An apparatus includes an optical pathway configured to deliver energy to heat a magnetic recording medium via a slider body. The optical pathway generates heat in the slider body when delivering energy to the magnetic recording medium. The apparatus includes a compensating heater with a thermal characteristic that matches a thermal characteristic of the optical pathway. The compensating heater is activated at least part of the time when the optical pathway is not delivering the energy to the magnetic recording medium.
|
8. A method comprising:
delivering energy via an optical pathway that comprises one or more of a waveguide, a laser mounted to a slider body, a mirror, and a near-field transducer to heat a magnetic recording medium of an apparatus, wherein the optical pathway generates heat in the slider body when delivering the energy to the magnetic recording medium; and
activating, at least part of a time when the optical pathway is not delivering the energy to the magnetic recording medium, a compensating heater with a thermal characteristic that matches a characteristic of the optical pathway, wherein activating the compensating heater stabilizes a spacing between the slider body and the magnetic recording medium.
13. An apparatus comprising:
a slider body comprising an optical pathway;
a laser coupled to deliver energy to heat a magnetic recording medium via the optical pathway, wherein the optical pathway generates heat in the slider body when delivering the energy to the magnetic recording medium;
a compensating heater with a thermal characteristic that matches a characteristic of the heat generated by the optical pathway, the compensating heater configured to stabilize a spacing between the slider body and the magnetic recording medium; and
a controller coupled to the laser and the compensating heater, the controller configured to activate the compensating heater at least part of a time when the laser is not activated.
1. An apparatus comprising:
an optical pathway comprising one or more of a waveguide, a laser mounted to a slider body, a mirror, and a near-field transducer configured to deliver energy to heat a magnetic recording medium via the slider body, wherein the optical pathway generates heat in the slider body when delivering energy to the magnetic recording medium; and
a compensating heater with a thermal characteristic that matches a characteristics of the heat generated by the optical pathway, the compensating heater configured to stabilize a spacing between the slider body and the magnetic recording medium, wherein the compensating heater is activated at least part of a time when the optical pathway is not delivering the energy to the magnetic recording medium.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
9. The method of
10. The method of
11. The method of
12. The method of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The method of
18. The apparatus of
|
This application claims the benefit of Provisional Patent Application Ser. No. 61/676,831 filed on Jul. 27, 2012, to which priority is claimed pursuant to 35 U.S.C. §119(e) and which is hereby incorporated herein by reference in its entirety.
Examples described herein are directed to a heat-assisted media recording device. In one embodiment, an apparatus includes an optical pathway configured to deliver energy to heat a magnetic recording medium via a slider body. The optical pathway generates heat in the slider body when delivering energy to the magnetic recording medium. The apparatus includes a compensating heater with a thermal characteristic that matches a thermal characteristic of the optical pathway. The compensating heater is activated at least part of the time when the optical pathway is not delivering the energy to the magnetic recording medium.
These and other features and aspects of various embodiments may be understood in view of the following detailed discussion and accompanying drawings.
The discussion below makes reference to the following figures, wherein the same reference number may be used to identify the similar/same component in multiple figures.
This disclosure describes use of compensating heaters in heat-assisted magnetic recording (HAMR) devices. In HAMR devices, also sometimes referred to as thermal-assisted magnetic recording (TAMR) devices or energy assisted magnetic recording (EAMR), a magnetic recording medium (e.g., hard drive disk) is able to overcome superparamagnetic effects that limit the areal data density of typical magnetic media. In a HAMR recording device, information bits are recorded on a storage layer at elevated temperatures. The heated area in the storage layer determines the data bit dimension, and linear recording density is determined by the magnetic transitions between the data bits.
In order to achieve desired data density, a HAMR recording head (e.g., slider) includes optical components that direct light from a laser to the recording media. The HAMR media hotspot may need to be smaller than a half-wavelength of light available from current sources (e.g., laser diodes). Due to what is known as the diffraction limit, optical components cannot focus the light at this scale. One way to achieve tiny confined hot spots is to use an optical near-field transducer (NFT), such as a plasmonic optical antenna. The NFT is designed to support local surface-plasmon at a designed light wavelength. At resonance, high electric field surrounds the NFT due to the collective oscillation of electrons in the metal. Part of the field will tunnel into a storage medium and get absorbed, raising the temperature of the medium locally for recording. During recording, a write element (e.g., write pole) applies a magnetic field to the heated portion of the medium. The heat lowers the magnetic coercivity of the media, allowing the applied field to change the magnetic orientation of heated portion. The magnetic orientation of the heated portion determines whether a one or a zero is recorded. By varying the magnetic field applied to the magnetic recording medium while it is moving, data is encoded onto the medium.
A HAMR drive uses a laser to heat the media to aid in the recording process. Due to inefficiencies of the optical transmission path, the laser also heats the head/slider. To illustrate possible optical transmission paths,
While here the read/write element 106 is shown as a single unit, this type of device may have a physically and electrically separate read element (e.g., magnetoresistive stack) and write element (e.g., a write coil and pole) that are located in the same general region of the slider 100. The separate read and write portion of the read/write element 106 may be separately controlled (e.g., having different signal lines, different head-to-media spacing control elements, etc.) although may share some common elements (e.g., common signal return path). It will be understood that the concepts described herein described relative to the read/write element 106 may be applicable to individual read or write portions thereof, and may be also applicable where multiple ones of the read write portions are used, e.g., two or more read elements, two or more write elements, etc.
The laser diode 102 provides electromagnetic energy to heat the media surface at a point near to the read/write element 106. Optical pathway components, such as a waveguide 110, are formed integrally within the slider device 100 to deliver light from the laser 102 to the media. In particular, a local waveguide and NFT 112 may be located proximate the read/write element 106 to provide local heating of the media during write operations. These components 106, 110, 112 may also experience significant heating from the laser 102 due to coupling and transmission inefficiencies.
In
While other components shown in
While not illustrated in
The optical pathway heating in these examples can be localized at the NFT, the light delivery optics and/or at the laser itself. Light absorbed in these components is converted to heat, which is conducted to the surrounding materials. This heating causes thermal expansion, which can lead to head-media spacing (HMS) changes. For example, heat-induced expansion can change the shape of the slider and changing the air bearing characteristics, which can cause the writer to fly closer to the disk. An example of this is shown in
The slider 202 is coupled to an arm 204 by way of a suspension 206 (e.g., gimbal) that allows some relative motion between the slider 202 and arm 204. The slider 202 includes read/write elements 208 (e.g., transducers) at a trailing edge that are held proximate to a surface 210 of a magnetic recording medium, e.g., disk 211. When the slider 202 is located over surface 210 of disk 211, a flying height 212 is maintained between the slider 202 and the surface 210 by a downward force of arm 204. This downward force is counterbalanced by an air cushion that exists between the surface 210 and an air bearing surface 203 of the slider 202 when the disk 211 is rotating.
It is desirable to maintain a predetermined slider flying height 212 over a range of disk rotational speeds during both reading and writing operations to ensure consistent performance. A region 214 is a “close point” of the slider 202, which is generally understood to be the closest point of contact between the slider 202 and the magnetic recording medium 211, and generally defines the HMS 213. As described above, heating from HAMR optical components can affect the HMS 213. This is shown in
In various embodiments described below, the slider 202 may include one or more heaters 216 that are designed to compensate for HAMR heating effects. The heater 216 may be positioned close to a heat-generating component, e.g., a top mounted laser 219 as shown here. A controller 218 can be coupled to the heater 216 to control when the heater 216 is switched on, and optionally to control an amount of power applied to the heater 216.
The controller 218 includes a write control module 220 that controls various aspects of the device during write operations. For a HAMR device, writing involves activating the laser 219 while writing to the media, which is indicated by way of laser control module 222. The laser control module 222 includes circuitry that switches the laser 219 on and off, e.g., in response to a command from write control module 220. A compensating heater control 224 switches heater 216 on and off inversely to the laser 219 to minimalize thermal changes within the slider 202 when the laser 219 is switched on and off.
The slider 202 may also include other heaters (not shown) that actively control HMS 213 during device operation, as indicated by HMS control module 226. The other heaters may be associated with one or both of the read/write elements 208. The HMS control module actively adjusts HMS 213 during respective read and write operations. The activities of the HMS control module 226 may be coordinated with the compensating heater control module 224. For example, a magnitude of signals sent from the compensating heater control 224 may be modified so as to complement (or at least not interfere with) HMS heating operations.
In reference now to
In
In order to compensate for these heating effects, a special heater may be used to mimic the heating from the laser. The heating effect from the laser may be due to a number of components of the optical pathway (e.g., waveguides, NFT) acting in combination, or one of the components may dominate. If the heating is found to come from more than one source, multiple heaters (e.g., different locations, time constants, thermal power, etc.) may be used if one heater cannot be designed to compensate all the effects. The heater or heaters could have one or more of the same thermal characteristics as heat generated by the optical pathway, or at least a portion of the heat or heat profile that is being compensated for. The thermal characteristics may include, but are not limited to, an amount of thermal energy or power, thermal time constant, location, thermal transfer paths to sinks or sources (conductive, convective and/or radiative), and shape of a heat profile of at least part of the heated optical pathway.
As described herein, a HAMR recording device may define a write/recording mode as a signal that is activated when writing occurs and/or is expected to occur. The laser and write pole may be deactivated in write mode, such as when passing over servo gates or sectors that are not to be written. In such a case, a compensating heater can be activated to simulate the effects of the laser heating when the laser is off, thereby maintaining thermal equilibrium. This is shown in
Looking at the diagram in
As seen by comparing traces 408 and 410, whenever the laser is on during recording mode, the heater control is off. While there may configurations where both the laser and heater are contemporaneously active during the recording mode (e.g., where the compensating heater also performs active HMS control), in this example the laser and heater are not contemporaneously active during the recording mode. Since the heating/cooling from the laser is exactly or approximately compensated by the cooling/heating of the heater, the protrusion 412 maintains equilibrium (and thereby stabilizes head-media spacing) after time 403. Also shown in the figure is the servo gate (trace 407). When a servo operation is being performed the laser is off and the heater is on. When the drive leaves write mode and goes back into read mode or standby mode, the heater is turned off
In the diagram of
In
As indicated by, e.g., period between times 426 and 428, the compensating heater is activated during a period when the laser on and delivering energy to the magnetic recording medium via the optical pathway. In trace 422, the heater is on at full power between times 426 and 428. In trace 424, the heater is on at less than full power between times 426 and 428. A similar overlap may occur (instead of or in combination with the previously describe overlap) after the laser is deactivated, e.g., just before time 430. For example, if the laser was faster to cool down that the laser was to heat up, then the heater could be engaged (either at partial or full power) before time 430.
In other examples, there may be a “gap” period where neither the laser or compensating heater are activated. This is indicated by trace 432. At time 434, when the laser current has not yet been activated, the heater current has been deactivated. This may be a zero-power-level deactivation as shown or stepped/intermediate power level similar to the transitions shown in track 424. This type of transition may be used, e.g., where the heater is slow to cool from operating temperature and the laser comes up to operating temperature quickly. Similar adjustments may be made when the laser is turned off, e.g., time 430, such that there is a delay after time 430 before the heater is turned back on.
Although the example compensation techniques shown in
While an optical path may have a number of thermal hotspots, a heater may be chosen to compensate for a dominant source of heat. If the dominate source of heating is from the laser, a resistive element can be placed either under the laser for the LIS case or on the laser carrier or submount for the LOS case. This is shown in
If the dominate source of heating is from losses in the light path, a heater can be placed under the light path as is shown in
In
If the dominate source of heating is the NFT, a heater similar to what is used for the writer and reader heaters can be used. Reader and writer heaters may be provided for active control of the HMS, e.g., a feedback loop include an HMS sensor and HMS adjusting heater. In some instances it may be possible to design the reader or writer heater to have the same thermal profile and time constant as NFT heating. In such a case, the reader or writer heater can perform two functions—controlling the HMS and compensating for protrusion from laser heating during write mode. In this case a multilevel heater controller may be utilized, because a different heater current may be required when the laser is on and off.
In
In
While in the recording mode, block 806 determines whether a region of a magnetic recording medium that is to be written is currently under a recording element (e.g., record head). If so, energy is delivered 808 to the recording medium via an optical pathway, and data is encoded 810 to the magnetic recording medium via the record element. If it is determined at block 806 that a region of a magnetic recording medium that is to be written is not currently under a recording element, a compensating heater is activated 812. The compensating heater has one or more thermal characteristics that match characteristics of heat generated by the optical pathway. The thermal characteristics may include, but are not limited to, an amount of thermal energy, thermal time constant, location, and shape of a heat profile of at least part of the heated optical pathway.
The foregoing description of the example embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the embodiments to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. Any or all features of the disclosed embodiments can be applied individually or in any combination are not meant to be limiting, but purely illustrative. It is intended that the scope of the invention be limited not with this detailed description, but rather determined by the claims appended hereto.
Rausch, Tim, Burns, Kenneth Ray
Patent | Priority | Assignee | Title |
10204655, | Nov 03 2016 | Seagate Technology LLC | Heat-assisted magnetic recording device capable of preventing contaminant on the head |
10902876, | Sep 22 2014 | Seagate Technology LLC | Thermal management of laser diode mode hopping for heat assisted media recording |
11450346, | Sep 22 2014 | Seagate Technology LLC | Thermal management of laser diode mode hopping for heat assisted media recording |
11961543, | Sep 22 2014 | Seagate Technology LLC | Thermal management of laser diode mode hopping for heat assisted media recording |
9123362, | Mar 22 2011 | Western Digital Technologies, INC | Methods for assembling an electrically assisted magnetic recording (EAMR) head |
9202506, | Jan 13 2015 | Seagate Technology LLC | Current boost profile applied to laser during heat-assisted magnetic recording |
9418691, | May 21 2014 | Seagate Technology LLC | Heat assisted media recording apparatus with laser diode mode hopping suppression |
9472225, | Feb 11 2015 | Seagate Technology LLC | Heat-assisted magnetic recording head-disk clearance setting |
9548072, | Feb 11 2015 | Seagate Technology LLC | Concurrent modulation and frictional heating head disk contact detection |
9990950, | Jul 17 2017 | Seagate Technology LLC | Calibration and adjusting target pre-write clearance offset for a heat-assisted magnetic recording device |
Patent | Priority | Assignee | Title |
7995425, | Mar 11 2009 | Headway Technologies, Inc. | Power control of TAMR element during read/write transition |
8077418, | Mar 31 2009 | Western Digital Technologies, INC | Reducing thermal protrusion of a near field transducer in an energy assisted magnetic recording head |
8169731, | Aug 13 2009 | TDK Corporation | Near-field light transducer comprising propagation edge with predetermined curvature radius |
8675455, | Feb 17 2012 | Western Digital Technologies, INC | Systems and methods for controlling light phase difference in interferometric waveguides at near field transducers |
20040027728, | |||
20120201108, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 08 2013 | Seagate Technology LLC | (assignment on the face of the patent) | / | |||
May 08 2013 | BURNS, KENNETH RAY | Seagate Technology LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030893 | /0222 | |
May 10 2013 | RAUSCH, TIM | Seagate Technology LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030893 | /0222 |
Date | Maintenance Fee Events |
Feb 26 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 28 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 28 2017 | 4 years fee payment window open |
Apr 28 2018 | 6 months grace period start (w surcharge) |
Oct 28 2018 | patent expiry (for year 4) |
Oct 28 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 28 2021 | 8 years fee payment window open |
Apr 28 2022 | 6 months grace period start (w surcharge) |
Oct 28 2022 | patent expiry (for year 8) |
Oct 28 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 28 2025 | 12 years fee payment window open |
Apr 28 2026 | 6 months grace period start (w surcharge) |
Oct 28 2026 | patent expiry (for year 12) |
Oct 28 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |