other pixels, then the object is not a background object and process 1400 proceeds to 1435. Otherwise process 1400 returns back to block 1415. At block 1435 imaging or other tests or measurements can occur once it is determined that the proper object is placed in the proper location and is not background noise. Process 1400 ends at block 1440.
Process 1400, for example, can be executed by the computational device shown in
Computational Device
In such embodiments, an imaging subsystem may include an imager 1510, a processor 1515, and memory 1520. In other embodiments, an imaging subsystem 1504 may also include light sources and/or optical elements. Imaging subsystems 1504 may be modular and additional imaging subsystems may be easily added to the system. Thus, biometric sensor subsystems may include any number of imaging subsystems 1504. The various imaging subsystems, in one embodiment, may be spatially modular in that each imaging subsystem is used to image a different spatial location. The various imaging subsystems, in another embodiment, may be multispectrally modular in that each imaging subsystem is used to image a different multispectral condition. Accordingly, in such an embodiment, an imaging subsystem 1504 may also include various optical elements such as, for example, color filter arrays, color filters, polarizers, etc and/or the imager 1510 may be placed at various angles relative to the imaging location. The various imaging subsystems, in another embodiment, may provide focus modularity in that each imaging subsystem is used to image a different focal point or focal plane.
The hardware elements may include a central processing unit (CPU) 1550, an input/output device(s) 1535, a storage device 1555, a computer-readable storage 1540, a network interface card (NIC) 1545, a processing acceleration unit 1548 such as a DSP or special-purpose processor, and a memory 1560. The computer-readable storage 1540 may include a computer-readable storage medium and a computer readable medium reader, the combination comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. The NIC 1545 may comprise a wired, wireless, modem, and/or other type of interfacing connection and permits data to be exchanged with external devices.
Moreover, computational unit can include illumination source interface 1557 and/or imager interface 1556. These interfaces can be standard input/output interfaces such USB, firewire, UART, RS232 or a proprietary interface. Regardless of the communication protocols, imager interface 1556 can be used to instruct the imager (e.g., any of the imagers or sensors described herein) to acquire an image and/or export an image. Illumination source interface 1557 can be use to activate and/or deactivate any of a plurality of illumination sources singularly, as a group, or sequentially.
The computational unit 1500 may also comprises software elements, shown as being currently located within working memory 1560, including an operating system 1565 and other programs and/or code 1570, such as a program or programs designed to implement methods described herein. It will be apparent to those skilled in the art that substantial variations may be used in accordance with specific requirements. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.
Computational unit 1500 can be used to carry out processes shown in any of the figures and described in the specification. Specific instructions and/or program code can also be stored in memory 1518 or 1512 and executed by CPU 1502.
Dual-Imager Biometric Sensor
Embodiments of the invention may include systems, methods, and devices that may collect images of the finger using two different types of imagers that acquire images of the finger during the same measurement session. In some cases, the imagers may acquire images simultaneously. In some cases the imagers may acquire two video sequences wherein the frames of the video sequences are synchronized such that the two sequences are substantially temporally aligned to aid processing in the presence of motion of the finger or other object being imaged. In some embodiments, the two imagers may comprise a TIR imaging system and/or a direct imaging system. In some embodiments either or both the imaging systems may be multispectral imaging systems.
In some embodiments of the invention a prism with multiple facets can be used with facets arranged for simultaneous direct and TIR imaging of a skin site. The prism can be used in conjunction with one or more illumination sources and/or one or more imagers. A first facet of the prism may be adapted for placement of a purported skin site by an individual. The first facet may include an imaging surface for placement of the purported skin site. The first facet or just the imaging surface of the first facet may alternatively be referred to as a “platen”. A second facet may be oriented with respect to the first facet such that a portion of light totally internally reflected at the first facet substantially passes through the second facet. The sensor may include one or more illumination sources disposed to illuminate the imaging surface of the prism and/or the purported skin site through the first facet of the prism. The sensor may include a direct imaging assembly disposed to receive light scattered from the purported skin site and reflected from the second facet of the prism. The sensor may include a total-internal-reflectance imaging assembly disposed to receive light scattered beneath a surface of the purported skin site at the first facet and substantially passes through a third facet of the prism.
In some embodiments the illuminators 1631, 1632, and/or 1633 may be of substantially different wavelengths in accordance with other aspects of various embodiments. Some embodiments may utilize illumination assemblies that may include illumination sources without other optics to shape and direct the illumination source. Some embodiments of a dual imaging sensor may also include other illumination assemblies or illumination sources as will be discussed below. For example, some embodiments may include an illuminator such as a flat light guide illuminated with LEDs, or a cold cathode fluorescent lamp (CCFL), or other illuminators known in the art that may be used as part of a TIR imaging.
Illumination light from any or all sources, such as 1631, 1632, and/or 1633, may illuminate the image region 1615. Light from a finger touching the sensor may then be imaged by the TIR image assembly 1641 after being reflected from mirrored surfaces 1621 and 1624. In some embodiments, a TIR image assembly, such as 1641, may not need reflecting surfaces such as 1621 and 1624 to make an image. Other embodiments may include more or less imaging surfaces that may be in different configurations. The finger touching the active image region 1615 may also be imaged by direct image assembly 1642 after reflections from surfaces 1622, 1623, and/or 1625. In some embodiments, a direct image assembly, such as 1642, may not need reflection surfaces such as 1622, 1623, and/or 1625. Other embodiments may use more or less reflecting surfaces, which also may be position and/or oriented in different configurations.
In one embodiment, direct image assembly 1642 may contain a color imager, as well as lenses, mirrors, optical filters, grating and other such optical elements as may be necessary to form an image as known in the art. TIR image assembly 1641 may contain a color imager or a monochromatic imager, as well as lenses, mirrors, optical filters, grating and other such optical elements as may be necessary to form an image as known in the art. In some embodiments that incorporate a monochromatic TIR imager, there may be a optical band pass filter in TIR image assembly 1641 that substantially passes the light from some number of the illuminators, such as 1631, 1632, and/or 1633, while blocking the light from others. In some embodiments, an optical filter that blocks out-of-band light ambient light may be included in either or both imaging paths.
In some embodiments, image bundle 1651 is oriented at an angle greater than the critical angle defined by the surface 1615 and the surrounding media, which is usually air. Because of this, it may be desirable to provide a black background for the TIR imager 1641 to view in cases where the TIR imager 1641 is operating in a dark-field illumination mode. In order to accomplish this, facet 1611 of prism 1610 may be oriented such that rays in the TIR bundle 1615 reflected through TIR at surface 1615 may be substantially able to pass out of prism 1610 through facet 1611. In some embodiments, a light trap (e.g., optical absorber) 1660, which may comprise a material with a matte black surface finish, may be positioned such that substantially all of the TIR bundle 1651 lands on the trap 1660.
In an alternative embodiment, the light trap 1660 may be replaced by an illuminator, such as a flat light guide illuminated with LEDs, or a cold cathode fluorescent lamp (CCFL), or other illuminators known in the art. In this alternate embodiment, the TIR imaging system operates in a bright-field illumination mode.
In some embodiments, facet 1611 may serve a dual role of being highly reflective for the direct imaging bundle 1652 and also being transmissive for TIR imaging bundle 1651 as illustrated in
As described above, different facets of prism 1610 may provide different functions. For example, facet 1611 may serve a dual role of being highly reflective for direct imaging and also being transmissive for TIR imaging. As can be seen, a TIR bundle 1653 directed towards facet 1611 will transmit through facet 1611. A direct imaging bundle 1654 may reflect at facet 1611. In some embodiments, direct imaging bundle 1653 totally internally reflects at facet 1611. In addition, system 1607 shows an example of a facet 1613 that direct imaging bundle 1654 may pass through and then reach a direct imager 1644. Furthermore, a TIR bundle 1655 may pass through facet 1612 and then reach a TIR imager 1643.
Facets as seen in
Prism 1610 may include facets such as 1613 that are oriented in different ways. For example, facet 1613 may be oriented relatively perpendicular to light that passed through facet 1615 and reflected from facet 1611 such that the light substantially passes through facet 1613.
System 1607 may also include different illumination sources.
In some embodiments, sensors and systems may each collect images simultaneously using direct imagers such as 1642 or 1644 and TIR imager 1641 or 1643. If either of the images is multiplexed in the manner of the different embodiments, the image may be decomposed into the images corresponding to the different illumination conditions followed by interpolation and/or other processing of the resulting images. The resulting collection of images (both TIR and direct) may then be processed further in such a manner that a single, composite image of the fingerprint is generated. This composite image may then be reported to a host computer or other connected device.
In some embodiments, the TIR imager and direct imagers of sensors and systems may acquire synchronized video streams of images. These video streams may be acquired while the finger is rolled in the manner known in the art. The rolled image sequences may then be combined to produce a composite rolled print image.
In some embodiments, the fingerprint sensor of different embodiments may be used to collect non-fingerprint images. In particular, the direct imager may be used to acquire such images. Other image data so collected may include barcodes and documents. Optical security markings such as holograms, color-changing ink and other such markings may be present and used to confirm that the documents or barcodes by assessing the images that correspond to different illumination conditions.
In some embodiments, the direct imager of the different embodiments may be used to collect iris images, facial images, surveillance images, detect motion, detect ambient lighting conditions, and perform a variety of other such functions. In some embodiments the direct imager may include an automatic, variable focus (“autofocus”) mechanism to facilitate additional imaging functionality.
In some embodiments of process 2300, a third portion of light is totally internally reflected at the first facet of the platen and then passes through the second facet of the platen. Some embodiments may further comprise absorbing the third portion of the light at a light trap located proximate to the second facet such that totally internally reflected light at the first facet that passes through the second facet is substantially absorbed by the light trap.
In some embodiments of process 2300, the light received by the direct imaging assembly that is reflected from the second facet of the platen is totally internally reflected at the second facet. In some embodiments, the second and third facets are oriented at substantially critical angles with respect to the first facet.
Some embodiments of process 2300 may include generating a composite image of the purported skin site using the total-internal-reflectance image and the direct image of the purported skin site. Some embodiments may include receiving light from the purported skin site that includes receiving the first portion of the received light at a total-internal-reflectance imaging assembly and receiving the second portion of the received light at a direct imaging assembly. Some embodiments may further comprise decomposing at least one of the images into multiple images corresponding to different illumination conditions.
Some embodiments of process 2300 may further comprise illuminating a non-skin site through the platen using one or more illumination sources. Light from the non-skin site is received and then a direct image of the non-skin site from a second portion of the received light may be generated. The non-skin site may include barcodes, documents, or optical security markings, for example. In some embodiments, the non-skin site may includes an iris, a portion of a face, a surveillance location, a moving object, or a lighting condition, for example.
Process 900, for example, can be executed by the computational device shown in
In some embodiments of the invention, the TIR imager and direct imager may each collect images simultaneously. If either of the images is multiplexed in the manner described in some of the embodiments described herein, the image may be decomposed into the images corresponding to the different illumination conditions followed by interpolation and/or other processing of the resulting images. The resulting collection of images (both TIR and direct) may then be processed to create a single, composite image of the fingerprint. This composite image may then be reported to a host computer or other connected device.
In some embodiments, the TIR imager and direct imager may acquire synchronized video streams of images. These video streams may be acquired while the finger is rolled in the manner known in the art. The rolled image sequences may then be combined to produce a composite rolled print image.
Various other configuration can be used. For instance, a first illumination source (e.g. an LED) can be used to illuminating a finger through a first facet (e.g., facet 1615) of a multifaceted prism (e.g., prism 1610). Light from the first illumination source can undergo total internal reflectance at a second facet (e.g., 1611) of the multifaceted prism prior to illuminating the object. A first imager (e.g., 1644) can image light scattered from the finger and passing though the first facet at an angle less than the critical angle and undergoing total internal reflectance at the second facet. A second imager can image light scattered from the finger and passing through the first facet at an angle less than the critical angle. In some embodiments, the second imager can be located in a position such that it does not image light from the second illumination source that is totally internally reflected at the first facet.
In some embodiments, the second imager can be located out of phase from the second illumination source. That is light from the second illumination source can only image light from the second imager after it is absorbed and/or scattered by the object. And, in this embodiment, light totally internally reflected at the first facet is not imaged by the second imager. For example, the second imager can be located at an azimuthal angle out of line with the second illumination source; such as an angle less than 170°. In some embodiments, this angle is 90°. The second imager can also be located to image light at greater or less than the critical angle.
In another embodiment, a first illumination source can illuminate an object located at a first facet (e.g., 1615) of a multifaceted prism (e.g., 1610). The system can include a second illumination source that can illuminate the object through a second facet (e.g., 1611) and through the first facet at an angle greater than the critical angle of the first facet. A first imager (e.g., 1644) can image light scattered by the object that passes through the first facet at an angle less than the critical angle and undergoes total internal reflectance at the second facet. A second imager (1643) can be used to image light totally internally reflected from the first facet.
In some embodiments, the fingerprint sensor of the present invention may be used to collect non-fingerprint images; for example, money, documents, bar codes, manufactured parts, etc. In some of these images optical security markings such as holograms, color-changing ink and other such markings may be present and used to confirm that the documents or barcodes by assessing the images that correspond to different illumination conditions.
In some embodiments, the dual imager of the present invention may be used to collect finger or hand print images as well as iris images, facial images, surveillance images, detect motion, detect ambient lighting conditions, barcode images, security document images, and perform a variety of other such functions. In some embodiments the direct imager may include an automatic, variable focus (“autofocus”) mechanism to facilitate additional imaging functionality.
Rowe, Robert K., Rogers, Gary, Martin, Ryan, Corcoran, Steve
Patent | Priority | Assignee | Title |
10616218, | Oct 03 2016 | Gentex Corporation | Driver identification and authentication systems and methods |
9213438, | Jun 02 2011 | OmniVision Technologies, Inc. | Optical touchpad for touch and gesture recognition |
9304604, | Jan 18 2012 | High resolution and high sensitivity optically activated touch sensing device using multiple color light sources |
Patent | Priority | Assignee | Title |
3508830, | |||
3619060, | |||
3854319, | |||
3872443, | |||
3910701, | |||
4035083, | May 30 1972 | Background correction in spectro-chemical analysis | |
4142797, | Feb 11 1977 | Barnes Engineering Company | Common path interferometer |
4169676, | Feb 20 1976 | Method for determining the contents of metabolic products in the blood | |
4170987, | Nov 28 1977 | UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION | Medical diagnosis system and method with multispectral imaging |
4260220, | Jun 15 1979 | BRITISH COLUMBIA, UNIVERSITY OF | Prism light guide having surfaces which are in octature |
4322163, | Oct 25 1977 | FINGERMATRIX, INC , A NY CORP | Finger identification |
4427889, | Aug 23 1979 | Carl Zeiss Stiftung | Method and apparatus for molecular spectroscopy, particularly for the determination of products of metabolism |
4537484, | Jan 30 1984 | Silicon Valley Bank | Fingerprint imaging apparatus |
4598715, | Apr 29 1982 | CARL-ZEISS-STIFTUNG, A FOUNDATION INCORPORATED OF GERMANY | Instrument for spectral measurement in the bloodstream |
4653880, | Mar 01 1985 | SPECTRA-TECH, INC | Reflective beam splitting objective |
4654530, | Oct 31 1983 | Refractively scanned interferometer | |
4655225, | Apr 18 1985 | Kurabo Industries Ltd. | Spectrophotometric method and apparatus for the non-invasive |
4656562, | Sep 13 1985 | Santa Barbara Research Center | Optical integrator means for intensity modification of Gaussian beam |
4657397, | Jun 25 1982 | Oskar, Oehler; David, Sourlier | Light collector and its use for spectroscopic purposes |
4661706, | Feb 25 1985 | SPECTRA-TECH, INC , 652 GLENBROOK ROAD, P O BOX 2190, STAMFORD, CONNECTICUT 06906 | Blocker device for eliminating specular reflectance from a diffuse reflection spectrum |
4684255, | Aug 09 1984 | The Perkin-Elmer Corporation | Interferometric optical path difference scanners and FT spectrophotometers incorporating them |
4699149, | Mar 20 1984 | British Technology Group Limited | Apparatus for the identification of individuals |
4712912, | Mar 10 1986 | SPECTRA-PHYSICS, INC , | Spectrophotometric image scrambler for full aperture microspectroscopy |
4730882, | Feb 10 1986 | SPECTRA-TECH INC , 652 GLENBROOK ROAD, P O BOX 2190, STAMFORD, CONNECTICUT 06906 | Multiple internal reflectance spectroscopy system |
4747147, | Aug 16 1985 | Fingerprint recognition and retrieval system | |
4787013, | Nov 30 1987 | Raytheon Company | Intermediate range intensity modification of gaussian beam using optical integration means |
4787708, | May 08 1987 | Minnesota Mining and Manufacturing Company | Apparatus for continuously controlled emission of light from prism light guide |
4830496, | Jan 22 1988 | General Scanning, Inc. | Interferometer |
4853542, | Jun 08 1987 | Nicolas J., Harrick | Collecting hemispherical attachment for spectrophotometry |
4857735, | Oct 23 1987 | PRISMA ACQUISITION CORP | Light emitting diode spectrophotometer |
4859064, | May 09 1988 | Spectra-Tech, Inc. | Diffuse reflectance spectroscopy system and method |
4866644, | Aug 29 1986 | Optical instrument calibration system | |
4867557, | Apr 09 1987 | SUMITOMO ELECTRIC INDUSTRIES, LTD | Reflection type oximeter for applying light pulses to a body tissue to measure oxygen saturation |
4882492, | Jan 19 1988 | SENSYS MEDICAL, INC | Non-invasive near infrared measurement of blood analyte concentrations |
4883953, | Nov 17 1987 | Kurashiki Boseki Kabushiki Kaisha | Spectroscopic method and apparatus for measuring sugar concentrations |
4936680, | Apr 03 1989 | General Electric Company | Method of, and apparatus for, edge enhancement of fingerprint minutia |
4937764, | May 06 1987 | FUJIFILM Corporation | Method of optical density measurement and apparatus therefor |
4944021, | Apr 18 1984 | NEC Corporation | Identification system employing verification of fingerprints |
4975581, | Jun 21 1989 | UNITED STATES OF AMERICA, THE, AS REPRSENTED BY THE SECRETARY OF ENERGY | Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids |
5015100, | Mar 02 1990 | Axiom Analytical, Inc.; AXIOM ANALYTICAL, INC , A CORP OF CA | Apparatus and method for normal incidence reflectance spectroscopy |
5019715, | Mar 02 1990 | THERMO ELECTRON SCIENTIFC INSTRUMENTS CORPORATION | Optical system and method for sample analyzation |
5028787, | Jan 19 1989 | FUTREX, INC , P O BOX 2398, 7845 AIRPARK ROAD, GAITHERSBURG, MD 20879, A CORP OF MD | Non-invasive measurement of blood glucose |
5051602, | Mar 02 1990 | THERMO ELECTRON SCIENTIFC INSTRUMENTS CORPORATION | Optical system and method for sample analyzation |
5055658, | Jul 25 1988 | Security system employing digitized personal physical characteristics | |
5068536, | Jan 19 1989 | Futrex, Inc. | Method for providing custom calibration for near infrared instruments for measurement of blood glucose |
5070874, | Jan 30 1990 | Dominion Assets, LLC | Non-invasive determination of glucose concentration in body of patients |
5077803, | Sep 16 1988 | Fujitsu Limited | Biological detecting system and fingerprint collating system employing same |
5088817, | Nov 25 1988 | Fujitsu Limited | Biological object detection apparatus |
5109428, | Dec 06 1988 | Fujitsu Limited | Minutia data extraction in fingerprint identification |
5146102, | Feb 22 1990 | Kabushiki Kaisha Toshiba | Fingerprint image input apparatus including a cylindrical lens |
5158082, | Aug 23 1990 | SpaceLabs, Inc. | Apparatus for heating tissue with a photoplethysmograph sensor |
5163094, | Mar 20 1991 | INFRARED INDENTIFICATION, INC | Method for identifying individuals from analysis of elemental shapes derived from biosensor data |
5177802, | Mar 07 1990 | SHARP KABUSHIKI KAISHA A JOINT-STOCK COMPANY OF JAPAN | Fingerprint input apparatus |
5178142, | May 23 1989 | MORROW & CO PARTNERSHIP; PEURA, ROBERT A ; LOCK, J PAUL; WELLS, STEPHEN | Electromagnetic method and apparatus to measure constituents of human or animal tissue |
5179951, | Apr 19 1990 | Integ Incorporated | Blood constituent measurement |
5204532, | Jan 19 1989 | FUTREX, INC | Method for providing general calibration for near infrared instruments for measurement of blood glucose |
5222495, | Feb 01 1991 | DIABETES CONTROL & CARE TECHNOLOGY, INC | Non-invasive blood analysis by near infrared absorption measurements using two closely spaced wavelengths |
5222496, | Feb 01 1991 | DIABETES CONTROL & CARE TECHNOLOGY, INC | Infrared glucose sensor |
5223715, | Sep 20 1991 | Amoco Corporation | Process for spectrophotometric analysis |
5225678, | Nov 13 1991 | Connecticut Instrument Corporation | Spectoscopic sampling accessory having dual measuring and viewing systems |
5230702, | Jan 16 1991 | Paradigm Biotechnologies Partnership | Hemodialysis method |
5237178, | Jun 27 1990 | Non-invasive near-infrared quantitative measurement instrument | |
5243546, | Jan 10 1991 | Marathon Petroleum Company LLC | Spectroscopic instrument calibration |
5257086, | Jun 09 1992 | PLAIN SIGHT SYSTEMS, INC | Optical spectrophotometer having a multi-element light source |
5258922, | Jun 12 1989 | Wieslaw, Bicz | Process and device for determining of surface structures |
5267152, | Oct 28 1989 | Non-invasive method and apparatus for measuring blood glucose concentration | |
5268749, | Jul 26 1991 | GRETAGMACBETH, L L C | Apparatus and method for providing uniform illumination of a sample plane |
5291560, | Jul 15 1991 | IRISCAN INCORPORATED | Biometric personal identification system based on iris analysis |
5299570, | Aug 12 1991 | AVL Medical Instruments AG | System for measuring the saturation of at least one gas, particularly the oxygen saturation of blood |
5303026, | Feb 26 1991 | Los Alamos National Security, LLC | Apparatus and method for spectroscopic analysis of scattering media |
5311021, | Nov 13 1991 | Connecticut Instrument Corporation | Spectroscopic sampling accessory having dual measuring and viewing systems |
5313941, | Jan 28 1993 | OptiScan Biomedical Corporation | Noninvasive pulsed infrared spectrophotometer |
5321265, | Jul 15 1992 | Optix LP | Non-invasive testing |
5331958, | Mar 31 1992 | Coretech Medical Technologies Corporation | Spectrophotometric blood analysis |
5335288, | Feb 10 1992 | FAULKNER, KEITH W ; GROETZINGER, ROBERT S ; BERGSTEDT, LOWELL C | Apparatus and method for biometric identification |
5348003, | Sep 03 1992 | Nellcor Puritan Bennett Incorporated | Method and apparatus for chemical analysis |
5351686, | Feb 01 1993 | FRESENIUS MEDICAL CARE HOLDINGS, INC | Disposable extracorporeal conduit for blood constituent monitoring |
5355880, | Jul 06 1992 | Sandia Corporation | Reliable noninvasive measurement of blood gases |
5360004, | Dec 09 1992 | Dominion Assets, LLC | Non-invasive determination of analyte concentration using non-continuous radiation |
5361758, | Jun 09 1988 | Nellcor Puritan Bennett LLC | Method and device for measuring concentration levels of blood constituents non-invasively |
5366903, | Dec 22 1988 | Radiometer A/S | Method of photometric in vitro determination of the content of an analyte in a sample of whole blood |
5372135, | Dec 31 1991 | MORROW & CO PARTNERSHIP; PEURA, ROBERT A ; LOCK, J PAUL; WELLS, STEPHEN | Blood constituent determination based on differential spectral analysis |
5379764, | Dec 09 1992 | Dominion Assets, LLC | Non-invasive determination of analyte concentration in body of mammals |
5402778, | Jan 19 1993 | NON-INVASIVE TECHNOLOGY, INC | Spectrophotometric examination of tissue of small dimension |
5405315, | Jul 27 1993 | KHURI, SOUMAYA M | Method for determining adequacy of dialysis based on urea concentration |
5413096, | Jun 28 1991 | U. S. Divers Co., Inc. | Regulator with improved high pressure seat due to a plastic-covered valve body |
5413098, | Dec 24 1991 | JB IP ACQUISITION LLC | Path constrained spectrophotometer and method for determination of spatial distribution of light or other radiation scattering and absorbing substances in a radiation scattering medium |
5419321, | May 17 1990 | GE MEDICAL SYSTEMS INFORMATION TECHNOLOGIES, INC | Non-invasive medical sensor |
5435309, | Aug 10 1993 | Sandia Corporation | Systematic wavelength selection for improved multivariate spectral analysis |
5441053, | May 03 1991 | UNIV OF KY RESEARCH FOUNDATION | Apparatus and method for multiple wavelength of tissue |
5452723, | Jul 24 1992 | Massachusetts Institute of Technology | Calibrated spectrographic imaging |
5459317, | Feb 14 1994 | Ohio University; University of Iowa Research Foundation | Method and apparatus for non-invasive detection of physiological chemicals, particularly glucose |
5459677, | Oct 09 1990 | Board of Regents of the University of Washington | Calibration transfer for analytical instruments |
5460177, | May 07 1993 | Dominion Assets, LLC | Method for non-invasive measurement of concentration of analytes in blood using continuous spectrum radiation |
5483335, | Mar 18 1993 | Multiplex spectroscopy | |
5494032, | Jul 12 1991 | Sandia Corporation | Oximeter for reliable clinical determination of blood oxygen saturation in a fetus |
5505726, | Mar 21 1994 | DUSA PHARMACEUTICALS, INC. | Article of manufacture for the photodynamic therapy of dermal lesion |
5507723, | May 24 1994 | Baxter International, Inc. | Method and system for optimizing dialysis clearance |
5515847, | Jan 28 1993 | OPTISCAN, INC | Self-emission noninvasive infrared spectrophotometer |
5518623, | Oct 19 1992 | Baxter International Inc. | Hemodialysis monitoring system for hemodialysis machines |
5523054, | Jan 31 1995 | Johnson & Johnson Clinical Diagnostics, Inc. | Test element for quantitative NIR spectroscopic analysis |
5533509, | Aug 12 1993 | Kurashiki Boseki Kabushiki Kaisha | Method and apparatus for non-invasive measurement of blood sugar level |
5537208, | Dec 19 1990 | U.S. Philips Corporation | Interferometer spectrometer having means for varying the optical path length while maintaining alignment |
5539207, | Jul 19 1994 | National Research Council of Canada | Method of identifying tissue |
5552997, | Apr 20 1990 | PANALYTICAL B V | Method of calibrating an analytical instrument |
5559504, | Jan 08 1993 | Kabushiki Kaisha Toshiba | Surface shape sensor, identification device using this sensor, and protected system using this device |
5568251, | Mar 23 1994 | National Research Council of Canada | Authenticating system |
5596992, | Jun 30 1993 | Sandia Corporation | Multivariate classification of infrared spectra of cell and tissue samples |
5606164, | Jan 16 1996 | Roche Diabetes Care, Inc | Method and apparatus for biological fluid analyte concentration measurement using generalized distance outlier detection |
5613014, | Oct 12 1994 | Lockheed Martin Corporation | Fingerprint matching system |
5630413, | Jul 06 1992 | Sandia Corporation | Reliable noninvasive measurement of blood gases |
5636633, | Aug 09 1995 | Rio Grande Medical Technologies, Inc. | Diffuse reflectance monitoring apparatus |
5655530, | Aug 09 1995 | Rio Grande Medical Technologies, Inc. | Method for non-invasive blood analyte measurement with improved optical interface |
5672864, | Feb 26 1996 | Eastman Kodak Company | Light integrator |
5672875, | Jul 17 1992 | Optix LP | Methods of minimizing scattering and improving tissue sampling in non-invasive testing and imaging |
5677762, | Sep 20 1994 | TRIPATH IMAGING, INC | Apparatus for illumination stabilization and homogenization |
5681273, | Dec 23 1991 | BAXTER INTERNATIONAL, INC | Systems and methods for predicting blood processing parameters |
5708593, | May 19 1995 | Elf Antar France | Method for correcting a signal delivered by a measuring instrument |
5719399, | Dec 18 1995 | RESEARCH FOUNDATION OF CITY COLLEGE OF NEW YORK, THE | Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough |
5719950, | Mar 24 1994 | Minnesota Mining and Manufacturing Company | Biometric, personal authentication system |
5724268, | Jun 29 1995 | CIBA CORNING DIAGNOSTICS CORP | Apparatus and methods for the analytical determination of sample component concentrations that account for experimental error |
5729619, | Aug 08 1995 | Northrop Grumman Systems Corporation | Operator identity, intoxication and drowsiness monitoring system and method |
5737439, | Oct 29 1996 | Open Invention Network, LLC | Anti-fraud biometric scanner that accurately detects blood flow |
5743262, | Jun 07 1995 | CERCACOR LABORATORIES, INC | Blood glucose monitoring system |
5747806, | Feb 02 1996 | GLT ACQUISITION CORP | Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy |
5750994, | Jul 31 1995 | GLT ACQUISITION CORP | Positive correlation filter systems and methods of use thereof |
5751835, | Oct 04 1995 | Method and apparatus for the automated identification of individuals by the nail beds of their fingernails | |
5751836, | Sep 02 1994 | Sarnoff Corporation | Automated, non-invasive iris recognition system and method |
5761330, | Jun 07 1995 | BIOSCRYPT INC | Hybrid optical-digital method and apparatus for fingerprint verification |
5782755, | Nov 15 1993 | NON-INVASIVE TECHNOLOGY, INC | Monitoring one or more solutes in a biological system using optical techniques |
5792050, | Jul 06 1992 | LUMINOUS MEDICAL, INC | Near-infrared noninvasive spectroscopic determination of pH |
5792053, | Mar 17 1997 | Polartechnics, Limited | Hybrid probe for tissue type recognition |
5793881, | Aug 31 1995 | EDGE BIOMETRICS, INC | Identification system |
5796858, | May 10 1996 | HOLOSENSORS LLC | Fingerprint sensing system using a sheet prism |
5808739, | May 09 1994 | Perkin-Elmer Ltd. | Interferometer having combined beam splitter compensator plate |
5818048, | Jul 15 1992 | Optix LP | Rapid non-invasive optical analysis using broad bandpass spectral processing |
5823951, | Aug 09 1995 | Rio Grande Medical Technologies, Inc. | Method for non-invasive blood analyte measurement with improved optical interface |
5828066, | Jul 02 1996 | Multisource infrared spectrometer | |
5830132, | Aug 24 1993 | Robust accurate non-invasive analyte monitor | |
5830133, | Sep 18 1989 | Terumo Cardiovascular Systems Corporation | Characterizing biological matter in a dynamic condition using near infrared spectroscopy |
5850623, | Oct 09 1997 | ROSEMOUNT ANALYTICAL INC | Method for standardizing raman spectrometers to obtain stable and transferable calibrations |
5853370, | Sep 13 1996 | NON-INVASIVE TECHNOLOGY, INC | Optical system and method for non-invasive imaging of biological tissue |
5857462, | Aug 10 1993 | Sandia Corporation | Systematic wavelength selection for improved multivariate spectral analysis |
5859420, | Dec 04 1996 | Activcard Ireland Limited | Optical imaging device |
5860421, | Jan 17 1996 | SPECTRX INC | Apparatus and method for calibrating measurement systems |
5867265, | Aug 07 1995 | NCR Corporation | Apparatus and method for spectroscopic product recognition and identification |
5886347, | Jul 13 1994 | Horiba, Ltd. | Analytical method for multi-component aqueous solutions and apparatus for the same |
5902033, | Feb 18 1997 | Torch Technologies LLC | Projector system with hollow light pipe optics |
5914780, | Oct 09 1996 | Perkin-Elmer LTD | Digitisation of interferograms in Fourier transform spectroscopy |
5929443, | Dec 18 1995 | RESEARCH FOUNDATION OF CITY COLLEGE OF NEW YORK, THE | Imaging of objects based upon the polarization or depolarization of light |
5933792, | Feb 09 1995 | Foss Electric A/S | Method of standardizing a spectrometer |
5935062, | Aug 09 1995 | RIO GRANDE MEDICAL TECHNOLOGIES, INC | Diffuse reflectance monitoring apparatus |
5945676, | Feb 02 1996 | GLT ACQUISITION CORP | Method and apparatus for multi-spectral analysis in noninvasive NIR spectroscopy |
5949543, | Nov 12 1997 | PLX, Inc. | Monolithic optical assembly and associated retroreflector with beamsplitter assembly |
5957841, | Mar 25 1997 | PHC HOLDINGS CO , LTD ; PANASONIC HEALTHCARE HOLDINGS CO , LTD | Method of determining a glucose concentration in a target by using near-infrared spectroscopy |
5961449, | May 16 1996 | FUJIFILM Corporation | Glucose concentration measuring method and apparatus |
5963319, | Mar 14 1997 | LG DISPLAY CO , LTD | Low noise Raman analyzer system |
5978495, | Jul 17 1996 | Intelnet Inc. | Method and apparatus for accurate determination of the identity of human beings |
5987346, | Feb 26 1993 | JB IP ACQUISITION LLC | Device and method for classification of tissue |
5999637, | Sep 28 1995 | Hamamatsu Photonics K.K. | Individual identification apparatus for selectively recording a reference pattern based on a correlation with comparative patterns |
6005722, | Sep 04 1998 | Hewlett-Packard Company | Optical display system including a light valve |
6016435, | Nov 26 1996 | PHC HOLDINGS CO , LTD ; PANASONIC HEALTHCARE HOLDINGS CO , LTD | Device for non-invasive determination of a glucose concentration in the blood of a subject |
6025597, | Oct 17 1995 | OptiScan Biomedical Corporation | Non-invasive infrared absorption spectrometer for measuring glucose or other constituents in a human or other body |
6026314, | Sep 05 1997 | Samsung Electronics Co., Ltd. | Method and device for noninvasive measurements of concentrations of blood components |
6028773, | Nov 14 1997 | Apple Inc | Packaging for silicon sensors |
6031609, | May 29 1997 | Los Alamos National Security, LLC | Fourier transform spectrometer using a multielement liquid crystal display |
6034370, | Jul 02 1996 | Multisource infrared spectrometer | |
6040578, | Feb 02 1996 | GLT ACQUISITION CORP | Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy |
6041247, | Nov 29 1995 | Instrumentarium Corp | Non-invasive optical measuring sensor and measuring method |
6041410, | Dec 22 1997 | Northrop Grumman Systems Corporation | Personal identification fob |
6043492, | Oct 27 1997 | Industrial Technology Research Institute | Non-invasive blood glucose meter |
6044285, | Nov 12 1997 | LighTouch Medical, Inc.; LIGHTOUCH MEDICAL, INC | Method for non-invasive measurement of an analyte |
6045502, | Jan 17 1996 | SpectRx, Inc | Analyzing system with disposable calibration device |
6046808, | Apr 09 1999 | PLAIN SIGHT SYSTEMS, INC | Radiation filter, spectrometer and imager using a micro-mirror array |
6049727, | Apr 03 1998 | Animas Corporation | Implantable sensor and system for in vivo measurement and control of fluid constituent levels |
6056738, | Jan 31 1997 | TRANSMEDICA INTERNATIONAL, INC | Interstitial fluid monitoring |
6057925, | Aug 28 1998 | Viavi Solutions Inc | Compact spectrometer device |
6061581, | Jul 06 1992 | National Technology & Engineering Solutions of Sandia, LLC | Invasive and in vivo near-infrared determination of pH |
6061582, | Feb 14 1994 | University of Iowa Research Foundation; Ohio University | Method and apparatus for non-invasive determination of physiological chemicals, particularly glucose |
6066847, | Jan 19 1989 | HARRISON DIRECT RESPONSE ENTERPRISES, INC | Procedure for verifying the accuracy of non-invasive blood glucose measurement instruments |
6069689, | Apr 16 1997 | DERMA TECHNOLOGIES, INC | Apparatus and methods relating to optical systems for diagnosis of skin diseases |
6070093, | Dec 02 1997 | Abbott Laboratories | Multiplex sensor and method of use |
6073037, | Jul 06 1992 | LUMINOUS MEDICAL, INC | Near-infrared noninvasive determination of pH in pulse mode |
6081612, | Feb 28 1997 | STRATA SKIN SCIENCES, INC | Systems and methods for the multispectral imaging and characterization of skin tissue |
6088605, | Feb 23 1996 | Dominion Assets, LLC | Method and apparatus for non-invasive blood glucose sensing |
6088607, | Mar 21 1991 | JPMorgan Chase Bank, National Association | Low noise optical probe |
6097035, | Feb 22 1999 | DIGITAL PERSONA, INC | Fingerprint detection apparatus with partial fingerprint images |
6100811, | Dec 22 1997 | Northrop Grumman Systems Corporation | Fingerprint actuation of customized vehicle features |
6115484, | Sep 09 1996 | BIOSCRYPT INC | Economical skin-pattern-acquisition and analysis apparatus for access control, systems controlled thereby |
6115673, | Aug 14 1997 | GLT ACQUISITION CORP | Method and apparatus for generating basis sets for use in spectroscopic analysis |
6122042, | Feb 07 1997 | Devices and methods for optically identifying characteristics of material objects | |
6122394, | May 01 1997 | RPX CLEARINGHOUSE LLC | Compact, simple, 2D raster, image-building fingerprint scanner |
6122737, | Nov 14 1997 | DIGITAL PERSONA, INC | Method for using fingerprints to distribute information over a network |
6125192, | Apr 21 1997 | DIGITAL PERSONA, INC | Fingerprint recognition system |
6141101, | Nov 12 1997 | PLX, Inc. | Monolithic optical assembly |
6147749, | Aug 07 1995 | Kyoto Daiichi Kagaku Co., LTD; Kurashiki Boseki Kabushiki Kaisha | Method and apparatus for measuring concentration by light projection |
6148094, | Sep 30 1996 | DALTON PATRICK ENTERPRISES, INC | Pointing device with biometric sensor |
6152876, | Apr 18 1997 | RIO GRANDE MEDICAL TECHNOLOGIES, INC | Method for non-invasive blood analyte measurement with improved optical interface |
6154658, | Dec 14 1998 | ABACUS INNOVATIONS TECHNOLOGY, INC ; LEIDOS INNOVATIONS TECHNOLOGY, INC | Vehicle information and safety control system |
6157041, | Oct 13 1998 | National Technology & Engineering Solutions of Sandia, LLC | Methods and apparatus for tailoring spectroscopic calibration models |
6159147, | Feb 28 1997 | VECTRACOR, INC | Personal computer card for collection of real-time biological data |
6172743, | Oct 07 1992 | Chemtrix, Inc. | Technique for measuring a blood analyte by non-invasive spectrometry in living tissue |
6175407, | Dec 17 1998 | MORPHOTRUST USA, INC | Apparatus and method for optically imaging features on the surface of a hand |
6181414, | Aug 05 1999 | Morphometrix Technologies Inc | Infrared spectroscopy for medical imaging |
6181958, | Feb 05 1998 | Hema Metrics, LLC | Method and apparatus for non-invasive blood constituent monitoring |
6188781, | Jul 28 1998 | Digital Persona, Inc. | Method and apparatus for illuminating a fingerprint through side illumination of a platen |
6193153, | Apr 16 1997 | Method and apparatus for non-intrusive biometric capture | |
6208749, | Feb 28 1997 | STRATA SKIN SCIENCES, INC | Systems and methods for the multispectral imaging and characterization of skin tissue |
6212424, | Oct 29 1998 | RIO GRANDE MEDICAL TECHNOLOGIES, INC | Apparatus and method for determination of the adequacy of dialysis by non-invasive near-infrared spectroscopy |
6226541, | Jan 17 1996 | SpectRx, Inc. | Apparatus and method for calibrating measurement systems |
6229908, | Apr 26 1996 | Driver alcohol ignition interlock | |
6230034, | Aug 09 1995 | Rio Grande Medical Technologies, Inc. | Diffuse reflectance monitoring apparatus |
6236047, | Feb 02 1996 | GLT ACQUISITION CORP | Method for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy |
6240306, | Aug 05 1995 | RIO GRANDE MEDICAL TECHNOLOGIES, INC | Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration |
6240309, | Oct 06 1995 | Hitachi, Ltd. | Optical measurement instrument for living body |
6241663, | May 18 1998 | Abbott Laboratories | Method for improving non-invasive determination of the concentration of analytes in a biological sample |
6256523, | Mar 21 1991 | JPMorgan Chase Bank, National Association | Low-noise optical probes |
6272367, | Jun 17 1992 | NON-INVASIVE TECHNOLOGY, INC | Examination of a biological tissue using photon migration between a plurality of input and detection locations |
6280381, | Jul 22 1999 | GLT ACQUISITION CORP | Intelligent system for noninvasive blood analyte prediction |
6282303, | Jun 02 1998 | DIGITAL PERSONA, INC | Method and apparatus for scanning a fingerprint using a linear sensor within a cursor control device |
6285895, | Aug 22 1997 | Instrumentarium Corp. | Measuring sensor for monitoring characteristics of a living tissue |
6292576, | Feb 29 2000 | DIGITAL PERSONA, INC | Method and apparatus for distinguishing a human finger from a reproduction of a fingerprint |
6301375, | Apr 14 1997 | VEIN 4 KEY, INC | Apparatus and method for identifying individuals through their subcutaneous vein patterns and integrated system using said apparatus and method |
6301815, | Mar 04 1999 | COLT S MANUFACTURING IP HOLDING COMPANY LLC | Firearms and docking station system for limiting use of firearm |
6304767, | Feb 04 1998 | Polestar Technologies, Inc.; University of Massachusetts | Non-invasive optical measurement of blood hematocrit |
6307633, | Mar 13 1998 | Optical Biopsy Technologies, Inc.; OPTICAL BIOPSY TECHNOLOGIES, INC | Method and apparatus for performing scanning optical coherence confocal microscopy through a scattering medium |
6309884, | Feb 26 1997 | Dominion Assets, LLC | Individual calibration of blood glucose for supporting noninvasive self-monitoring blood glucose |
6317507, | May 30 1998 | U S PHILIPS CORPORATION | Signal verification device |
6324310, | Jun 02 1998 | DIGITAL PERSONA, INC | Method and apparatus for scanning a fingerprint using a linear sensor |
6330346, | Aug 31 1995 | Advanced Biometrics, Inc.; ADVANCED BIOMETRICS, INC | Method and apparatus for subcutaneous identification |
6404904, | Apr 24 1998 | TST Biometrics Holding AG | System for the touchless recognition of hand and finger lines |
6419361, | Feb 22 1991 | Applied Spectral Imaging Ltd. | Spectral bio-imaging of the eye |
6483929, | Jun 08 2000 | Halo Wearables, LLC | Method and apparatus for histological and physiological biometric operation and authentication |
6504614, | Oct 08 1999 | Rio Grande Medical Technologies, Inc. | Interferometer spectrometer with reduced alignment sensitivity |
6537225, | Oct 07 1999 | Woolsthorpe Technologies | Device and method for noninvasive continuous determination of physiologic characteristics |
6560352, | Oct 08 1999 | HID GLOBAL CORPORATION | Apparatus and method of biometric identification or verification of individuals using optical spectroscopy |
6574490, | Apr 11 2001 | RIO GRANDE MEDICAL TECHNOLOGIES, INC | System for non-invasive measurement of glucose in humans |
6597945, | Jul 09 1998 | Siemens Aktiengesellschaft | Method for detecting living human skin |
6606509, | Mar 16 2001 | Covidien LP | Method and apparatus for improving the accuracy of noninvasive hematocrit measurements |
6628809, | Oct 08 1999 | HID GLOBAL CORPORATION | Apparatus and method for identification of individuals by near-infrared spectrum |
6631199, | Dec 08 1998 | ZEBRA-IDENTITY | Automated identification through analysis of optical birefringence within nail beds |
6741729, | Apr 21 1997 | Digital Persona, Inc. | Fingerprint recognition system |
6749115, | May 31 2001 | Western Digital Israel Ltd | Dual processor trusted computing environment |
6799275, | Mar 30 2000 | DIGITAL PERSONA, INC | Method and apparatus for securing a secure processor |
6799726, | Jan 19 2000 | Skidata AG | Authorization control device including a wristwatch having a biometric sensor |
6816605, | Oct 08 1999 | HID GLOBAL CORPORATION | Methods and systems for biometric identification of individuals using linear optical spectroscopy |
6825930, | Jun 04 2002 | CAMBRIDGE RESEARCH & INSTRUMENTATION, INC | Multispectral imaging system |
6853444, | Aug 30 2002 | Non-contact optical imaging system for biometric identification | |
6898299, | Sep 11 1998 | GR Intellectual Reserve, LLC | Method and system for biometric recognition based on electric and/or magnetic characteristics |
6928181, | Nov 20 1997 | GR Intellectual Reserve, LLC | Method and system for biometric recognition using unique internal distinguishing characteristics |
6937885, | Nov 10 1997 | HYPERMED, INC | Multispectral/hyperspectral medical instrument |
6958194, | Oct 21 2003 | FOVEON, INC | Imager with improved sensitivity |
6995384, | Apr 29 2000 | UNION COMMUNITY CO , LTD | Method and apparatus for discriminating latent fingerprint in optical fingerprint input apparatus |
7047419, | Sep 17 1999 | UNITED STATES CP, LLC | Data security system |
7084415, | Aug 06 2001 | Omron Corporation | Fingerprint reading method using compared monochromatic images and fingerprint reading apparatus |
7147153, | Apr 04 2003 | HID GLOBAL CORPORATION | Multispectral biometric sensor |
7254255, | Apr 12 2002 | STMICROELECTRONICS RESEARCH & DEVELOPMENT LIMITED | Biometric sensor apparatus and methods |
7263213, | Dec 11 2003 | HID GLOBAL CORPORATION | Methods and systems for estimation of personal characteristics from biometric measurements |
7287013, | Jan 14 2005 | Qualcomm Incorporated | Multimodal fusion decision logic system |
7347365, | Apr 04 2003 | HID GLOBAL CORPORATION | Combined total-internal-reflectance and tissue imaging systems and methods |
7366331, | Jun 18 2001 | NEC PERSONAL COMPUTERS, LTD | Fingerprint input device |
7386152, | Apr 04 2003 | HID GLOBAL CORPORATION | Noninvasive alcohol sensor |
7394919, | Jun 01 2004 | HID GLOBAL CORPORATION | Multispectral biometric imaging |
7397943, | Apr 08 2003 | TBS Holding AG | Method and arrangement for touchless detection of data of uneven surfaces |
7440597, | Apr 04 2003 | HID GLOBAL CORPORATION | Liveness sensor |
7460696, | Jun 01 2004 | HID GLOBAL CORPORATION | Multispectral imaging biometrics |
7508965, | Jun 01 2004 | HID GLOBAL CORPORATION | System and method for robust fingerprint acquisition |
7515252, | Dec 30 2005 | CAREFUSION 303, INC | Optical fingerprint imaging system and method with protective film |
7539330, | Jun 01 2004 | HID GLOBAL CORPORATION | Multispectral liveness determination |
7545963, | Apr 04 2003 | HID GLOBAL CORPORATION | Texture-biometrics sensor |
7627151, | Apr 04 2003 | HID GLOBAL CORPORATION | Systems and methods for improved biometric feature definition |
7668350, | Apr 04 2003 | HID GLOBAL CORPORATION | Comparative texture analysis of tissue for biometric spoof detection |
7735729, | Apr 04 2003 | HID GLOBAL CORPORATION | Biometric sensor |
7751594, | Apr 04 2003 | HID GLOBAL CORPORATION | White-light spectral biometric sensors |
7801338, | Apr 27 2005 | HID GLOBAL CORPORATION | Multispectral biometric sensors |
7801339, | Jul 31 2006 | HID GLOBAL CORPORATION | Biometrics with spatiospectral spoof detection |
7804984, | Jul 31 2006 | HID GLOBAL CORPORATION | Spatial-spectral fingerprint spoof detection |
7819311, | Apr 04 2003 | HID GLOBAL CORPORATION | Multispectral biometric sensor |
7831072, | Jun 01 2004 | HID GLOBAL CORPORATION | Multispectral imaging biometrics |
7835554, | Jun 01 2004 | HID GLOBAL CORPORATION | Multispectral imaging biometrics |
7899217, | Jul 19 2006 | HID GLOBAL CORPORATION | Multibiometric multispectral imager |
7995808, | Jul 19 2006 | HID GLOBAL CORPORATION | Contactless multispectral biometric capture |
20020009213, | |||
20020065468, | |||
20020101566, | |||
20020111546, | |||
20020138768, | |||
20020171834, | |||
20020183624, | |||
20030025897, | |||
20030044051, | |||
20030078504, | |||
20030128867, | |||
20030163710, | |||
20030223621, | |||
20040003295, | |||
20040008875, | |||
20040022421, | |||
20040042642, | |||
20040047493, | |||
20040114783, | |||
20040120553, | |||
20040125994, | |||
20040179722, | |||
20040240712, | |||
20040240713, | |||
20040264742, | |||
20050007582, | |||
20050125339, | |||
20050169504, | |||
20050180620, | |||
20050185847, | |||
20050205667, | |||
20050265585, | |||
20050265586, | |||
20050265607, | |||
20050271258, | |||
20060002597, | |||
20060002598, | |||
20060045330, | |||
20060062438, | |||
20060110015, | |||
20060115128, | |||
20060171571, | |||
20060173256, | |||
20060202028, | |||
20060210120, | |||
20060244947, | |||
20060274921, | |||
20070014437, | |||
20070030475, | |||
20070052827, | |||
20070116331, | |||
20070153258, | |||
20070165903, | |||
20080008359, | |||
20080013806, | |||
20080025579, | |||
20080025580, | |||
20080192988, | |||
20080232653, | |||
20080260211, | |||
20080298649, | |||
20090046903, | |||
20090080709, | |||
20090092290, | |||
20090148005, | |||
20090245591, | |||
20100067748, | |||
20100246902, | |||
20110085708, | |||
20110235872, | |||
CN1307711, | |||
CN1402183, | |||
CN1509454, | |||
DE10153808, | |||
EP280418, | |||
EP372748, | |||
EP897164, | |||
EP924656, | |||
EP1353292, | |||
EP1434162, | |||
FR2761180, | |||
JP2001033381, | |||
JP2001184490, | |||
JP2002133402, | |||
JP2002517835, | |||
JP2003050993, | |||
JP2003308520, | |||
JP2003511101, | |||
JP61182174, | |||
JP7075629, | |||
RE29008, | Aug 04 1975 | Novar Electronics Corporation | Individual identification apparatus and method using frequency response |
WO30530, | |||
WO46739, | |||
WO115596, | |||
WO118332, | |||
WO127882, | |||
WO152180, | |||
WO152726, | |||
WO153805, | |||
WO165471, | |||
WO169520, | |||
WO2054337, | |||
WO2084605, | |||
WO2099393, | |||
WO3010510, | |||
WO3096272, | |||
WO2004068388, | |||
WO2004068394, | |||
WO2004090786, | |||
WO2006049394, | |||
WO2006077446, | |||
WO2006093508, | |||
WO9200513, | |||
WO9217765, | |||
WO9307801, | |||
WO9927848, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 26 2010 | Lumidigm, Inc | (assignment on the face of the patent) | / | |||
Sep 29 2010 | MARTIN, RYAN | Lumidigm, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025685 | /0113 | |
Sep 29 2010 | ROWE, ROBERT K | Lumidigm, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025685 | /0113 | |
Sep 29 2010 | CORCORAN, STEVE | Lumidigm, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025685 | /0113 | |
Sep 29 2010 | RODGERS, GARY | Lumidigm, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025685 | /0113 | |
Apr 01 2015 | Lumidigm, Inc | HID GLOBAL CORPORATION | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 035654 | /0766 | |
Apr 01 2015 | HID GLOBAL CORPORATION | HID GLOBAL CORPORATION | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 035654 | /0766 |
Date | Maintenance Fee Events |
Jun 11 2018 | REM: Maintenance Fee Reminder Mailed. |
Dec 03 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 28 2017 | 4 years fee payment window open |
Apr 28 2018 | 6 months grace period start (w surcharge) |
Oct 28 2018 | patent expiry (for year 4) |
Oct 28 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 28 2021 | 8 years fee payment window open |
Apr 28 2022 | 6 months grace period start (w surcharge) |
Oct 28 2022 | patent expiry (for year 8) |
Oct 28 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 28 2025 | 12 years fee payment window open |
Apr 28 2026 | 6 months grace period start (w surcharge) |
Oct 28 2026 | patent expiry (for year 12) |
Oct 28 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |