Embodiments described herein provide enhanced integrated circuit (ic) devices. In an embodiment, an ic device includes a substrate, an ic die coupled to a surface of the substrate, a first wirelessly enabled functional block located, on the ic die, the first wirelessly enabled functional block being configured to wirelessly communicate with a second wirelessly enabled functional block located on the substrate, and a ground ring configured to provide electromagnetic shielding for the first and second wirelessly enabled functional blocks.
|
1. An integrated circuit (ic) device, comprising:
a substrate having first, second. and third surfaces, the first surface opposing the second surface and the third surface being orthogonal to the first surface;
an ic die coupled to the first surface of the substrate;
a first wirelessly enabled functional block located on the ic die;
a second, wirelessly enabled functional block located on the first surface of the substrate, wherein the first wirelessly enabled functional block is configured to wirelessly communicate with the second wirelessly enabled functional block located on the substrate;
a ground ring configured to provide electromagnetic shielding for the first and second wirelessly enabled functional blocks; and
a coupling member attached to the third surface of the substrate and to the ground ring.
2. The ic device of
a second ground ring located on the first surface of the substrate.
3. The ic device of
4. The ic device of
5. The ic device of
a second ground ring on the first surface of the substrate and a trace on the first surface of the substrate, wherein a thickness of the second ground ring is substantially equal to a thickness of the trace.
6. The ic device of
7. The ic device of
8. The ic device of
a printing circuit board (PCB), wherein the substrate is configured to be coupled to a surface of the (PCB);
a third wirelessly enabled functional block located on the second surface of the substrate; and
a fourth wirelessly enabled functional block located on the PCB, wherein the third wirelessly enabled functional block is configured to wirelessly communicate with the fourth wirelessly enabled functional block.
9. The ic device of
10. The ic device of
11. The ic device of
12. The ic device of
13. The ic device of
a first plurality of wirelessly enabled functional blocks located on the ic die, the first plurality of wirelessly enabled functional blocks including the first wirelessly enabled functional block.
14. The ic device of
15. The ic device of
16. The ic device of
a solder bump that electrically couples the ic die to the substrate.
17. The ic device of
a plurality of solder balls that electrically couple the substrate to a printed circuit board.
18. The ic device of
19. The ic device of
|
1. Field
The present invention generally relates to integrated circuit (IC) devices, and more particularly to communications involving IC devices.
2. Background Art
Integrated circuit (IC) devices typically include an IC die housed in a package. The IC device can be coupled to a printed circuit board (PCB) to enable communication between the IC device and other devices coupled to the PCB. For example, in array-type packages, an IC die is often coupled to a substrate, which is coupled to an array of connection elements, e.g., an array of solder balls. The array of connections elements is then physically coupled to the PCB.
An IC die can be coupled to a substrate in a variety of ways. For example, in die down flip-chip packages, solder bumps can be used to couple contact pads on a surface of the IC die to contact pads located on the substrate. In another example, wirebonds can be used to couple bond pads on a surface of the IC die to bond fingers located on the substrate.
Conventional ways of coupling an IC die to a substrate can, however, be costly. For example, the materials used to create wirebonds, e.g., gold, can be expensive, thus increasing the cost of the entire device. Furthermore, the conventional ways of coupling the IC die to the substrate can also be susceptible to manufacturing defects. For example, wirebonds and/or solder bumps can break or be damaged during the manufacturing and assembly processes, reducing the throughput for the IC device.
Furthermore, conventional ways of coupling different IC devices can also have drawbacks. For example, when IC devices are coupled together using a PCB, the elements used to couple the IC devices to the PCB can break or be damaged during manufacturing or field application. Additionally, almost all communications within an IC device or between the IC device and other devices (e.g., through a PCB) are susceptible to electromagnetic interference. The presence of this interference can compromise the fidelity of communications, and thus significantly hamper the performance of the overall system.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
The present invention will now be described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
References in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
Furthermore, it should be understood that spatial descriptions (e.g., “above”, “below”, “left,” “right,” “up”, “down”, “top”, “bottom”, etc.) used herein are for purposes of illustration only, and that practical implementations of the structures described herein can be spatially arranged in any orientation or manner.
Conventional Packages
Active surface 115 often includes power and ground distribution rails and input/output contact pads. A plurality of solder bumps 130 can be distributed across active surface 115 of flip chip die 110 to respectively connect flip chip die 110 to substrate 120. As shown in
In the conventional arrangement shown in
Exemplary Embodiments of the Invention
In embodiments described herein, IC devices are provided that include wirelessly enabled functional blocks. The wirelessly enabled functional blocks can be used to communicate signals between an IC die and a substrate. Additionally or alternatively, wirelessly enabled functional blocks can be used to communicate signals between the substrate and a printed circuit board (PCB). In an embodiment, a ground ring can also he provided that provides electromagnetic shielding for the wirelessly enabled functional blocks. Because the wireless communications between wirelessly enabled functional blocks are especially susceptible to electromagnetic interference, the ground ring providing for fidelity of communication between the wirelessly enabled functional blocks can be especially useful.
Adhesive 206 attaches IC die 202 to substrate 204. In an embodiment, adhesive 206 is an electrically non-conductive epoxy.
As shown in
Like all communications between IC die 202, substrate 204, and PCB 250, communications between first, second, third, and fourth pluralities of wirelessly enabled functional blocks 220, 230, 240, and 260 are susceptible to electromagnetic interference originating outside of IC device 200. The communications between first, second, third, and fourth pluralities of wirelessly enabled functional blocks 220, 230, 240, and 260, however, are especially susceptible to interference because these communications occur wirelessly. As such, electromagnetic interference can seriously jeopardize the fidelity of the communications between the different pluralities of wirelessly enabled functional blocks.
To reduce the electromagnetic interference, ground rings 214 and 216 are provided in IC device 200, shown in
In an embodiment, ground rings 214 and 216 can be configured to be flexible. For example, ground rings 214 and 216 can be formed to be relatively thin, e.g., about the same or less than the thickness of typical traces formed on substrate 204 and can be made out of flexible or malleable materials, such as a metal. In doing so, ground rings 214 and 216 do not exert additional stress on substrate 204 when IC device 200 is bent or otherwise stressed, thus reducing the likelihood that substrate 204 will break or otherwise be damaged.
As shown in
As shown in
Vias 304 can be used to drive antenna with or received from antenna a single ended signal or a differential signal. For example, via 304a can be coupled to a signal plane (e.g., a ground plane through one or more of ground rings 214 and 216) and via 304b can be coupled to a circuit block or other element that provides a single-ended signal. Alternatively, each of vias 304 can be coupled to circuit blocks or other elements that provide components of a differential signal.
As shown in
As shown in
Moreover, coupling member 502 can be configured so as to allow for independent movement of substrate 204 and ground ring 402. For example, coupling member 502 can be formed out of a metal or other material that allows substrate 204 to slide with respect to ground ring 402. Thus, when IC device 500 is bent or otherwise stressed, coupling member 502 can be used ensure that ground ring 402 does not impose additional stresses on substrate 204. In a further embodiment, ground ring 402 can be made out of a flexible or malleable material to further reduce any stress it would impose on substrate 204.
In step 702, a first plurality of wirelessly enabled functional block is formed on a surface of an IC die. For example, in
In step 704, a second wirelessly enabled functional block is formed on a surface of a substrate. For example, in
In optional step 706, a coupling member is formed on the substrate. For example, in
In step 708, the IC die is coupled to the substrate. For example, in
In step 710, a ground ring configured to provide electromagnetic shielding is provided. For example, in
Conclusion
The embodiments of the invention have been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Rofougaran, Ahmadreza, Zhao, Sam Ziqun, Boers, Michael, Castaneda, Jesus, Behzad, Arya
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5629838, | Jun 24 1993 | Sun Microsystems, Inc | Apparatus for non-conductively interconnecting integrated circuits using half capacitors |
5877547, | Nov 17 1994 | GEMALTO SA | Active security device including an electronic memory |
5898909, | Sep 29 1995 | Kabushiki Kaisha Toshiba | Ultra high frequency radio communication apparatus |
6249242, | Aug 07 1998 | Hitachi, Ltd. | High-frequency transmitter-receiver apparatus for such an application as vehicle-onboard radar system |
6476330, | Jan 27 2000 | LAPIS SEMICONDUCTOR CO , LTD | Wiring substrate and process for producing the same |
6670692, | Oct 09 2002 | Silicon Integrated Systems Corp | Semiconductor chip with partially embedded decoupling capacitors |
6916719, | Jun 24 1993 | Sun Microsystems, Inc | Method and apparatus for non-conductively interconnecting integrated circuits |
6942157, | Sep 14 2001 | GLOBALFOUNDRIES U S INC | Data processing system and data processing method |
7405477, | Dec 01 2005 | TAHOE RESEARCH, LTD | Ball grid array package-to-board interconnect co-design apparatus |
7479841, | Feb 15 2005 | Northrop Grumman Systems Corporation | Transmission line to waveguide interconnect and method of forming same including a heat spreader |
7525199, | May 21 2004 | Oracle America, Inc | Packaging for proximity communication positioned integrated circuits |
7671806, | Dec 30 2004 | Robert Bosch GmbH | Antenna system for a radar transceiver |
7997501, | Jul 17 2007 | Murata Manufacturing Co., Ltd. | Wireless IC device and electronic apparatus |
8290446, | Dec 30 2006 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Integrated circuit/printed circuit board substrate structure and communications |
20020179721, | |||
20030100200, | |||
20040100781, | |||
20050075080, | |||
20050225481, | |||
20060176851, | |||
20060285480, | |||
20070065984, | |||
20070235864, | |||
20070267725, | |||
20070298730, | |||
20080122726, | |||
20080159243, | |||
20080181252, | |||
20080237843, | |||
20080252543, | |||
20080274712, | |||
20080315375, | |||
20080316106, | |||
20080316126, | |||
20080317402, | |||
20090002972, | |||
20090006675, | |||
20090072843, | |||
20090075428, | |||
20090125746, | |||
20090153427, | |||
20090227205, | |||
20090262290, | |||
20090266900, | |||
20090278760, | |||
20090289343, | |||
20090315797, | |||
20090318105, | |||
20100035370, | |||
20100060478, | |||
20100141536, | |||
20100219513, | |||
20110024889, | |||
20110316139, | |||
20120086114, | |||
20120212244, | |||
CN101095261, | |||
CN101212232, | |||
EP887861, | |||
EP932200, | |||
EP2012258, | |||
JP2008251768, | |||
KR1020090096526, | |||
WO2008065640, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 30 2011 | Broadcom Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Nov 11 2017 | 4 years fee payment window open |
May 11 2018 | 6 months grace period start (w surcharge) |
Nov 11 2018 | patent expiry (for year 4) |
Nov 11 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 11 2021 | 8 years fee payment window open |
May 11 2022 | 6 months grace period start (w surcharge) |
Nov 11 2022 | patent expiry (for year 8) |
Nov 11 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 11 2025 | 12 years fee payment window open |
May 11 2026 | 6 months grace period start (w surcharge) |
Nov 11 2026 | patent expiry (for year 12) |
Nov 11 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |