The present invention discloses a method for quickly and easily authenticating large computer program. The system operates by first sealing the computer program with digital signature in an incremental manner. Specifically, the computer program is divided into a set of pages and a hash value is calculated for each page. The set of hash values is formed into a hash value array and then the hash value array is then sealed with a digital signature. The computer program is then distributed along with the hash value array and the digital signature. To authenticate the computer program, a recipient first verifies the authenticity of the hash value array with the digital signature and a public key. Once the hash value array has been authenticated, the recipient can then verify the authenticity of each page of the computer program by calculating a hash of a page to be loaded and then comparing with an associated hash value in the authenticated hash value array. If the hash values do not match, then execution may be halted.
|
17. A method for storing a computer program for distribution, the method comprising:
receiving the computer program;
dividing the computer program into a plurality of individually executable units;
computing a plurality of hash values for the plurality of individually executable units to enable iterative authentication of the individually executable units as they are executed; and
storing the plurality of hash values in a hash array for distribution along with the computer program, each hash value in the hash array for authenticating only its corresponding individually executable unit of the computer program.
1. A method for verifying a computer program that comprises a plurality of units, the method comprising:
prior to each execution of the computer program:
verifying the authenticity of a hash array that comprises a plurality of hash values for authenticating the plurality of units of the computer program; and
after verifying the authenticity of the hash array, iteratively, for each particular unit of a set of units of the computer program:
loading the particular unit into a memory system;
calculating a new hash value for the particular unit of the computer program; and
authenticating the particular unit of the computer program by comparing a hash value stored in the hash array to the newly calculated hash value for the particular unit.
11. A method for storing a computer program for distribution, the method comprising:
for a computer program divided into a plurality of individually executable units, computing a single hash value for each of the plurality of individually executable units;
arranging the computed hash values in a hash array;
computing a single hash value of the entire hash array; and
storing the plurality of hash values and the single hash value with the computer program in order for the computer program and the plurality of hash values to be distributed as a single computer program, the plurality of hash values for later use in authentication of the computer program prior to each execution of the computer program and the single hash value for later use in authentication of the entire hash array prior to authentication of the computer program.
8. A method for verifying a computer program that comprises a plurality of units, the method comprising:
loading a hash array in a protected memory system prior to verifying the authenticity of the hash array, wherein the hash array comprises a plurality of hash values for authenticating the plurality of units of the computer program;
verifying the authenticity of the hash array;
after verifying the authenticity of the hash array, iteratively authenticating each particular unit of a set of units of the computer program by comparing a hash value stored in the hash array to a newly calculated hash value for the particular unit;
before all units of the set of units are iteratively authenticated:
swapping the hash array out of the protected memory system; and
verifying the authenticity of the hash array again after loading the hash array back into the protected memory system.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
9. The method of
10. The method of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
18. The method of
calculating a hash value of the hash array; and
creating a digital signature with the hash value of the hash array.
19. The method of
20. The method of
|
This application is a continuation application of U.S. patent application Ser. No. 11/458,992, filed Jul. 20, 2006, now issued as U.S. Pat. No. 8,341,422. U.S. patent application Ser. No. 11/458,992 is a continuation of U.S. patent application Ser. No. 10/666,847, filed Sep. 18, 2003, now issued as U.S. Pat. No. 7,103,779. U.S. patent application Ser. No. 11/458,992, now issued as U.S. Pat. Nos. 8,341,422 and 7,103,779, are incorporated herein by reference.
1. Field of the Invention
The present invention relates to the field of computer security. In particular, the present invention discloses a system for verifying that an unauthorized party has not tampered with computer program code.
2. Description of the Related Art
Computer security is one of the most pressing problems facing computer software makers. With the rise in popularity of the Internet, nearly every personal computer system is available on the Internet at one point or another. This great connectivity has provided many benefits to personal computer users. However, it has also provided a new host of problems to computer users. One of the biggest problems has been the rise of Internet transmitted viruses, worms, Trojan horses, and other malevolent programs.
Rogue computer programmers, sometimes known as “crackers”, often attempt to break into computer systems to steal information or make unauthorized changes. Crackers use many different types of attacks in attempts to break into a computer system. Common methods employed by computer crackers include Trojan horses (a seemingly benign computer program that has a hidden agenda), a computer virus (a piece of software that replicates itself from within a host program), a computer worm (a piece of software that replicates itself across a computer network), and social engineering (Deceiving a person with authorization codes into giving out those authorized codes).
These rogue computer programmers often alter existing legitimate programs by adding program code to perform unauthorized functions. By placing such authorized program code within legitimate programs, the rogue computer programmer thereby hides the unauthorized program code. The unauthorized code may thus dwell within a person's personal computer system without the person's knowledge for a long time. The unauthorized program code may destroy valuable data, waste computing resources (CPU cycles, network bandwidth, storage space, etc.), or pilfer confidential information.
In order to protect legitimate programs from such unauthorized adulteration, some software manufacturers generate a checksum of the program code. The checksum is a value calculated using the program code as input value such that each different computer program tends to have a different checksum value. The software manufacturer then digitally “signs” the checksum with a private key encryption key. Before running the computer program code, a user should then authenticate the program code. Specifically, the user has the personal computer system compute a checksum of the program code and then the computed checksum values is compared with the checksum calculated by the software manufacturer after decrypting it with the software manufacturer's public key. If the two checksums match, then the computer program is presumed to be authentic.
These existing checksum based protection systems have been known to work relatively well. However, these existing checksum based protection systems can take a long time to authenticate large computer programs. Therefore, it would be desirable to provide a system faster system for authenticating large computer programs.
The present invention discloses a method for quickly and easily authenticating large computer program. The system operates by first sealing the computer program with digital signature in an incremental manner. Specifically, the computer program is divided into a set of pages and a hash value is calculated for each page. The set of hash values is formed into a hash value array and then the hash value array is then sealed with a digital signature. The computer program is then distributed along with the hash value array and the digital signature. To authenticate the computer program, a recipient first verifies the authenticity of the hash value array with the digital signature and a public key. Once the hash value array has been authenticated, the recipient can then verify the authenticity of each page of the computer program by calculating a hash of a page to be loaded and then comparing with an associated hash value in the authenticated hash value array. If the hash values do not match, then execution may be halted.
Other objects, together with the foregoing are attained in the exercise of the invention described and illustrated in the accompanying embodiments and drawings.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Notation and Nomenclature
In the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will become obvious to those skilled in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.
The detailed description of the present invention in the following is presented largely in terms of procedures, steps, logic blocks, processing, and other symbolic representations that describe data processing devices coupled to networks. These process descriptions and representations are the means used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. The present invention is a method and apparatus for providing a mobile subscriber visual interface to customer care and billing systems. The method along with the apparatus, described in detail below, is a self-consistent sequence of processes or steps leading to a desired result. These steps or processes are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities may take the form of electrical signals capable of being stored, transferred, combined, compared, displayed and otherwise manipulated in computer systems or electronic computing devices. It proves convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, operations, messages, terms, numbers, or the like. It should be borne in mind that all of these similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following description, it is appreciated that throughout the present invention, discussions utilizing terms such as “processing” or “computing” or “verifying” or “displaying” or the like, refer to the actions and processes of a computing device that manipulates and transforms data represented as physical quantities within the computing device's registers and memories into other data similarly represented as physical quantities within the computing device or other electronic devices.
To protect a computer program from unauthorized tampering, a software manufacturer may create a special “seal” for the computer program that should be tested before the program is executed. If the seal or the computer program code has been tampered with, then the test will fail such that the program will then refuse to execute.
A common method of creating such a seal is to use well-known “public key” encryption technology. Such a system that uses public key encryption technology will be described with reference to
Digitally Sealing a Computer Program
Referring now to the drawings, in which like numerals refer to like parts throughout the several views,
Verifying the Authenticity of a Digitally Sealed Computer Program
Next, in steps 230 and 240, the computer system compares the digital signature for the program hash 150 that accompanied the computer program 100 with the calculated program hash value from step 220 using a well-known private key 235 of the trusted entity that created the digital signature. Specifically, the digital signature for the program hash 150 is processed by the digital signature function with the public key 235 and the result may then be compared with the calculated program hash value from step 220.
If the calculated hash function from step 220 matches the digital signature for the program hash 150 after being processed with the public key 235, then the computer system proceeds to step 250 where program execution commences. However, if the calculated hash function from step 220 fails to match the digital signature for the program hash 150 after being processed with the public key 235, then the computer system proceeds to step 260 and refuses to execute the computer program 100.
The authentication system of
One particular large computer program that needs to be protected is the operating system for a computer system. The operating system has the authority to control all of the computers input/output devices such as disk drives, network connections, displays, back-up systems, etc. Thus, it would be very desirable to have a computer program authentication system that could quickly and efficiently protect a computer operating system.
The present invention introduces an improved method of digitally signing computer programs for security without introducing long load times present in existing systems. The present invention operates by breaking up the computer program into smaller units that are individually verified.
Digitally Sealing a Computer Program with Incremental Code Signing
Referring to
Next, in steps 420 and 430, the system calculates a hash value for each memory page of the computer program 300 using a hash function 310. The hash function 310 may be any hash function such as the well-known SHA or MD5 has functions. As set forth in
In step 440, the system of the present invention arranges the calculated hash values (390 to 389) into an array of hash values known as the hash array 373. The system then calculates an array hash value 360 for the entire hash array 373 using a hash function 370 in step 450. In one embodiment, hash function 370 is the same as hash function 310. However, a different hash function may be used.
The trusted entity that is sealing the program then digitally signs the array hash value 360 with its private key 340 using a signature function 330 in step 460 to create a digital signature for the hash array 350. Finally, at step 470, the hash array 373 and the digital signature for the hash array 350 are stored along the computer program 300. The hash array 373 and the digital signature for the hash array 350 are also distributed along with the computer program 300 such that any recipient of computer program 300 can verify its authenticity.
Verifying the Authenticity of a Digitally Sealed Computer Program
Once a hash array 373 and a digital signature for the hash array 350 have been created for a computer program, that computer program may be distributed to user that may quickly and efficiently authenticate the computer program.
Referring to
Next, at steps 520 and 525, the computer system then compares the calculated hash value with digital signature of the hash array that accompanied the computer program using the well-known public key of the trusted entity that sealed the computer program.
If the digital signature fails to match the hash value calculated from the hash array, then computer system proceeds to step 580 where it refuses the execute the computer program. Execution is refused since the digital signature and/or the hash array have been tampered with by an unauthorized entity.
Referring back to step 525, if the digital signature matches the hash value calculated from the hash array then the computer system proceeds to step 530 where it loads a page of the computer program. The computer system then calculates a hash value for the loaded computer program page at step 540. This calculation may be performed within the memory paging mechanism of the computer's operating system. At steps 550 and 555, the calculated hash value for the loaded computer program page is compared with hash value in the hash array that is associated with that particular memory page.
If the calculated hash value for the loaded computer program page does not match the associated hash value from the hash array, then the computer system proceeds to step 580 where it refuses to continue execution. This refusal to continue execution may be implemented as a page fault within the virtual memory system of the computer system. Other possible methods of signaling the failure could be to indicate that the page is not readable, there has been a verification error, or simply abort.
Referring back to step 555, if the calculated hash value for the loaded computer program page matches the associated hash value from the hash array, then the computer system proceeds to step 560 where commences execution of the loaded page of the program. Eventually, the program will complete execution of the code in that loaded page (and previously loaded pages) and will either totally complete execution or need another page of the computer program, as set forth in step 570. If the program is completely done, then the computer simply proceeds to step 590 where it is done.
If another page of the computer program is needed at step 570, then the computer system proceeds back to step 530 to load the needed page of the computer program. The newly loaded page will have to be authenticated by steps 540, 550, and 555.
Note that the previously authenticated hash array is used by the computer system to further authenticate each memory page that is loaded. Thus, computer must ensure that the authenticated hash array is not tampered with during program execution. For example, if the operating system swaps the authenticated hash array out of protected memory, the hash array should be re-authenticated once it is loaded back in to ensure its authenticity.
This written specification and the accompanying drawings have disclosed the present invention in sufficient detail with a certain degree of particularity. It is understood to those skilled in the art that the present disclosure of embodiments has been made by way of example only and that numerous changes in the arrangement and combination of parts as well as steps may be resorted to without departing from the spirit and scope of the invention as claimed. Accordingly, the scope of the present invention is defined by the appended claims rather than the forgoing description of embodiments.
Brouwer, Michael, Kiehtreiber, Peter
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5454000, | Jul 13 1992 | International Business Machines Corporation | Method and system for authenticating files |
5625693, | Jul 07 1995 | OPENTV, INC | Apparatus and method for authenticating transmitting applications in an interactive TV system |
5673316, | Mar 29 1996 | International Business Machines Corporation | Creation and distribution of cryptographic envelope |
6092147, | Apr 15 1997 | Oracle America, Inc | Virtual machine with securely distributed bytecode verification |
6202203, | Dec 06 1995 | International Business Machines Corporation | Method of, system for, and computer program product for providing global value numbering |
6263348, | Jun 19 1998 | BARCLAYS BANK PLC, AS ADMINISTATIVE AGENT | Method and apparatus for identifying the existence of differences between two files |
6324637, | Aug 13 1999 | Oracle America, Inc | Apparatus and method for loading objects from a primary memory hash index |
6560706, | Jan 26 1998 | Intel Corporation | Interface for ensuring system boot image integrity and authenticity |
6658556, | Jul 30 1999 | International Business Machines Corporation | Hashing a target address for a memory access instruction in order to determine prior to execution which particular load/store unit processes the instruction |
6785815, | Jun 08 1999 | PLS IV, LLC | Methods and systems for encoding and protecting data using digital signature and watermarking techniques |
6954747, | Nov 14 2000 | Microsoft Technology Licensing, LLC | Methods for comparing versions of a program |
6983262, | Jul 22 1999 | Fujitsu Limited | Server having an automatic management mechanism |
6986046, | May 12 2000 | Microsoft Technology Licensing, LLC | Method and apparatus for managing secure collaborative transactions |
7103779, | Sep 18 2003 | Apple Inc | Method and apparatus for incremental code signing |
7356815, | Oct 04 2002 | INTERDIGITAL CE PATENT HOLDINGS; INTERDIGITAL CE PATENT HOLDINGS, SAS | Integrated software and method for authenticating same |
7406603, | Aug 31 1999 | PLS IV, LLC | Data protection systems and methods |
7430670, | Jul 29 1999 | INTERTRUST TECHNOLOGIES CORP | Software self-defense systems and methods |
7461406, | Jul 31 2003 | Sony United Kingdom Limited | Access control for digital content |
7529929, | May 30 2002 | Nokia Technologies Oy | System and method for dynamically enforcing digital rights management rules |
7543336, | Oct 26 1998 | Microsoft Technology Licensing, LLC | System and method for secure storage of data using public and private keys |
7729495, | Aug 27 2001 | CHEMTRON RESEARCH LLC | System and method for detecting unauthorized copying of encrypted data |
8341422, | Sep 18 2003 | Apple Inc. | Method and apparatus for incremental code signing |
8364965, | Mar 15 2006 | Apple Inc | Optimized integrity verification procedures |
20010034839, | |||
20020184046, | |||
20020194484, | |||
20030084298, | |||
20030126453, | |||
20030131239, | |||
20030185395, | |||
20040030909, | |||
20040064457, | |||
20040098599, | |||
20050005112, | |||
20050038999, | |||
20050071274, | |||
20050089160, | |||
20050166264, | |||
20050277403, | |||
20060259781, | |||
20070234070, | |||
20130145167, | |||
AU2004275264, | |||
AU2009233685, | |||
CA2531363, | |||
CA2632076, | |||
CN1146122, | |||
CN1150762, | |||
EP328232, | |||
EP752786, | |||
EP798892, | |||
EP1076301, | |||
EP1496419, | |||
EP1695169, | |||
EP1739591, | |||
EP1835432, | |||
EP2284754, | |||
EP2284755, | |||
EP2634959, | |||
EP2634960, | |||
JP10040100, | |||
JP10282882, | |||
JP2001034470, | |||
JP2001147826, | |||
JP2001147898, | |||
JP2002353960, | |||
JP2003202929, | |||
JP2003524252, | |||
JP2004514214, | |||
WO49764, | |||
WO110076, | |||
WO163385, | |||
WO241147, | |||
WO2004032328, | |||
WO2005029223, | |||
WO2007106831, | |||
WO9826535, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 21 2012 | Apple Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 03 2014 | ASPN: Payor Number Assigned. |
Apr 19 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 27 2022 | REM: Maintenance Fee Reminder Mailed. |
Dec 12 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 04 2017 | 4 years fee payment window open |
May 04 2018 | 6 months grace period start (w surcharge) |
Nov 04 2018 | patent expiry (for year 4) |
Nov 04 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 04 2021 | 8 years fee payment window open |
May 04 2022 | 6 months grace period start (w surcharge) |
Nov 04 2022 | patent expiry (for year 8) |
Nov 04 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 04 2025 | 12 years fee payment window open |
May 04 2026 | 6 months grace period start (w surcharge) |
Nov 04 2026 | patent expiry (for year 12) |
Nov 04 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |