An intrusion detection system (ids) is enhanced to operate in a cluster of such systems, and IDSs organized into a cluster cooperate to exchange IP reputation influencing events information between or among the cooperating systems in real-time to enhance overall system response time and to prevent otherwise hidden attacks from damaging network resources. An ids includes an IP reputation analytics engine to analyze new and existing events, correlate information, and to raise potential alerts. The IP reputation analytics engines may implement an algorithm, such as a pattern matching algorithm, a continuous data mining algorithm, or the like, to facilitate this operation. Clustering ids endpoints to share IP reputation influencing events, using the cluster-wide view to determine IP reputation, and feeding the cluster-wide view back to the ids endpoints, provides for enhanced and early detection of threats that is much more reliable and scalable as compared to prior art techniques.
|
25. intrusion detection system (ids) apparatus, comprising:
a processor;
computer memory holding computer program instructions that when executed by the processor perform a method comprising:
subscribing into a cluster of ids endpoints;
receiving IP reputation influencing information from at least some of the intrusion detection systems in the cluster;
processing, using an analytics engine, event information local to the apparatus and at least some of the IP reputation influencing information received from at least one other intrusion detection system in the cluster;
based on the processing, determining that given IP reputation data is indicative of a threat to the computer network, the given IP reputation data representing a cluster-wide view of IP reputation based at least in part on the shared IP reputation influencing information.
1. A method for threat detection in a computer network, comprising:
organizing into a cluster a set of intrusion detection systems;
sharing IP reputation influencing information between or among at least some of the intrusion detection systems in the cluster;
at a particular intrusion detection system in the cluster, processing event information local to the particular intrusion detection system and at least some of the IP reputation influencing information received from at least one other intrusion detection system in the cluster, wherein the processing is carried out in software executing in a hardware element;
based on the processing, determining that given IP reputation data is indicative of a threat to the computer network, the given IP reputation data representing a cluster-wide view of IP reputation based at least in part on the shared IP reputation influencing information.
9. Apparatus, comprising:
a processor;
computer memory holding computer program instructions that when executed by the processor perform a method for threat detection in a computer network, the method operative within a set of intrusion detection systems that are organized into a cluster, the method comprising:
receiving IP reputation influencing information from at least some of the intrusion detection systems in the cluster;
processing event information local to the apparatus and at least some of the IP reputation influencing information received from at least one other intrusion detection system in the cluster;
based on the processing, determining that given IP reputation data is indicative of a threat to the computer network, the given IP reputation data representing a cluster-wide view of IP reputation based at least in part on the shared IP reputation influencing information.
17. A computer program product in a non-transitory computer readable medium, the computer program product holding computer program instructions which, when executed by a data processing system, perform a method operative within a set of intrusion detection systems that are organized into a cluster, the method comprising:
receiving IP reputation influencing information from at least some of the intrusion detection systems in the cluster;
processing event information local to the data processing system and at least some of the IP reputation influencing information received from at least one other intrusion detection system in the cluster;
based on the processing, determining that given IP reputation data is indicative of a threat to the computer network, the given IP reputation data representing a cluster-wide view of IP reputation based at least in part on the shared IP reputation influencing information.
2. The method as described in
3. The method as described in
6. The method as described in
7. The method as described in
8. The method as described in
receiving a request for IP reputation data from an intrusion detection system;
determining whether the intrusion detection system that issued the request is a member of the cluster; and
if the intrusion detection system that issued the request is a member of the cluster, providing the IP reputation data.
10. The apparatus as described in
11. The apparatus as described in
12. The apparatus as described in
14. The apparatus as described in
15. The apparatus as described in
16. The apparatus as described in
receiving a request for IP reputation data from an intrusion detection system;
determining whether the intrusion detection system that issued the request is a member of the cluster; and
if the intrusion detection system that issued the request is a member of the cluster, providing the IP reputation data.
18. The computer program product as described in
19. The computer program product as described in
20. The computer program product as described in
21. The computer program product as described in
22. The computer program product as described in
23. The apparatus as described in
24. The apparatus as described in
receiving a request for IP reputation data from an intrusion detection system;
determining whether the intrusion detection system that issued the request is a member of the cluster; and
if the intrusion detection system that issued the request is a member of the cluster, providing the IP reputation data.
|
1. Technical Field
This disclosure relates generally to security systems for computer networks.
2. Background of the Related Art
Computers are subject to many kinds of attacks, for example, attacks that are mounted by parties commonly known as hackers. A vandal such as a hacker may attempt to intrude upon a computer to steal information in an act of industrial espionage, or to implant a virus, or to alter records to the detriment or benefit of someone's interests or reputation. To combat such activities, computers may be monitored and protected by intrusion detection systems. An Intrusion Detection System (IDS) is a device or system that monitors a computer network and identifies potential threats.
Internet Protocol (IP) address “reputation” is an important concept in intrusion detection, and it is known that IDS software may be alerted about certain suspect IP addresses by an IP reputation service In particular, an IP reputation service hosts information associated with various IP addresses that have been identified to host suspect content including, without limitation, malware, phishing content, and/or spam. While an IDS typically does act to mitigate threats, the information provided by the IP reputation service provides additional capability to allow the IDS to block or warn end-users that particular IP addresses that are serving a request have been identified to host such content. It allows IDS software to be alerted by an IP reputation service when a suspect IP address (or URL) needs to have a “warning rating.” For example, an IP address might have been the source of spam, or malware, or it may have been part of a botnet system or involved in some sort of other attack. The IP reputation service gives a warning rating to the IP address (or URL) which, in turn, warns its clients (typically IDS systems) to be careful with that IP address or URL.
A limitation of such IP reputation systems currently in practice, however, is that they are centrally managed and distributed. Usually, a vendor of the IDS software watches for suspect IP addresses and warns its IDS software clients about those reputation problems through a proprietary notification service. The use of a single central system, however, is a slow way to discover and propagate important IP reputation information. Indeed, with such centralized approaches, many client systems may be unnecessarily affected by rogue sources while waiting to be updated. For example, if a problem detected by an intrusion detection system in a network is not propagated to other IDSs in the same network immediately, there is a potential opening for an attack vector to get through to another device, perhaps using a different technique. This is particularly worrisome given the increasing incidents of Advanced Persistent Threats (APTs), where attacks to any particular network target are purposely designed to be “lightweight” and hard to detect. Indeed, often it is the analysis and combining of these “lightweight” events, potentially in real-time, that can provide a clue to true network vulnerabilities.
One known solution to this problem is for an intrusion detection system in the network to raise an alert to a Security Incident and Event Management (SIEM) system, which provides a central “command and control” style console; this approach, however, relies on human intervention to decide if multiple events constitute an organized attack. In most cases, these events are normally reviewed well after-the-fact, and it is very difficult for manual analysis to pick up a pattern, especially given that APTs raise only very low level events in IDSs.
An intrusion detection system (IDS) is enhanced to operate in a cluster of such systems, and IDSs organized into a cluster cooperate to exchange IP reputation influencing events information between or among the cooperating systems in real-time, or near real-time, to enhance overall system response time and to prevent otherwise hidden attacks (such as, without limitation, APTs) from damaging network resources. Preferably, an IDS includes an IP reputation analytics engine to analyze new and existing events (including, without limitation, information received from other IDS in the cluster), correlate information, and to raise potential alerts. The IP reputation analytics engines may implement an algorithm, such as a pattern matching algorithm, a continuous data mining algorithm, or the like, to facilitate this operation.
In a representative embodiment, a set of intrusion detection system endpoints are located in or across a computer network and configured into a cluster. Clustering IDS endpoints to share IP reputation influencing events, using the cluster-wide view to determine IP reputation, and feeding the cluster-wide view back to the IDS endpoints, provides for enhanced and early detection of threats that is much more reliable and scalable as compared to prior art techniques.
According to a more specific embodiment, an intrusion detection system endpoint is configured to be member of a cluster of cooperating detection systems. Preferably, the intrusion detection system is configured to define the data it will share with other IDSs, and what data it wants to receive. A “publish-subscribe” or similar mechanism may be used to register an IDS into the cluster and to facilitate data sharing. Once the cluster is configured, each IDS operates autonomously, but IP reputation influencing information is shared according to the de facto sharing agreement that is enforced by the publish-subscribe mechanism. As IP reputation influencing events are generated, an analytics engine (e.g., operating in a particular IDS) can make a determination regarding the reputation that will be associated with an IP address. This determination may be based on various factors, such as current level of the activity, the last date of the activity, the type of activity observed, and an associated IP address or URL (e.g., source or destination, or both). The IDS analytics engine takes this information and analyzes it, preferably together with similar information received from one or more other IDSs in the cluster. Based on the analysis, and optionally as defined in a security policy, an effective “cluster-wide” determination thus is made regarding the reputation that will be associated with the IP address. This notification may then be sent to an IP reputation service. From there, it can be analyzed, correlated with other information, and rated accordingly. This information and other IP reputation may then be forwarded back to the cluster, where it is maintained.
Thus, according to this disclosure, a cooperating cluster of intrusion detection systems share IP reputation information with each other, preferably on a local level. An IDS configured according to this disclosure includes a mechanism to distribute IP reputation information to other members of the cluster, and it may include an IP reputation analytics engine that resolves innocuous events in a received event stream into data about a potential attack that should be acted upon.
The foregoing has outlined some of the more pertinent features of the invention. These features should be construed to be merely illustrative. Many other beneficial results can be attained by applying the disclosed invention in a different manner or by modifying the invention as will be described.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
With reference now to the drawings and in particular with reference to
With reference now to the drawings,
In the depicted example, server 104 and server 106 are connected to network 102 along with storage unit 108. In addition, clients 110, 112, and 114 are also connected to network 102. These clients 110, 112, and 114 may be, for example, personal computers, network computers, or the like. In the depicted example, server 104 provides data, such as boot files, operating system images, and applications to the clients 110, 112, and 114. Clients 110, 112, and 114 are clients to server 104 in the depicted example. Distributed data processing system 100 may include additional servers, clients, and other devices not shown.
In the depicted example, distributed data processing system 100 is the Internet with network 102 representing a worldwide collection of networks and gateways that use the Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate with one another. At the heart of the Internet is a backbone of high-speed data communication lines between major nodes or host computers, consisting of thousands of commercial, governmental, educational and other computer systems that route data and messages. Of course, the distributed data processing system 100 may also be implemented to include a number of different types of networks, such as for example, an intranet, a local area network (LAN), a wide area network (WAN), or the like. As stated above,
With reference now to
Processor unit 204 serves to execute instructions for software that may be loaded into memory 206. Processor unit 204 may be a set of one or more processors or may be a multi-processor core, depending on the particular implementation. Further, processor unit 204 may be implemented using one or more heterogeneous processor systems in which a main processor is present with secondary processors on a single chip. As another illustrative example, processor unit 204 may be a symmetric multi-processor system containing multiple processors of the same type.
Memory 206 and persistent storage 208 are examples of storage devices. A storage device is any piece of hardware that is capable of storing information either on a temporary basis and/or a permanent basis. Memory 206, in these examples, may be, for example, a random access memory or any other suitable volatile or non-volatile storage device. Persistent storage 208 may take various forms depending on the particular implementation. For example, persistent storage 208 may contain one or more components or devices. For example, persistent storage 208 may be a hard drive, a flash memory, a rewritable optical disk, a rewritable magnetic tape, or some combination of the above. The media used by persistent storage 208 also may be removable. For example, a removable hard drive may be used for persistent storage 208.
Communications unit 210, in these examples, provides for communications with other data processing systems or devices. In these examples, communications unit 210 is a network interface card. Communications unit 210 may provide communications through the use of either or both physical and wireless communications links.
Input/output unit 212 allows for input and output of data with other devices that may be connected to data processing system 200. For example, input/output unit 212 may provide a connection for user input through a keyboard and mouse. Further, input/output unit 212 may send output to a printer. Display 214 provides a mechanism to display information to a user.
Instructions for the operating system and applications or programs are located on persistent storage 208. These instructions may be loaded into memory 206 for execution by processor unit 204. The processes of the different embodiments may be performed by processor unit 204 using computer implemented instructions, which may be located in a memory, such as memory 206. These instructions are referred to as program code, computer-usable program code, or computer-readable program code that may be read and executed by a processor in processor unit 204. The program code in the different embodiments may be embodied on different physical or tangible computer-readable media, such as memory 206 or persistent storage 208.
Program code 216 is located in a functional form on computer-readable media 218 that is selectively removable and may be loaded onto or transferred to data processing system 200 for execution by processor unit 204. Program code 216 and computer-readable media 218 form computer program product 220 in these examples. In one example, computer-readable media 218 may be in a tangible form, such as, for example, an optical or magnetic disc that is inserted or placed into a drive or other device that is part of persistent storage 208 for transfer onto a storage device, such as a hard drive that is part of persistent storage 208. In a tangible form, computer-readable media 218 also may take the form of a persistent storage, such as a hard drive, a thumb drive, or a flash memory that is connected to data processing system 200. The tangible form of computer-readable media 218 is also referred to as computer-recordable storage media. In some instances, computer-recordable media 218 may not be removable.
Alternatively, program code 216 may be transferred to data processing system 200 from computer-readable media 218 through a communications link to communications unit 210 and/or through a connection to input/output unit 212. The communications link and/or the connection may be physical or wireless in the illustrative examples. The computer-readable media also may take the form of non-tangible media, such as communications links or wireless transmissions containing the program code. The different components illustrated for data processing system 200 are not meant to provide architectural limitations to the manner in which different embodiments may be implemented. The different illustrative embodiments may be implemented in a data processing system including components in addition to or in place of those illustrated for data processing system 200. Other components shown in
In another example, a bus system may be used to implement communications fabric 202 and may be comprised of one or more buses, such as a system bus or an input/output bus. Of course, the bus system may be implemented using any suitable type of architecture that provides for a transfer of data between different components or devices attached to the bus system. Additionally, a communications unit may include one or more devices used to transmit and receive data, such as a modem or a network adapter. Further, a memory may be, for example, memory 206 or a cache such as found in an interface and memory controller hub that may be present in communications fabric 202.
Computer program code for carrying out operations of the present invention may be written in any combination of one or more programming languages, including an object-oriented programming language such as Java™, Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Those of ordinary skill in the art will appreciate that the hardware in
As will be seen, the techniques described herein may operate in conjunction within the standard client-server paradigm such as illustrated in
The intrusion detection system of
An IDS as described herein may comprise various hardware and/or software components and be configured as one or more of: a system, a machine, an appliance, a device, a program, a set of programs, a process, a set of processes, one or more execution threads or instances, associated data, and the combinations thereof. IDS functionality may be integrated and co-located, or discrete and separate.
With the above as background, the techniques of this disclosure are now described.
Cooperative Intrusion Detection for IP Reputation-Based Security
As described above, according to this disclosure, an intrusion detection system (e.g., an IDS endpoint in an enterprise network) is configured to be member of a cluster of cooperating detection systems. An IDS cluster comprises two or more (and, typically, many more) intrusion detection systems, however each particular IDS is configured.
Although a dedicated controller may be used, preferably any IDS in the cluster may act as a “leader” of the cluster and be responsible for managing the member subscriptions to the cluster. A leader election algorithm may be used for this purpose, and the individual IDSs in the cluster may communicate with one another via a communication mechanism such as Spread. In the alternative, multiple IDS instances in the cluster may simply operate concurrently.
In a preferred embodiment, and with reference to
In addition to the subscriber module, the IDS 800 also includes one or more analytics engines 806. In particular, as IP reputation influencing events are generated, an analytics engine 806 can make a determination regarding the reputation that will be associated with an IP address. This determination may be based on various factors, such as current level of the activity, the last date of the activity, the type of activity observed, and an associated IP address or URL (e.g., source or destination, or both). The IDS analytics engine 806 takes this information and analyzes it, preferably together with similar information received from at least one or more other IDSs in the cluster. Based on the analysis, and optionally as defined in a security policy, an effective “cluster-wide” determination thus is made regarding the reputation that will be associated with the IP address. This notification may then be sent to an IP reputation service as described above and illustrated in
In addition to the components 802, 804 and 806, the IDS may include the basic functionality (or portions thereof) as described above with respect to
Thus, according to this disclosure, a cooperating set of intrusion detection systems share IP reputation information with each other. An IDS configured according to this disclosure includes a mechanism (e.g., publish-subscribe mechanism) to distribute IP reputation information to other members of the cluster, and it may include an IP reputation analytics engine that resolves innocuous events in a received event stream into data about a potential attack that should be acted upon.
By clustering IDS instances and using publish-subscribe (or other equivalent) communication mechanisms, immediate exchange of IP reputation information among the cluster members is facilitated. Of course, the number of members is not limited. In this manner, if the intrusion detection system at the perimeter of the organization's network detects some sort of event, it can warn other IDSs in the local cluster. In a more concrete example, the initial event may be an attack with a known CVE signature, and the IDS then passes that data to other subscribed IDSs in the cluster.
When the data is received at an IDS, preferably it is immediately passed to the IP reputation analytics engine that then attempts to correlate this incident against any event it has recorded itself, or that has been previously passed by other IDSs in the same cluster.
Without limitation, the IDS may act on the output from its analytics engine in one or more ways. In one embodiment, the IDS's operating mode is changed to heightened alerting or blocking; in an alternative embodiment, the IDS creates a new alert to send to one or more other cluster subscribers, or to a central IP reputation service.
The following provides additional details regarding the functionality of the IDS of this disclosure.
As described above, the first step is to configure the cluster of IDS instances. The “publish-subscribe” model is illustrated in
The particular subscription-notification mechanism may be of any convenient type, depending on implementation. In an exemplary embodiment, the subscription-notification mechanisms specified by WS-Notification can be utilized. WS-Notification provides an open standard for Web services communication using a topic-based publish/subscribe messaging pattern. Although the specific WS-Notification will depend on the cluster implementation details, in one example embodiment the notification service may be implemented using IBM® WebSphere® Application Server V7.0, which implements WS-Notification based on the Java API for XML-based Web Services (JAX-WS), known as Version 7.0 WS-Notification.
In the alternative, the subscription-notification mechanism specified in the OGSI (Open Grid Services Infrastructure) can be used. Other publish-subscribe (pub-sub) mechanisms that may be used for this purpose include, without limitation, WSP, available from Microsoft®.
Generalizing, and as seen in
Using a pub-sub model of this type, a particular IDS instance subscribes to updates from one or more other IDSs in the cluster. This allows each intrusion detection system to receive desired notifications. The notifications may be quite varied, and they may be provided in any format. Thus, any Topic within the meaning of the WS-Notification specification may be implemented. The notifications provide the subscribing IDS with up-to-date and time information. Thus, without limitation, the notifications may be of any nature and type. They may be coarse-grained or fine-grained, and they may be provided periodically (every hour, minute, or seconds) or asynchronously (as particular events occur), or some combination thereof. The notifications may be resource-specific. Of course, all of these examples are merely for illustrative purposes and should not be considered limiting.
An intrusion detection system (such as illustrated in
An intrusion detection system (such as illustrated in
The following provides additional details regarding a representative analytics engine that uses pattern matching. Generally, pattern matching may involve matching across one or more criteria including, without limitation, source IP address, destination IP address, CVE, rogue IP address/URL, operating system, and the like.
The analytics engine may output IP reputation data, or it may further process that data and generate threat indication data.
The analytics engine may also implement data mining techniques. These techniques may supplement the pattern matching, or they may be used in lieu of the pattern matching. Typically, data mining is used to supplement the pattern matching, as data mining algorithms typically involve analysis of large amounts of data. Indeed, a continuous data mining algorithm may involve a number of different algorithms including, without limitation, anomaly detection, clustering, and classification. Some non-limiting examples that might trigger a positive threat detection in a data mining sample are as follows: an access event at a time and from a source that would be considered unusual (e.g., a file system access outside of normal work hours, and from an external IP address); detection of protocols that are currently not used within the environment (e.g., an NFS client request when NFS is not running in the environment); detection of a single password failure attempt, without an immediate successful password event, with the same user name four times over the last 30 days (this might indicate that someone is trying a slow “brute force” attack against an account and is allowing the user to login between attempts to clear any password failure history); three (3) connection attempts to an external un-allowed IP address range, using different port numbers, from different servers within the core network (e.g., with these attempts have been spread over a two month period and have been detected by other IDSs in each case). Of course, there may be many other types of events.
As a variant embodiment, an IP Reputation analytics engine (especially in the data mining scenario) may be executed in association with an SIEM system.
Typically, each IDS cluster comprises IDS instances from a same vendor, but this is not a limitation. If desired, the use of IP reputation event forwarding and the use of an analytics engine as described herein may be extended beyond a cluster of IDS's from the same vendor. For example, a large multinational Company that has acquired another company may have two vendors IDSs within its network and would like to extend the cluster across both IDS technologies. In this case, two additional requirements may be implemented. In particular, IP reputation event information would benefit from being standardized, perhaps using the Common Vulnerability Reporting Format (CVRF), which could be tailored to provide IP reputation rating and associated data. In this alternative embodiment, before a third party IDS instance might subscribe to events, it may be necessary or desirable that the format of the message protocols be standardized. As described above, the basis of the notification could use a system such as that defined by the WS-Notification family of standards. All of these variants are within the scope of this disclosure.
The subject matter described herein has many advantages. Clustering IDS endpoints to share IP reputation influencing events, using the cluster-wide view to determine IP reputation, and feeding the cluster-wide view back to the IDS endpoints, provides for enhanced and early detection of threats (including Advanced Persistent Threats) that is much more reliable and scalable as compared to prior art techniques. The techniques described herein enable threat information to be shared in real-time or near real-time. Systems are better protected. The described approach further eliminates the need for central systems to be involved, thereby immediately reducing the time delay at which IP reputation information can be distributed and analyzed.
The specific details of any particular pattern matching and/or data mining algorithms are not within the scope of this disclosure as any such algorithms may be used within the cluster.
The functionality described above may be implemented as a standalone approach, e.g., a software-based function executed by a processor, or it may be available as a managed service (including as a web service via a SOAP/XML interface). The particular hardware and software implementation details described herein are merely for illustrative purposes are not meant to limit the scope of the described subject matter.
More generally, computing devices within the context of the disclosed subject matter are each a data processing system (such as shown in
The technique described herein also may be implemented in or in conjunction with various server-side architectures including simple n-tier architectures, web portals, federated systems, and the like. The techniques herein may be practiced in a loosely-coupled server (including a “cloud”-based) environment.
Still more generally, the subject matter described herein can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. In a preferred embodiment, the function is implemented in software, which includes but is not limited to firmware, resident software, microcode, and the like. Furthermore, as noted above, the endpoint identity and tracking functionality described herein can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device. The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or a semiconductor system (or apparatus or device). Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD. The computer-readable medium is a tangible item.
The computer program product may be a product having program instructions (or program code) to implement one or more of the described functions. Those instructions or code may be stored in a computer readable storage medium in a data processing system after being downloaded over a network from a remote data processing system. Or, those instructions or code may be stored in a computer readable storage medium in a server data processing system and adapted to be downloaded over a network to a remote data processing system for use in a computer readable storage medium within the remote system.
In a representative embodiment, the process flows described above are implemented in a special purpose computer, preferably in software executed by one or more processors. The software is maintained in one or more data stores or memories associated with the one or more processors, and the software may be implemented as one or more computer programs. Collectively, this special-purpose hardware and software comprises or supplements an existing intrusion detection system solution.
Without meant to be limiting, preferably a management server management console exposes one or more web-based interfaces that may be used to create and/or modify an IDS instance endpoint, to set configuration parameters applicable to a particular IDS endpoint, to configure the analytics engine, to configure notifications, and the like.
The described functionality may be implemented as an adjunct or extension to an existing IDS instance solution including, without limitation, an IDS endpoint client (agent), an endpoint management or relay server, or the like.
While the above describes a particular order of operations performed by certain embodiments of the disclosed technique, it should be understood that such order is exemplary, as alternative embodiments may perform the operations in a different order, combine certain operations, overlap certain operations, or the like. References in the specification to a given embodiment indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic.
Finally, while given components of the system have been described separately, one of ordinary skill will appreciate that some of the functions may be combined or shared in given instructions, program sequences, code portions, and the like.
Any application or functionality described herein may be implemented as native code, by providing hooks into another application, by facilitating use of the mechanism as a plug-in, by linking to the mechanism, and the like.
The cluster may be implemented within other security systems and appliances, including IPS, SIEM and vulnerability management systems.
Having described our invention, what we now claim is as follows.
Patent | Priority | Assignee | Title |
11741196, | Nov 15 2018 | The Research Foundation for The State University of New York | Detecting and preventing exploits of software vulnerability using instruction tags |
Patent | Priority | Assignee | Title |
7370358, | Sep 28 2001 | British Telecommunications public limited company | Agent-based intrusion detection system |
7464158, | Oct 15 2003 | TREND MICRO INCORPORATED | Secure initialization of intrusion detection system |
7730537, | Sep 27 2001 | TREND MICRO INCORPORATED | Method of operating an intrusion detection system |
7845004, | Jul 27 2001 | A10 Networks, Inc | Correlating network information and intrusion information to find the entry point of an attack upon a protected computer |
7845007, | Apr 28 2000 | International Business Machines Corporation | Method and system for intrusion detection in a computer network |
7941855, | Apr 14 2003 | IVANTI, INC | Computationally intelligent agents for distributed intrusion detection system and method of practicing same |
8424091, | Jan 12 2010 | TREND MICRO INCORPORATED | Automatic local detection of computer security threats |
20020133594, | |||
20080306715, | |||
20100235915, | |||
20110055923, | |||
20120284793, | |||
20120297042, | |||
20130139245, | |||
20130298230, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 22 2012 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Aug 22 2012 | ASHLEY, PAUL ANTHONY | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028828 | /0338 |
Date | Maintenance Fee Events |
Dec 05 2014 | ASPN: Payor Number Assigned. |
Apr 16 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 15 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 30 2017 | 4 years fee payment window open |
Jun 30 2018 | 6 months grace period start (w surcharge) |
Dec 30 2018 | patent expiry (for year 4) |
Dec 30 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 30 2021 | 8 years fee payment window open |
Jun 30 2022 | 6 months grace period start (w surcharge) |
Dec 30 2022 | patent expiry (for year 8) |
Dec 30 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 30 2025 | 12 years fee payment window open |
Jun 30 2026 | 6 months grace period start (w surcharge) |
Dec 30 2026 | patent expiry (for year 12) |
Dec 30 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |