Methods and systems of hybrid positioning are provided for increasing the reliability and accuracy of location estimation. According to embodiments of the invention, the quality of reported locations from specific sources of location is assessed. satellite and non-satellite positioning systems provide initial positioning estimates. For each positioning system relevant information is collected and based on the collected information each system is assigned appropriate weight.

Patent
   8890746
Priority
Nov 03 2010
Filed
Nov 03 2011
Issued
Nov 18 2014
Expiry
Jul 04 2032
Extension
244 days
Assg.orig
Entity
Large
15
296
currently ok
41. A non-transitory computer-readable storage device containing a set of instructions that causes a mobile device to:
analyze signals from at least two of a satellite positioning system (“SPS”), a Wi-Fi positioning system, and a cell positioning system (“CPS”);
determine for each of the at least two of a SPS, Wi-Fi positioning system, and CPS, a corresponding initial position estimate of the device based on the analyzed signals; and
assess for each of the corresponding initial position estimates a quality of the initial position estimate;
select one of the corresponding initial position estimates of the device as a final position estimate of the device based on the assessed qualities of the initial position estimates;
wherein an elapsed time to obtain a fix (TTF) is used as an indicator of the quality of the initial position estimate of the SPS.
5. A method for determining a position of a device using signals from multiple positioning systems, the method comprising:
analyzing signals from at least two of a satellite positioning system (“SPS”), a Wi-Fi positioning system, and a cell positioning system (“CPS”);
determining for each of the at least two of the SPS, the Wi-Fi positioning system, and the CPS, a corresponding initial position estimate of the device and corresponding parameters;
assessing for each of the corresponding initial position estimates a quality of the initial position estimate; and
selecting one of the corresponding initial position estimates as a final position estimate of the device based on the assessed qualities of the initial position estimates:
wherein an elapsed time to obtain a fix (TTF) is used as an indicator of the quality of the initial position estimate of the SPS.
1. A method for determining a position of a device using signals from multiple positioning systems, the method comprising:
analyzing signals from at least two of a satellite positioning system (“SPS”), a Wi-Fi positioning system, and a cell positioning system (“CPS”);
determining for each of the at least two of the SPS, the Wi-Fi positioning system, and the CPS, a corresponding initial position estimate of the device and at least one corresponding parameter;
assessing for each of the corresponding initial position estimates a quality of the initial position estimate; and
selecting one of the corresponding initial position estimates as a final position estimate of the device based on the assessed qualities of the initial position estimates:
wherein an elapsed time after a fix (taf) is used as an indicator of the quality of the initial position estimate of the SPS.
40. A method for determining a position of a device using signals from multiple positioning systems, the method comprising:
analyzing signals from at least two of a satellite positioning system (“SPS”), a Wi-Fi positioning system, and a cell positioning system (“CPS”);
determining for each of the at least two of a SPS, Wi-Fi positioning system, and CPS, a corresponding initial position estimate of the device based on the analyzed signals;
assessing for each of the corresponding initial position estimates a quality of the initial position estimate;
combining the corresponding initial position estimates to determine a combined initial position estimate; and
selecting either one of the corresponding initial position estimates of the device or the combined initial position estimate as a final position estimate of the device based on the assessed qualities of the initial position estimates;
wherein an elapsed time to obtain a fix (TTF) is used as an indicator of the quality of the initial position estimate of the SPS.
3. A method for determining a position of a device using signals from multiple positioning systems, the method comprising:
analyzing signals from at least two of a satellite positioning system (“SPS”), a Wi-Fi positioning system, and a cell positioning system (“CPS”);
determining for each of the at least two of the SPS, the Wi-Fi positioning system, and the CPS, a corresponding initial position estimate of the device and corresponding parameters;
assessing for each of the corresponding initial position estimates a quality of the initial position estimate; and
selecting one of the corresponding initial position estimates as a final position estimate of the device based on the assessed qualities of the initial position estimates; and
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on at least one of the history of the previously reported positions, the at least one corresponding SPS parameter, the at least one corresponding Wi-Fi positioning system parameter, and at least one corresponding CPS parameter;
wherein a combination of an elapsed time to obtain a fix (TTF) and a taf is used as an indicator of the quality of the initial position estimate of the SPS.
2. The method according to claim 1, wherein each initial position estimate is determined solely from the signals of the corresponding positioning system.
4. The method according to claim 3, wherein the SPS initial position is cached for a period of time.
6. The method according to claim 5, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the TTF.
7. The method according to claim 5, wherein an elapsed time after a fix (taf) is used as an indicator of the quality of the initial position estimate of the SPS.
8. The method according to claim 7, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the taf.
9. The method according to claim 5, wherein a combination of a TTF and a taf is used as an indicator of the quality of the initial position estimate of the SPS.
10. The method according to claim 9, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the combination of a TTF and a taf.
11. The method according to claim 5, wherein a number of satellites in fix or in view is used as an indicator of the quality of the initial position estimate of the SPS.
12. The method according to claim 11, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the number of satellites in fix or in view.
13. The method according to claim 5, wherein a velocity of the device is used as an indicator of the quality of the initial position estimate of the SPS.
14. The method according to claim 13, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the velocity of the device.
15. The method according to claim 5, wherein an indicator of the quality of the initial position estimate of the SPS is based on a combination of at least two of a TTF, a taf, a number of satellites in fix or in view, and a velocity of the device.
16. The method according to claim 15, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the combination of at least two of the TTF, the taf, the number of satellites in fix or in view, and the velocity of the device.
17. The method according to claim 5, wherein an indicator of the quality of the initial position estimate of the SPS is based on variations in position estimates provided by the SPS.
18. The method according to claim 17, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the variations in position estimates provided by the SPS.
19. The method according to claim 5, wherein an indicator of the quality of the initial position estimate of the SPS is based on variations in velocity of the device.
20. The method according to claim 19, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the variations in velocity of the device.
21. The method according to claim 5, wherein an indicator of the quality of the initial position estimate of the SPS is based on variations in bearing.
22. The method according to claim 21, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the variations in bearing.
23. The method according to claim 5, wherein an indicator of the quality of the initial position estimate of the SPS is based on jumpiness of reported positions by the SPS.
24. The method according to claim 23, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the jumpiness of reported positions by the SPS.
25. The method according to claim 5, wherein an indicator of the quality of the initial position estimate of the Wi-Fi positioning system is based on a number of Wi-Fi access points in range of the device.
26. The method according to claim 25, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the number of Wi-Fi access points in range of the device.
27. The method according to claim 5, wherein an indicator of the quality of the initial position estimate of the Wi-Fi positioning system is based on a maximum observed power from Wi-Fi access points in range of the device.
28. The method according to claim 27, further comprising
switching to another one of the corresponding initial position estimates as a second final position estimate of the device based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the maximum observed power from Wi-Fi access points in range of the device.
29. The method according to claim 1, wherein selecting one of the corresponding initial position estimates of the device as a final position estimate of the device is according to the distance between the SPS-provided initial position estimate and the Wi-Fi positioning system initial position estimate.
30. The method according to claim 1, wherein selecting one of the corresponding initial position estimates of the device as a final position estimate of the device is according to at least one of a number of satellites used in a fix, a horizontal dilution of precision, a number of Wi-Fi access points used in Wi-Fi positioning, association information to a Wi-Fi access point, and history of previous location estimates.
31. The method according to claim 5, wherein an indicator of the quality of the initial position estimate of the SPS is based on SPS parameters including at least one of a TTF, a taf, a number of satellites in fix or in view, a velocity of the vehicle, a HDOP, variations of the TTF, variations of the taf, variations of the number of satellites in fix or in view, variations of the velocity of the vehicle, and variations of the HDOP.
32. The method according to claim 31, further comprising
turning on or off logic in the device that determines initial position estimates based on an indicator of a type of environment;
changing the scanning rate of the Wi-Fi positioning system and/or the CPS based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the SPS parameters.
33. The method according to claim 5, wherein an indicator of the quality of the initial position estimate of the Wi-Fi positioning system is based on Wi-Fi parameters including at least one of a number of access points in range of the device, a maximum power, statistics of power, quality of Wi-Fi positioning systems, variations of the number of access points in range of the device, variations of the maximum power, variations of the statistics of power, variations of the quality of the initial position estimate of the Wi-Fi positioning systems.
34. The method according to claim 33, further comprising
turning on or off logic in the device that determines initial position estimates based on an indicator of a type of environment;
changing the scanning rate of the Wi-Fi positioning system and/or the CPS based on an indicator of a type of environment;
wherein the indicator of the type of environment is based on the Wi-Fi positioning system parameters.
35. The method according to claim 1, wherein a scanning rate of each of the at least two of a SPS, a Wi-Fi positioning system, and a CPS is individually optimized according to at least one of an association information to a Wi-Fi access point, a velocity of the device, a number of Wi-Fi access points used in Wi-Fi positioning, and a number of satellites used in view.
36. The method according to claim 1, further comprising changing the scanning rate for the Wi-Fi positioning system or the CPS if the device is in one-shot or tracking mode.
37. The method according to claim 1, further comprising turning on or off the device based on the device being in one-shot or tracking mode.
38. The method according to claim 1, further comprising changing the scanning rate for the Wi-Fi positioning system or the CPS if the device is connected to an external power supply.
39. The method according to claim 1, further comprising:
evaluating the quality of the corresponding initial position estimate of a first positioning system of the at least two of a SPS, a Wi-Fi positioning system, and a CPS; and
selecting the corresponding initial position estimate of the first positioning system as the final position estimate of the device without evaluating the quality of the initial position estimate of a second positioning system of the at least two of a SPS, a Wi-Fi positioning system, and a CPS.

The present application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/409,643 filed Nov. 3, 2010, entitled “Method Of And System For Increasing The Reliability And Accuracy Of Location Estimation In A Hybrid Positioning System,” incorporated herein by reference in its entirety.

1. Field of the Invention

The invention generally relates to hybrid positioning and more specifically, describes new methods to assess the quality of a reported location from specific source of location to be used for hybrid positioning.

2. Description of the Related Art

In recent years the number of mobile computing devices has increased dramatically, creating the need for more advanced mobile and wireless services. Mobile email, walkie-talkie services, multi-player gaming and call-following are examples of how new applications are emerging for mobile devices. In addition, users are beginning to demand/seek applications that not only utilize their current location but also share that location information with others. Parents wish to keep track of their children, supervisors need to track the locations of the company's delivery vehicles, and a business traveler looks to find the nearest pharmacy to pick up a prescription. All of these examples require an individual to know his own current location or the location of someone else. To date, we all rely on asking for directions, calling someone to ask their whereabouts or having workers check-in from time to time to report their positions.

Location-based services are an emerging area of mobile applications that leverage the ability of new devices to calculate their current geographic positions and report them to a user or to a service. Examples of these services range from obtaining local weather, traffic updates and driving directions to child trackers, buddy finders and urban concierge services. These new location-sensitive devices rely on a variety of technologies that all use the same general concept. By measuring radio signals originating from known reference points, these devices can mathematically calculate the user's position relative to these reference points. Each of these approaches has its strengths and weaknesses depending upon the nature of the signals and measurements, and the positioning algorithms employed.

The Navstar Global Positioning System (“GPS”) operated by the US Government leverages about two-dozen orbiting satellites in medium-earth orbits as reference points. A user equipped with a GPS receiver can estimate his three-dimensional position (latitude, longitude, and altitude) anywhere at any time within several meters of the true location as long as the receiver can see enough of the sky to have four or more satellites “in view.” Cellular carriers have used signals originating from and received at cell towers to determine a user's or a mobile device's location. Assisted GPS (“AGPS”) is another model that combines both GPS and cellular tower techniques to estimate the locations of mobile users who may be indoors and must cope with attenuation of GPS signals on account of sky blockage. In this model, the cellular network attempts to help a GPS receiver improve its signal reception by transmitting information about the satellite positions, their clock offsets, a precise estimate of the current time, and a rough location of the user based on the location of cell towers. No distinction is made in what follows between GPS and AGPS.

All positioning systems using satellites as reference points are referred to herein as Satellite-based Positioning System (“SPS”). While GPS is the only operational SPS at this writing, other systems are under development or in planning A Russian system called GLONASS and a European system called Galileo may become operational in the next few years. All such systems are referred to herein as SPS. GPS, GLONASS and Galileo are all based on the same basic idea of trilateration, i.e., estimating a position on the basis of measurements of ranges to the satellites whose positions are known. In each case, the satellites transmit the values of certain parameters which allow the receiver to compute the satellite position at a specific instant. The ranges to satellites from a receiver are measured in terms of the transit times of the signals. These range measurements can contain a common bias due to the lack of synchronization between the satellite and receiver (user device) clocks, and are referred to as pseudoranges. The lack of synchronization between the satellite clock and the receiver (user device) clock can result in a difference between the receiver clock and the satellite clock, which is referred to as internal SPS receiver clock bias or receiver clock bias, here. In order to estimate a three dimensional position there is a need for four satellites to estimate receiver clock bias along with three dimensional measurements. Additional measurements from each satellite correspond to pseudorange rates in the form of Doppler frequency. References below to raw SPS measurements are intended generally to mean pseudoranges and Doppler frequency measurements. References to SPS data are intended generally to mean data broadcast by the satellites. References to an SPS equation are intended to mean a mathematical equation relating the measurements and data from a satellite to the position and velocity of an SPS receiver.

WLAN-based positioning is a technology which uses WLAN access points to determine the location of mobile users. Metro-wide WLAN-based positioning systems have been explored by several research labs. The most important research efforts in this area have been conducted by the PlaceLab (www.placelab.com, a project sponsored by Microsoft and Intel); the University of California, San Diego ActiveCampus project (ActiveCampus—Sustaining Educational Communities through Mobile Technology, technical report #CS2002-0714); and the MIT campus-wide location system. One example of a commercial metropolitan WLAN-based positioning system in the market at the time of this writing, is referred to herein as a WiFi Positioning System (“WPS”) and is a product of Skyhook Wireless, Inc.

Under one aspect of the invention, a method includes determining initial position estimates of a device using a satellite positioning system and also non-satellite positioning systems. The method, then, collects relevant information regarding each source of location and assigns weights for each source of location.

Under another aspect of the invention, a method for determining the position of a device in a hybrid positioning system is provided. The method comprises analyzing signals from at least two of a satellite positioning system (“SPS”), a Wi-Fi positioning system, and a cell positioning system (“CPS”), determining for each of the at least two of the SPS, Wi-Fi positioning system, and CPS, a corresponding initial position estimate of the device and at least one corresponding parameter, and selecting one of the corresponding initial position estimates as a final position estimate of the device based on at least one of a history of previously reported positions, the at least one corresponding SPS parameter, the at least one corresponding Wi-Fi positioning system parameter, and the at least one corresponding CPS parameter.

Under aspects of the invention, signals from a satellite positioning system, a Wi-Fi positioning system, and a cell positioning system are analyzed by the device. For each positioning system the device determines a corresponding initial position estimate and corresponding parameters and selects one of the corresponding initial position estimates as the final position of the device based the history of previously positions or the corresponding parameters.

FIG. 1 illustrates a mobile device receiving signals from SPS satellites, WPS beacons, and CPS towers.

FIG. 2 illustrates a process for collecting relevant parameters of each location system (SPS, WPS, and CPS) and use of an algorithm implemented in a mobile device for switching.

FIG. 3 illustrates a process for collecting relevant parameters of each location system (SPS, WPS, and CPS) and use of an algorithm implemented in a mobile device for switching and a reference database.

FIG. 4 illustrates a method of location estimation according to aspects of the present invention.

FIG. 5 illustrates a method of determining the type of environment and the quality of the location estimate for a satellite position system.

Embodiments of a hybrid positioning system are disclosed herein. A hybrid positioning system refers to a positioning system for device location, which itself consists of more than one individual positioning system (or “source of location”). The hybrid positioning system can be defined as a system using final positions of different sources of locations as initial positions. The hybrid positioning system can selects or combine the initial locations and generates a position estimate based on observations by more than one source of location. The hybrid system combines observations from several separate positioning systems and provides one position estimate of the device. Each individual positioning system is able to detect a set of signal information from each of the system's signal sources, herein called “observables”. Based on the possible observables of each reported location from different sources of location (i.e., different individual systems), the hybrid positioning system selects a source of location or a combination of different sources of locations and reports its final location to the user. In order to do so, embodiments of the invention use different observables at the receiver side to assess the quality of different sources of locations. This disclosure discusses methods to be used to select the best location. It also discusses methods to select the best location while reducing power consumption of a device. This can be achieved, for example, by changing the scanning rate of the device. Embodiments of the invention achieve better accuracy, better availability, faster time to fix (which includes time to first fix), and less power consumption for a device relative to known methods.

As mentioned above, implementations of the hybrid positioning system include more than one positioning system or generates position estimates based on more than one source of location. The individual positioning systems can use a method particular to that system to estimate a position of a device. In some implementations, a hybrid positioning system includes, or receives information from, at least two of the following three positioning systems: (1) a satellite positioning system, which uses signals transmitted by satellites to locate the device, (2) a WiFi positioning system, which uses signals transmitted by WiFi access points to locate the device, and/or (3) a cell positioning system, which uses signals transmitted by cell towers to locate the device.

FIG. 1 illustrates a scenario in which a mobile device receives signals from SPS satellites, WPS beacons, and CPS towers. The individual positioning systems within an embodiment of the hybrid positioning system are used in the hybrid decision-making when they satisfy certain performance criteria enforced by the hybrid positioning system. The hybrid positioning system can enforce the individual positioning systems criteria to require accuracy better than a given threshold value in order to consider positioning estimates from the individual positioning systems in the switching algorithm. For example, the hybrid positioning system may decide to only use satellite locations when the number of satellites in view exceeding a certain threshold and reject otherwise.

Embodiments of the invention enable a hybrid positioning system to select a reported location from a specific positioning system. The hybrid positioning system analyzes different observable parameters obtained by individual positioning systems and selects one of the estimated positions provided by the individual positioning systems. The hybrid positioning system also analyzes different observable parameters by individual positioning systems to make a decision regarding enabling or disabling one or more available positioning systems and/or disabling corresponding devices in order to reduce the overall system power consumption. The hybrid positioning system then decides on which positioning system to use and how to report the final location of the device. One goal of certain implementations of the invention is to increase performance of a hybrid positioning system. Better performance can mean better accuracy, better availability, faster time to fix, or better power consumption. Performance can also be referred to as a combination of two or more of the accuracy, availability, accuracy, time to fix, power consumption as well.

In one embodiment, the outcome of each source of location in certain circumstances is combined and the calculated location is reported to the user. Under certain implementations, the quality of reported location for each source of location in hybrid positioning system is evaluated. The quality of each source of location and its reported location is evaluated by analyzing the observable parameters at the receiver. In certain circumstances, a high quality source of location is the one that shows strong signals and good positioning accuracy. On the other hand, a bad quality source of location is the one that shows weak signals and poor positioning accuracy. It should be noted that for each source of location, the parameters to indicate the quality of positioning accuracy is different from other sources of location.

As mentioned above, a hybrid positioning system can include two or more of an SPS, WPS, and/or CPS. Each of these sources of locations might provide user locations independent of other sources of locations. For example, at one instance of time, the hybrid positioning system might have access to locations obtained from all three sources, i.e. SPS, WPS, and CPS. The hybrid positioning system can then analyze each source of location for the accuracy of its reported location. After assessing the quality of each source of location, the hybrid positioning system can select the best and most accurate location and report that to user as final location estimate. FIG. 2 illustrates the process of collecting relevant parameters of each location system (SPS, WPS, and CPS) and sending the parameters to an algorithm implemented in a mobile device.

In the above mentioned process, either source of reported location or the hybrid positioning system are enabled to cache the previous reported location for some interval of time. For example, a hybrid system might report a cached SPS location for 10 seconds before reporting no location or before switching to WPS location. If hybrid system decides that WPS location accuracy is much worse than SPS location, it can report the old SPS location for an extended interval of time, then start reporting WPS location.

Generally, the accuracy of the reported location deteriorates from SPS to WPS to CPS. One technique for the selection of sources of location estimates based on availability of better-known sources of location is known by those having ordinary skill in the art as a waterfall switching algorithm. Embodiments of the invention select between different sources of location estimates and report the best location according to a performance criterion rather than a predetermined preference. Thus, for example, a decision can be made to select and/or report position location estimate from a WPS even thought an estimate from an SPS location is available when the hybrid positioning system determined that the quality of the position estimate from the SPS is lower than that of the WPS.

Herein, are disclosed for each source of location (i.e., individual positioning system) parameters that are relevant to a switching algorithm that allows the hybrid positioning system to evaluate the quality of the reported location. The first source of location discussed herein is SPS, which relies on receiving satellite and measurement information from satellites at the receiver side. When started, an SPS listens for satellite signals, receives, and processes them. The received signals, along with some other information passed to the SPS (e.g., via a network) could enable the receiver to calculate its location. The principle used here is to know the exact location of the satellite and measure the distance of the satellite to the receiver. The receiver then solves a set of equations and calculates the location of the receiver. The quality of the reported location in SPS is usually assessed through Horizontal Dilution of Precision (HDOP.) The smaller the HDOP value, the better the positioning accuracy. Examples of SPS are GPS (Global Positioning System), Galileo, GLONASS, or Compass.

In one implementation, the elapsed time to obtain the fix (which is called time to fix or TTF) is used as an indicator of the quality of an estimated location. Specifically, in open environments and areas with good visibility to SPS satellites, fix comes quickly. On the other hand, in challenging environments for SPS devices, e.g., in a location with a limited view of the sky, fix might take some time to arrive. The hybrid position system can take advantage of this difference in TTF and assign a quality factor to SPS location. In addition, elapsed time after fix (TAF) can also be used as an indicator of the quality of an SPS estimated location. Time after fix (TAF) refers to the duration of time that a fix has been continuously provided without a gap in time. In general, in open environments and areas with good visibility to SPS satellites, an SPS device can maintain its fix. However, in challenging environments for SPS devices, the device might not be able to maintain the fix. This results in small TAF values and indicates that device is in challenging environment for SPS.

Furthermore, implementations of the invention combine the above metrics and use the result as an indicator of the quality of an SPS estimated location. The combination of TTF and TAF can be considered as another metric. The proposed metric looks for “gaps” in time for consecutive fixes. So if SPS fixes are obtained and lost frequently, system decides that the SPS device is in challenging environment for SPS. For example, if SPS fix is lost for 5 seconds and a fix is provided after five seconds, then TTF for the new fix is 5 s. If we get subsequent fixes for the next 120 s, then TAF is 120 s. The combination of TTF and TAF, 5 s to get the fix and continuous fixes for 120 s, would indicated that there is no gap in acquiring SPS fixes and the quality of SPS location is likely to be very good.

Secondary measures are also employed to estimate the quality of an SPS location estimate, as follows. The hybrid positioning system can use number of satellites used to calculate the SPS location as an indicator of type of environment. In open environments, the number of satellites used in a fix is generally large. On the other hand, in challenging environments for SPS, fixes are obtained with very few satellites, and fixes are maintained with few satellites. Also, the velocity of the device as determined by SPS can be used as a secondary measure of quality. In general, when the SPS velocity is relatively large, the SPS receiver is considered to be located in an open sky environment and its location is considered to be very accurate. For example, having SPS locations with reported velocity of 60 mph would indicate that the device is in driving mode and hence likely to be outdoors and not indoors. This would indicate that the quality of SPS-provided location is good. Finally, the number of satellites currently in view can be used as an indicator of the type of environment. In open sky environments, generally, an SPS can receive signals from different satellites, and the number of satellites in view is large. On the other hand, in challenging environments for SPS, the number of satellites in view is low. Note that number of satellites in view refers to number of satellites from which the SPS receiver receives signal. The velocity in this discussion can come from SPS or other sources of location such as Wi-Fi positioning system. It can also come from other sensors on the device or working with the device. For example, the velocity can come from speedometer of a car which is connected to the device. Same discussion applies to bearing.

There also exist another measure to estimate the quality of the provided SPS location. The hybrid positioning system can use the variations in positions provided by SPS in specified time interval to measure the quality of SPS location. For example, variations measures such as variance, standard deviation, range, interquartile range, etc. might be used to gauge the variation of SPS position for 30 seconds of reporting location. In addition, the hybrid positioning system can use variations of other parameters related to SPS position in order to assess the quality of SPS reported location. The changes should follow a logical order of changes for a device. For example, the hybrid positioning system can use variations in velocity, bearing, and number of satellites used to derive the SPS location which all are reported by SPS. In such cases, huge jumps and variations in velocity or bearing of the device would indicate that SPS-provided locations might be of lower quality and/or the environment has changed.

The hybrid positioning system can also use the variation of combination of all the above parameters in order to assess the quality of the SPS location. In open and non-challenging environments to SPS, usually SPS provided location moves slowly from one point to the other point. In mobile devices that are within such environments, these changes can also be correlated with velocity of the vehicle and the integrity of the provided solution can be checked. The displacements in subsequent locations are according to the signals received from satellites and they follow the physical rules governing the device. For example, for a device moving with 10 m/s velocity, the location of the device from one point in time to a second after that time should only change 10 m. Changes much larger than 10 m would indicate that either the location or the velocity reported by SPS and other positioning systems were not correct and should raise a flag for the hybrid positioning system. For such quality checks, the hybrid positioning system, based on realistic values for velocity and bearing and previous SPS location, can reject a new reported SPS location, if the new location is much further than anticipated location. This can provide integrity on the reported location and avoid large jumps in location which are not feasible.

For another example, in open environments, the SPS location rarely has huge jumps in velocity and bearing as they should continuously change. Also, the number of satellites used to derive SPS location does not exhibit large jumps. This results in small variations in velocity, bearing, and number of satellites. On the other hand, in challenging environments, we frequently observe jumps in number of satellites reported by SPS. Velocity and bearing also show large variations. These changes are also not in line with change of velocity of the device. Therefore, the variations in the reported positions by SPS are significantly higher compared to open sky environments. Another specific variation can be defined as the jumps in reported location. This “jumpiness” behavior is usually not observed in open sky and non-challenging environment to SPS. On the other hand, in challenging environment for SPS, the location might frequently and unusually jump from a place to another place.

The next source of location examined here is a WiFi positioning system (WPS). WiFi positioning generally relies on received signals from different WiFi beacon devices. After receiving the signals from a wireless beacon or WiFi access point (AP) device, it might calculate the received power for all visible devices. WiFi Positioning then compares this information against a database of known AP devices and decides on the location of the user. WiFi Positioning is generally less accurate than SPS, but it has been shown that in challenging environments for SPS, WiFi Positioning can be more accurate. Such challenging environments might include urban canyons (a canyon-like effect created by surrounding buildings) and indoor environments. This disclosure discusses the possibility of detecting such cases and the type of environment. Based on such a conclusion, the hybrid positioning system selects the best possible location when both SPS and WiFi positioning are available.

In one implementation, the number of observed wireless beacons (i.e. wireless access points) can be used as an indicator of type of environment. In general, a large number of wireless devices can indicate a challenging environment for SPS, such as indoors or in a dense urban environment. If an environment is challenging for SPS, it might take longer to acquire a fix, and the accuracy of the fix might be lower. This might indicate that although both WiFi Positioning and SPS locations are available, the WiFi Positioning location might be more accurate. For example, in dense urban environments, the number of observed wireless devices typically follows a distribution where its mean is much larger than distribution of number of APs in open sky environments. This observation could indicate that the device is located in a dense urban environment, and its SPS location might not be as accurate as a WPS location, or SPS takes longer than normal to acquire a fix.

In addition, the quality of the location estimate returned from a WPS can be used as an indicator of the quality of WiFi Positioning location relative to other individual systems. The relative quality of reported locations from a WPS and an SPS enables the hybrid system to make a better decision in reporting the final location. For example, a very good location obtained from WiFi Positioning could be more accurate than a location obtained from SPS with few satellites and poor quality of location.

Some implementations can use the maximum observed power from observed wireless devices as an indicator of the type of the environment that the device is working and relate it to the relative quality of SPS and the quality of WiFi Positioning location. Generally, when a wireless device is observed with high power, it could indicate that the receiver is located in indoor environments. Hence, it could be difficult to obtain a high quality SPS location, which translates to higher time to fix and lower accuracy. This could indicate that any SPS provided location does not represent the true location and suffers from large inaccuracies in the provided location.

Further still, the distance between an SPS-provided location and a WiFi Positioning-provided location can be used as a metric to select between two reported locations. Generally, when the two locations are very far from one another, it is assumed that the SPS location is more accurate due to the nature of SPS. Hence, the hybrid positioning system should report the SPS location as its final location.

In further embodiments of the invention, an aggregate of different parameters, namely, number of satellites used in a fix, number of parameters in view, horizontal dilution of precision “HDOP,” quality value of positioning in WiFi Positioning, inferred type of the environment the device is working in, number of WLAN devices used in WiFi Positioning, association information to an WLAN device, etc. are used to select the most accurate source of location. The aggregate parameters can indicate the type of environment in which the receiver resides. Thus, the system can use the aggregate information to select the best source among several location estimates.

Also disclosed herein are techniques to use the aforementioned information to reduce the power consumption of a mobile device, and, thereby, increase battery life. In certain implementations, several parameters, namely, the number of WLAN devices used in WiFi Positioning and the maximum power observed from WLAN devices, are used to infer that the mobile device is in a challenging environment for SPS. Thus, an SPS present in the mobile device is instructed to remain off or the powering-on of the SPS is delayed. Furthermore, the SPS can be powered-down if it does not acquire a fix within a designated period of time.

Such a technique can be employed when the mobile device starts a search for location. In traditional methods, the mobile device turns all devices on to find a location and presents the location result according to the waterfall switching algorithm. The techniques disclosed herein propose to use the above parameters to delay turning-on the SPS hardware, or avoid powering-on the SPS all together in certain situations, in order to reduce power consumption by the mobile device. Moreover, if powered on, the SPS hardware would be turned off if they do not acquire a fix within a predetermined period of time.

Similarly, other device and network information can be used to power-up or power-down portions of hardware or separate devices. Implementations of the invention propose to use association information between a WLAN AP and a mobile device, or any communication between a WiFi enabled device and a WLAN AP, as an indication of a high likelihood that the mobile device is indoor and/or is stationary. Such a determination can be used to delay powering-on SPS hardware in situations where it could not be completely confirmed that the device is indoors and/or is stationary. In the alternative, the SPS hardware can be left off or turned off if no location is acquired.

Further still, the techniques disclosed herein can be used to power-off SPS hardware within a mobile device when indications are detected that the mobile device is indoors or in a challenging environment for SPS. Similarly, the determination that the mobile device is indoors can be combined with the detection that the mobile device is not moving (or moving very slowly) to result in powering-off the SPS hardware. Therefore, when WPS hardware in the mobile device detects a low velocity, or that the user is stationary, the mobile device can power-off the SPS hardware to reduce power consumption. On the other hand, when the WPS hardware detects a moderate or higher velocity, the SPS hardware can be kept on.

The techniques disclosed herein also enable different methods to reduce the power consumption of mobile devices by dynamically changing the scan rate of the WiFi positioning system. In certain operating scenarios, increased scan rates do not improve the accuracy of position estimates of the system and only consume more power. Thus, some implementations determine if a scanning strategy is not optimized and adjust the scanning rate of the positioning engine to optimize the power consumption. In addition, some embodiments optimize the trade-off between positioning accuracy and power. Parameters such as association to a WLAN device, velocity of the mobile unit estimated from different sources of location, number of WLAN devices used in WiFi Positioning, maximum power observed from any WLAN device in range, and number of satellites in view can be used to change the scanning rate of the positioning algorithm.

Other parameters can also be used to optimize the scanning rate. Scanning rate is defined as the rate of scanning the surrounding environment and searching for related signals for each positioning system. Scanning rate is applicable to Wi-Fi Positioning Systems and CPS. SPS typical continuously search for signals from satellites and updates location estimate every second. However, Wi-Fi Positioning Systems can have different scanning rates, therefore the rate of turning on the wireless device and scanning the environment for near by wireless APs can be different from SPS. The scanning rate of the Wi-Fi Positioning System or CPS can be adjusted dynamically when the positioning algorithm switches from initial location state (one-shot location—for applications without a need to track the device) to tracking state (in which location is updated periodically). For example, in such scenarios, the scanning rate for initial location state is lowered for power saving, while in tracking mode, because the user is concerned about receiving the best possible location, the scanning rate is increased to improve the accuracy. In another implementation, the time during which a location request is active is used to optimize the scanning rate. For example, if a particular application calls for a location request at a known frequency (e.g., every 10 seconds), then the scanning rate of the positioning algorithm can be adjusted to scan and/or power-on particular location system only when a location estimate must be provided.

In certain implementations, the techniques for reducing power consumption to increase battery life are disabled when the mobile device detects that it is connected to an external power source.

According to alternative embodiments, FIG. 3 illustrates the process of collecting relevant parameters of each location system (SPS, WPS, and CPS), using a reference database that may perform the initial position determination, and sending different parameters and the initial positions returned from the database to an algorithm implemented in a mobile device.

FIG. 4 illustrates a flow chart of a method for position estimation of a mobile device according to aspects of the present disclosure. Signals from at least two positioning systems are analyzed in step 410. In the example illustrated in FIG. 4, signals from a satellite positioning system (“SPS”), a Wi-Fi positioning system, and a cell positioning system (“CPS”) are analyzed. The method determines a corresponding initial position estimate for the SPS (420), for the Wi-Fi positioning system (430), and/or for the CPS (440), based on the analyzed signals. The method in step 450 selects an initial position estimate as the final position estimate 460.

FIG. 5 illustrates a method for determining the type of environment using SPS parameters. When the device is in an open sky environment, there are no gaps between SPS fixes. For example, as seen at the top part of the figure, the TTF is between t=0 and t=5, and then the TAF is between t=5 and t=120. At the bottom part of the figure, there is an example of a challenging environment where there are a lot of instances where there is a fix and shortly after the fix is lost.

The following discussion is one example of a method for switching between different sources of locations (individual positioning systems). In this example, the hybrid positioning system is assumed to have access to both an SPS and a WPS. During certain periods of time, each source of location is capable of providing a location estimate. However, at times, due to blockage of signals, for example, one or both systems are unable to provide a location estimate.

In such an operating scenario, the hybrid positioning system assesses the quality of the location estimates from each source of location. If location estimates from the SPS and the WPS are both available, the hybrid positioning system evaluates the accuracy of the location estimate provided by the SPS. For example, this can include analyzing the SPS parameters described above. If the quality of the location estimate provided by the SPS is high, the hybrid positioning system reports the SPS location immediately and does not evaluate the quality of the location estimate of the WPS. Otherwise, if the quality of the location estimate from the SPS is low, the hybrid positioning system analyzes the parameters of the WPS and compares the quality determinations. If the WPS accuracy is above a given threshold while the accuracy of the SPS location estimate has fallen below a certain threshold, the hybrid positioning system reports the location provided by the WPS. In cases where the position estimates from both the SPS and the WPS, the hybrid positioning system reports the SPS provided location. Finally, if only one source of location is able to provide an estimated location, then the hybrid positioning system reports the location from the only available system.

In another illustrative implementation, a neural network can be used to select between the sources of location. This approach can be generalized when more sources are available. In the training phase of this approach, the hybrid positioning system is trained with a comprehensive set of data. Each data set includes an SPS location estimate and its associated parameters, a WPS location estimate and its associated parameters, a CPS location estimate and its associated parameters, and the best final decision that could be made for that case. In the training phase, the best final decision can be based on the known locations of the device when the training data set is assembled. The parameters associated with SPS and WPS sources of location are those described above. Parameters associated with CPS as a source of location include number of towers used for positioning, the relative power of the signals from the towers, the statistics of the signal power (e.g., variability, type of noise, etc.), and an error estimation associated with the towers, if available. After training the neural network with this dataset until it converges, the neural network determines a set of coefficients to be arithmetically added or multiplied to the inputs of the neural network. These coefficients can then be used in a receiver program to select between all possible options.

Another technique for deciding which source(s) of location to use in a particular situation includes considering the history of previous location estimates. For example, assuming that both WPS and SPS estimates are available at the present moment and both have been available for a certain period of time, the hybrid positioning system can elect to use the SPS locations estimate as the present location. This is so because long-acquired SPS location estimates are believed to have more accurate locations than recent obtained location estimates. In other words, the time after obtaining a first location estimate in a current run of a hybrid positioning system can directly affect the decision as to which source of location is the most reliable and/or accurate. If a receiver is able to track SPS location estimates for more than several minutes, the location accuracy of that source is deemed to increase as time passes.

As discussed in more detail above, there are several implementations of the techniques disclosed herein for determining the most reliable and/or most accurate source of location in a particular situation. In some embodiments of the invention, the hybrid positioning system can use different algorithms to select between different sources of location depending on how long the hybrid positioning system has been operational after initialization. For example, upon initialization and for a predetermined time thereafter, the system can employ the switching technique set forth above in Example 1, and at operational times greater than the predetermined time employ the switching technique set forth above in Example 2.

The techniques and systems disclosed herein may be implemented as a computer program product for use with a computer system or computerized electronic device. Such implementations may include a series of computer instructions, or logic, fixed either on a tangible medium, such as a computer readable medium (e.g., a diskette, CD-ROM, ROM, flash memory or other memory or fixed disk) or transmittable to a computer system or a device, via a modem or other interface device, such as a communications adapter connected to a network over a medium.

The medium may be either a tangible medium (e.g., optical or analog communications lines) or a medium implemented with wireless techniques (e.g., Wi-Fi, cellular, microwave, infrared or other transmission techniques). The series of computer instructions embodies at least part of the functionality described herein with respect to the system. Those skilled in the art should appreciate that such computer instructions can be written in a number of programming languages for use with many computer architectures or operating systems and under different platforms.

Furthermore, such instructions may be stored in any tangible memory device, such as semiconductor, magnetic, optical or other memory devices, and may be transmitted using any communications technology, such as optical, infrared, microwave, or other transmission technologies.

It is expected that such a computer program product may be distributed as a removable medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the network (e.g., the Internet or World Wide Web). Of course, some embodiments of the invention may be implemented as a combination of both software (e.g., a computer program product) and hardware. Still other embodiments of the invention are implemented as entirely hardware, or entirely software (e.g., a computer program product).

Moreover, the techniques and systems disclosed herein can be used with a variety of mobile devices. For example, mobile telephones, smart phones, personal digital assistants, satellite positioning units (e.g., GPS devices), and/or mobile computing devices capable of receiving the signals discussed herein can be used in implementations of the invention. The location estimate, expected error of the position estimate, and/or the probability values can be displayed on the mobile device and/or transmitted to other devices and/or computer systems. Further, it will be appreciated that the scope of the present invention is not limited to the above-described embodiments, but rather is defined by the appended claims; and that these claims will encompass modifications of and improvements to what has been described.

Alizadeh-Shabdiz, Farshid, Heidari, Mohammad A.

Patent Priority Assignee Title
10212254, Dec 30 2011 Method and apparatus for enabling mobile cluster computing
10390173, May 02 2016 Skyhook Wireless, Inc. Techniques for establishing and using associations between location profiles and beacon profiles
10459085, Nov 04 2016 Rockwell Collins, Inc. System and method for validating GPS altitude for low visibility approaches
10650621, Sep 13 2016 RPX Corporation Interfacing with a vehicular controller area network
10854018, Mar 14 2013 CORTLAND CAPITAL MARKET SERVICES LLC, AS ADMINISTRATIVE AGENT Determining an amount for a toll based on location data points provided by a computing device
11232655, Sep 13 2016 ioCurrents, Inc. System and method for interfacing with a vehicular controller area network
11589187, Sep 13 2019 TROVERLO, INC Passive sensor tracking using observations of Wi-Fi access points
11622234, Sep 13 2019 TROVERLO, INC Passive asset tracking using observations of Wi-Fi access points
11912290, Jan 28 2021 Toyota Jidosha Kabushiki Kaisha Self-position estimation accuracy verification method and self-position estimation system
11917488, Sep 13 2019 TROVERLO, INC Passive asset tracking using observations of pseudo Wi-Fi access points
11950170, Sep 13 2019 TROVERLO, INC. Passive sensor tracking using observations of Wi-Fi access points
9157753, Nov 06 2013 Alpine Electronics, Inc. Navigation system, recording medium recording computer program, and current position calculation method
9470531, May 24 2013 MORGAN STANLEY SENIOR FUNDING, INC Vehicle positioning system
9715017, Mar 06 2015 IPOSI, INC Using DME for terrestrial time transfer
9936348, May 02 2016 SKYHOOK WIRELESS, INC Techniques for establishing and using associations between location profiles and beacon profiles
Patent Priority Assignee Title
3881060,
4310726, Feb 04 1980 Bell Telephone Laboratories, Incorporated Method of identifying a calling station at a call terminating facility
4415771, Apr 03 1981 COOPER INDUSTRIES, INC , 1001 FANNIN, HOUSTON, TEXAS,,77002, A CORP OF OHIO Public alert and advisory systems
4757267, Jun 17 1987 MUREX LICENSING CORPORATION Telephone system for connecting a customer to a supplier of goods
4876550, Oct 08 1987 Allied-Signal Inc. Ridge regression signal processing for position-fix navigation systems
4924491, Nov 18 1988 AVAYA Inc Arrangement for obtaining information about abandoned calls
5043736, Jul 27 1990 INTRINSYC SOFTWARE INTERNATIONAL, INC Cellular position locating system
5095505, Feb 28 1990 MCI Communications Corp. Efficient flexible special service call processing
5119504, Jul 19 1990 CDC PROPRIETE INTELLECTUELLE Position aided subscriber unit for a satellite cellular system
5136636, Feb 07 1991 American Telephone and Telegraph Company Telephone connection to a nearby dealer
5161180, Oct 19 1990 Call interceptor for emergency systems
5235630, Apr 17 1991 AMCOM SOFTWARE, INC Emergency call station identification system and method
5235633, Dec 26 1991 EMSAT ADVANCED GEO-LOCATION TECHNOLOGY, LLC Cellular telephone system that uses position of a mobile unit to make call management decisions
5315636, Jun 28 1991 NETWORK ACCESS CORPORATION, A CORP OF TEXAS Personal telecommunications system
5334974, Feb 06 1992 SIMMS SECURITY CORPORATION Personal security system
5353023, Jun 27 1991 Mitsubishi Denki Kabushiki Kaisha Navigation system for cars
5379337, Aug 16 1991 Qwest Communications International Inc Method and system for providing emergency call service
5389935, Jun 13 1990 Thomson-CSF Automatic system for locating and identifying vehicles in distress
5414432, Mar 04 1992 CDC PROPRIETE INTELLECTUELLE Position locating transceiver
5420592, Apr 05 1993 Radix Technologies, Inc. Separated GPS sensor and processing system for remote GPS sensing and centralized ground station processing for remote mobile position and velocity determinations
5564121, Aug 18 1994 RPX CLEARINGHOUSE LLC Microcell layout having directional and omnidirectional antennas defining a rectilinear layout in a building
5936572, Feb 04 1994 Trimble Navigation Limited Portable hybrid location determination system
5940825, Oct 04 1996 International Business Machines Corporation; IBM Corporation Adaptive similarity searching in sequence databases
5943606, Sep 30 1996 Qualcomm Incorporated Determination of frequency offsets in communication systems
5999124, Apr 22 1998 SnapTrack, Inc, Satellite positioning system augmentation with wireless communication signals
6134448, Mar 05 1996 Matushita Electric Industrial Co., Ltd; Locus Corp. System for detecting positional information
6185427, Apr 15 1997 SnapTrack, Inc. Distributed satellite position system processing and application network
6192312, Mar 25 1999 HERE GLOBAL B V Position determining program and method
6262741, Mar 17 1998 Northrop Grumman Systems Corporation Tiling of object-based geographic information system (GIS)
6272405, Jul 08 1998 Fuji Jukogyo Kabushiki Kaisha Apparatus and method for guiding vehicle autonomously
6420999, Oct 26 2000 Qualcomm, Inc.; Qualcomm Incorporated Method and apparatus for determining an error estimate in a hybrid position determination system
6484034, Jul 24 2001 MAXELL HOLDINGS, LTD ; MAXELL, LTD Radio handset and position location system
6574557, Apr 27 2001 Pioneer Corporation Positioning error range setting apparatus, method, and navigation apparatus
6587692, Mar 30 2000 Lucent Technologies Inc. Location determination using weighted ridge regression
6625647, Jun 03 1997 Dynatrace LLC Method and apparatus for evaluating service to a user over the internet
6664925, May 02 2002 Microsoft Technology Licensing, LLC Method and system for determining the location of a mobile computer
6665658, Jan 13 2000 GOOGLE LLC System and method for automatically gathering dynamic content and resources on the world wide web by stimulating user interaction and managing session information
6674403, Sep 05 2001 TRAPEZE NETWORKS, INC Position detection and location tracking in a wireless network
6678611, Mar 25 1998 HERE GLOBAL B V Method and system for route calculation in a navigation application
6707422, Jul 02 1998 Snaptrack Incorporated Method and apparatus for measurement processing of satellite positioning system (SPS) signals
6725158, Jul 12 1999 SKYBITZ, INC System and method for fast acquisition reporting using communication satellite range measurement
6741188, Oct 22 1999 CORRINO HOLDINGS LLC System for dynamically pushing information to a user utilizing global positioning system
6754488, Mar 01 2002 JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT System and method for detecting and locating access points in a wireless network
6771211, Nov 13 2001 RPX Corporation Method, system and devices for positioning a receiver
6799049, Dec 19 2000 AT&T Intellectual Property I, L P System and method for tracking movement of a wireless device
6862524, Jul 03 2001 Trimble Navigation Limited Using location data to determine traffic and route information
6888811, Sep 24 2001 Google Technology Holdings LLC Communication system for location sensitive information and method therefor
6894645, Dec 11 2003 Nokia Siemens Networks Oy Position estimation
6928292, Mar 19 2001 MAXELL HOLDINGS, LTD ; MAXELL, LTD Mobile handset with position calculation function
6975266, Jun 17 2003 Qualcomm Incorporated Method and apparatus for locating position of a satellite signal receiver
6978023, Mar 25 2003 Sony Corporation; Sony Electronics Inc. Apparatus and method for location based wireless client authentication
6990351, Feb 19 2001 MAXELL HOLDINGS, LTD ; MAXELL, LTD Equipment for the calculation of mobile handset position
6990428, Jul 28 2003 Cisco Technology, Inc.; Cisco Technology, Inc Radiolocation using path loss data
7086089, May 20 2002 Extreme Networks, Inc Systems and methods for network security
7116988, Mar 16 2004 Cisco Technology, Inc Location of wireless nodes using signal strength weighting metric
7120449, Oct 15 1999 Nokia Technologies Oy Location determination in telecommunication network
7123928, Jul 21 2003 QUALCOMM INCORPORATED, A DELAWARE CORPORATION Method and apparatus for creating and using a base station almanac for position determination
7130642, Mar 03 2003 QUALCOMM INCORPORATED, A DELAWARE CORPORATION Method and apparatus for performing position determination in a wireless communication network with repeaters
7130646, Feb 14 2003 Qualcomm Incorporated Positioning with wireless local area networks and WLAN-aided global positioning systems
7151939, Feb 18 2003 Snaptrack Incorporated Method, apparatus, and machine-readable medium for providing indication of location service availability and the quality of available location services
7155239, May 28 2004 Symbol Technologies, Inc. Method and system for radio map filtering via adaptive clustering
7167715, May 17 2002 ARRIS ENTERPRISES LLC System and method for determining relative positioning in AD-HOC networks
7167716, Feb 08 2002 PANTECH CORPORATION Synchronous demodulation apparatus of base transceiver station in interim standard-2000 system
7221928, Oct 01 2003 AMERICAN TRAFFIC SOLUTIONS, INC Mobile emergency notification system
7236126, Dec 13 2004 Samsung Electronics Co., Ltd. AGPS system using NTP server and method for determining the location of a terminal using a NTP server
7242950, Feb 18 2003 SBC Properties LP Location determination using historical data
7250907, Jun 30 2003 Microsoft Technology Licensing, LLC System and methods for determining the location dynamics of a portable computing device
7254405, Nov 22 2004 Google Technology Holdings LLC System and method for providing location information to applications
7257411, Dec 27 2002 NTT DOCOMO INC Selective fusion location estimation (SELFLOC) for wireless access technologies
7277404, May 20 2002 Extreme Networks, Inc System and method for sensing wireless LAN activity
7299058, Sep 27 2004 MAXELL, LTD Position calculation method and storage medium storing a program therefor
7305245, Oct 29 2004 SKYHOOK WIRELESS, INC Location-based services that choose location algorithms based on number of detected access points within range of user device
7313402, Jun 24 2003 Verizon Patent and Licensing Inc System and method for evaluating accuracy of an automatic location identification system
7319878, Jun 18 2004 Qualcomm Incorporated Method and apparatus for determining location of a base station using a plurality of mobile stations in a wireless mobile network
7373154, Feb 25 2005 Symbol Technologies, LLC System and method for asset location in wireless networks
7389114, Feb 11 2004 AVAYA LLC Estimating the location of inexpensive wireless terminals by using signal strength measurements
7397424, Feb 03 2005 SKYHOOK HOLDING, INC System and method for enabling continuous geographic location estimation for wireless computing devices
7403762, Oct 29 2004 SKYHOOK WIRELESS, INC Method and system for building a location beacon database
7412246, Oct 06 2003 Symbol Technologies, LLC Method and system for improved wlan location
7414988, Oct 29 2004 SKYHOOK WIRELESS, INC Server for updating location beacon database
7426197, Nov 24 2004 QUALCOMM INCORPORATED, A CORP OF DELAWARE Method and apparatus for location determination of a wireless device within an environment
7433694, Oct 29 2004 SKYHOOK WIRELESS, INC Location beacon database
7433696, May 18 2004 Cisco Technology, Inc Wireless node location mechanism featuring definition of search region to optimize location computation
7440755, Jun 17 2003 CLUSTER LLC; TELEFONAKTIEBOLAGET LM ERICSSON PUBL System and method for locating a wireless local area network
7471954, Feb 24 2006 SKYHOOK WIRELESS, INC Methods and systems for estimating a user position in a WLAN positioning system based on user assigned access point locations
7474897, Feb 22 2005 SKYHOOK WIRELESS, INC Continuous data optimization by filtering and positioning systems
7479922, Mar 31 2005 Deere & Company Method and system for determining the location of a vehicle
7493127, Feb 22 2005 SKYHOOK WIRELESS, INC Continuous data optimization of new access points in positioning systems
7502620, Mar 04 2005 SKYHOOK WIRELESS, INC Encoding and compression of a location beacon database
7515578, May 08 2006 SKYHOOK WIRELESS, INC Estimation of position using WLAN access point radio propagation characteristics in a WLAN positioning system
7519372, Apr 03 2001 AT&T MOBILITY II LLC Methods and apparatus for mobile station location estimation
7522908, Apr 21 2003 Extreme Networks, Inc Systems and methods for wireless network site survey
7525484, Sep 09 1996 TracBeam LLC Gateway and hybrid solutions for wireless location
7545894, Mar 19 2004 Purdue Research Foundation Method and apparatus for detecting and processing global positioning system (GPS) signals
7551579, May 08 2006 SKYHOOK WIRELESS, INC Calculation of quality of wlan access point characterization for use in a wlan positioning system
7551929, May 08 2006 SKYHOOK WIRELESS, INC Estimation of speed and direction of travel in a WLAN positioning system using multiple position estimations
7587081, Sep 28 2005 Deere & Company; The University of Illinois Method for processing stereo vision data using image density
7595754, Dec 24 2007 Qualcomm Incorporated Methods, systems and apparatus for integrated wireless device location determination
7660588, Oct 17 2002 Qualcomm Incorporated Method and apparatus for improving radio location accuracy with measurements
7664511, Dec 12 2005 Nokia Corporation Mobile location method for WLAN-type systems
7672675, Sep 10 2001 Qualcomm Incorporated System of utilizing cell information to locate a wireless device
7683835, Aug 15 2006 Computer Associates Think, Inc.; Computer Associates Think, Inc System and method for locating wireless devices
7724612, Apr 20 2007 Qualcomm Incorporated System and method for providing aiding information to a satellite positioning system receiver over short-range wireless connections
7764231, Sep 09 1996 TracBeam, LLC Wireless location using multiple mobile station location techniques
7768963, Jul 07 2006 SKYHOOK WIRELESS, INC System and method of improving sampling of WLAN packet information to improve estimates of Doppler frequency of a WLAN positioning device
7769396, Oct 29 2004 SKYHOOK WIRELESS, INC ; SKHYOOK WIRELESS, INC Location-based services that choose location algorithms based on number of detected access points within range of user device
7818017, Oct 29 2004 Skyhook Wireless, Inc. Location-based services that choose location algorithms based on number of detected wireless signal stations within range of user device
7822427, Oct 06 2006 Sprint Spectrum LLC Method and system for using a wireless signal received via a repeater for location determination
7835754, May 08 2006 SKYHOOK WIRELESS, INC Estimation of speed and direction of travel in a WLAN positioning system
7848733, Dec 28 2006 SKYHOOK HOLDING, INC Emergency wireless location system including a location determining receiver
7853250, Apr 03 2003 Ozmo Licensing LLC Wireless intrusion detection system and method
7856209, Dec 08 2003 ARISTA NETWORKS, INC Method and system for location estimation in wireless networks
7856234, Nov 07 2006 SKYHOOK WIRELESS, INC System and method for estimating positioning error within a WLAN-based positioning system
7916661, May 08 2006 Skyhook Wireless, Inc. Estimation of position using WLAN access point radio propagation characteristics in a WLAN positioning system
7999742, Jun 06 2008 SKYHOOK WIRELESS, INC System and method for using a satellite positioning system to filter WLAN access points in a hybrid positioning system
8014788, May 08 2006 SKYHOOK WIRELESS, INC Estimation of speed of travel using the dynamic signal strength variation of multiple WLAN access points
8019357, Nov 07 2006 Skyhook Wireless, Inc. System and method for estimating positioning error within a WLAN-based positioning system
8022877, Jul 16 2009 SKYHOOK WIRELESS, INC Systems and methods for using a satellite positioning system to detect moved WLAN access points
8054219, Jun 06 2008 SKYHOOK WIRELESS, INC Systems and methods for determining position using a WLAN-PS estimated position as an initial position in a hybrid positioning system
8063820, Jul 16 2009 SKYHOOK WIRELESS, INC Methods and systems for determining location using a hybrid satellite and WLAN positioning system by selecting the best SPS measurements
8090386, May 08 2006 SKYHOOK WIRELESS, INC Estimation of speed and direction of travel in a WLAN positioning system
20010053999,
20020055956,
20020173317,
20030011511,
20030043073,
20030125045,
20030146835,
20030186679,
20030197645,
20030225893,
20040019679,
20040023669,
20040039520,
20040048640,
20040072577,
20040081133,
20040087317,
20040124977,
20040157624,
20040160909,
20040203847,
20040205234,
20050017898,
20050020266,
20050037775,
20050090266,
20050105600,
20050108306,
20050164710,
20050192024,
20050227711,
20050237967,
20050285783,
20060009235,
20060040640,
20060046709,
20060049982,
20060063560,
20060078122,
20060089157,
20060089160,
20060170591,
20060193258,
20060194568,
20060197704,
20060221918,
20070004428,
20070052583,
20070077945,
20070097511,
20070100955,
20070109184,
20070121560,
20070126635,
20070150516,
20070167174,
20070216540,
20070217374,
20070232892,
20070244631,
20070268177,
20070279281,
20070286213,
20070298761,
20080004888,
20080008117,
20080008118,
20080008119,
20080008121,
20080032706,
20080033646,
20080079633,
20080111737,
20080133336,
20080137626,
20080158053,
20080176583,
20080214192,
20080234533,
20080248741,
20080248808,
20080248809,
20080261615,
20080291086,
20090002237,
20090017841,
20090042557,
20090075672,
20090103503,
20090121927,
20090149197,
20090161806,
20090168843,
20090175189,
20090181695,
20090187983,
20090189810,
20090192709,
20090196267,
20090231191,
20090251364,
20090252138,
20090303112,
20090303113,
20090303114,
20090303115,
20090303119,
20090303121,
20090310585,
20090312035,
20090312036,
20100039323,
20100052983,
20100195632,
20100309051,
20110021207,
20110035420,
20110045840,
20110074626,
20110080317,
20110080318,
20110164522,
20110235532,
20110235623,
20110287783,
20110298659,
20110298660,
20110298663,
20110298664,
20110306357,
20110306358,
20110306359,
20110306360,
20110306361,
20120007775,
20120021759,
20120100872,
20120108260,
20120112958,
20120196621,
20120280866,
CA2056203,
EP346461,
EP493896,
EP592560,
EP762363,
EP776485,
EP810449,
EP860710,
EP1359714,
GB2180425,
GB2291300,
JP3235562,
JP4035345,
JP6003431,
JP6148308,
JP62284277,
WO3021851,
WO4002185,
WO2005004527,
WO2008006077,
WO2009149417,
WO2010005731,
WO2011008613,
WO2011041298,
WO2011041430,
WO2012061595,
WO9202105,
WO9514335,
WO9523981,
WO9620542,
WO9723785,
WO9728455,
WO9810538,
WO9825157,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 03 2011Skyhook Wireless, Inc.(assignment on the face of the patent)
Jan 13 2012ALIDAZEH-SHABDIZ, FARSHIDSKYHOOK WIRELESS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0275420501 pdf
Jan 13 2012HEIDARI, MOHAMMAD A SKYHOOK WIRELESS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0275420501 pdf
Date Maintenance Fee Events
May 03 2018M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
May 18 2022M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Nov 18 20174 years fee payment window open
May 18 20186 months grace period start (w surcharge)
Nov 18 2018patent expiry (for year 4)
Nov 18 20202 years to revive unintentionally abandoned end. (for year 4)
Nov 18 20218 years fee payment window open
May 18 20226 months grace period start (w surcharge)
Nov 18 2022patent expiry (for year 8)
Nov 18 20242 years to revive unintentionally abandoned end. (for year 8)
Nov 18 202512 years fee payment window open
May 18 20266 months grace period start (w surcharge)
Nov 18 2026patent expiry (for year 12)
Nov 18 20282 years to revive unintentionally abandoned end. (for year 12)