A method for detecting rising and falling transitions of internal signals of an array or integrated circuit. An apparatus used in the method comprises a delay line with a plurality of first to nth delay elements, latches, and first to nth groups of logic gates. Each of the first to nth groups of the logical gates includes an AND gate and a NOR gate. The method determines rising and falling signals based on output signals of the logic gates in the apparatus; in odd numbered groups of the logic gates, the AND gate detects the rising transition and the NOR gate detects the falling transition; in even numbered groups of the logic gates, the AND gate detects the falling transition and the NOR gate detects the rising transition.
|
1. A method for detecting a rising transition and a falling transition of an internal signal of an integrated circuit, the method comprising:
receiving by a delay line the internal signal of the integrated circuit, wherein the delay line comprises first to nth delay elements in series, N is an integer greater than 1, the first delay element receives the internal signal;
passing signals from the delay line through first latches, wherein inputs of respective ones of the first latches connect to an input of the first delay element, between two adjacent ones of the delay elements, and an output of the nth delay elements;
passing signals from the respective ones of the first latches through respective ones of first to nth groups of logic gates, wherein each of the first to nth groups comprises an AND gate and a NOR gate, wherein first inputs of the logic gates in the first to nth groups connect to outputs of the respective ones of the first latches so as to detect signals at inputs of the first to nth delay elements, respectively, wherein second inputs of the logic gates in the first to nth groups connect to the outputs the respective ones of the first latches so as to detect signals at outputs of the first to nth delay elements, respectively; and
determining the rising transition and the falling transition based on output signals of the AND gate and the NOR gate, wherein, in odd numbered groups of the logic gates, the AND gate detects the rising transition and the NOR gate detects the falling transition, wherein, in even numbered groups of the logic gates, the AND gate detects the falling transition and the NOR gate detects the rising transition.
3. The method of
4. The method of
passing signals from outputs of respective ones of the first to nth groups of the logic gates through respective ones of first to nth multiplexers; and
detecting, at outputs of the respective ones of the first to nth multiplexers, the rising transition and the falling transition.
5. The method of
passing signals from respective ones of the logic gates through respective ones of second latches; and
detecting, at outputs of the respective ones of the second latches, the rising transition and the falling transition.
6. The method of
7. The method of
passing multiple internal signals of the integrated circuit and a global clock signal through a multiplexer connecting to the input of the first delay element in the delay line; and
passing one of the multiple internal signals to the delay line.
8. The method of
passing the internal signal through an XNOR gate in each of the first to nth groups; and
detecting a transition of the internal signal by the XNOR gate.
|
This application is a Continuation Application of pending U.S. patent application Ser. No. 14/018,831 filed on Sep. 5, 2013.
The present invention relates generally to circuit testing, and more particularly to detecting rising and falling transitions of internal signals of an array or integrated circuit.
For determining circuit functionality, stability, and reliability, measurement of internal signals in memory devices, logic circuits, or other integrated circuits is useful. The measurement of internal signals provides information about the operation and function of an integrated circuit; the information can be used to diagnose problems in the operation or design of the integrated circuits. Previously disclosed circuits for measuring periodic signals, as a component of the integrated circuit, are designed for on-chip measurement of skew and jitter in the internal signals. The previously disclosed circuits can detect transitions of the periodic signals but cannot identify whether the transitions are rising or falling transitions.
Embodiments of the present invention provide a method for detecting a rising transition and a falling transition of an internal signal of an integrated circuit. An apparatus receives the internal signal by a delay line which includes first to Nth delay elements (N is an integer greater than 1) and in which the first delay element receives the internal signal. The apparatus passes signals from the delay line through first latches whose respective inputs connect to an input of the first delay element, between two adjacent ones of the delay elements, and an output of the Nth delay elements. The apparatus passes signals from the respective ones of the first latches through respective ones of first to Nth groups of logic gates, each of which includes an AND gate and a NOR gate. First inputs of the logic gates in the first to Nth groups connect to outputs of the respective ones of the first latches so as to detect signals at inputs of the first to Nth delay elements, respectively. Second inputs of the logic gates in the first to Nth groups connect to the outputs the respective ones of the first latches so as to detect signals at outputs of the first to Nth delay elements, respectively. The apparatus determines the rising transition and the falling transition based on output signals of the AND gate and the NOR gate; in odd numbered groups of the logic gates of the apparatus, the AND gate detects the rising transition and the NOR gate detects the falling transition; in even numbered groups of the logic gates of the apparatus, the AND gate detects the falling transition and the NOR gate detects the rising transition.
Referring to
The latches (latches 151, 152, 153, and 154 shown in
Referring to
As shown in
As shown in
As shown in
In circuit 100, more groups of logic gates are added after the third group in corresponding to more latches and delay elements in the circuit structure. The connection pattern between fourth group of logic gates and its corresponding multiplexer is identical to that between the second group (XNOR gate 164, NOR gate 165, and AND gate 166) and multiplexer 192. In general, the odd numbered groups (first, third, fifth, . . . ) have a first type of connection patterns between the logic gates and the inputs of a multiplexer, like the connections between XNOR gate 161 and input 171 of multiplexer 191, between AND gate 162 and input 172, and between NOR gate 163 and input 173. The even numbered groups (second, fourth, sixth, . . . ) have a second type of connection patterns between the logic gates and the inputs of a multiplexer, like the connections between XNOR gate 164 and input 174 of multiplexer 192, between NOR gate 165 and input 175, and between AND gate 166 and input 176.
In the exemplary embodiment, the internal signals of the integrated circuit running through inputs 104 of multiplexer 101 are multiplexed with the global clock signal running through input 103 of multiplexer 101. A respective one of the internal signals or the global clock is a signal under test. The signal under test running through one of inputs 104 or input 103 is input to circuit 100 for detection of a transition, a rising transition, or a falling transition. At a first stage of detecting transactions of the internal signals, the global clock signal is run through circuit 100 to determine the transition to calibrate a clock period of the global clock signal. This is performed at a known input clock speed, e.g., a clock generated by a ring oscillator or other clocking device. The clock calibration is employed to calibrate the global clock. At this stage, transitions are obtained and pulse measurements are performed for the global clock signal. At a second stage of detecting transactions of the internal signals, multiplexer 101 switches to a respective one of the internal signals.
Referring to
Referring to
In general, in the odd-numbered groups (first, third, fifth, . . . ) of logic gates in circuit 100, an AND gate (such as AND gate 162 in the first group or 168 in the third group) detects a rising transition of the signal under test, while a NOR gate (such as NOR gate 163 in the first group or 169 in the third group) detects a falling transition of the signal under test.
Referring to
Referring to
In general, in the even-numbered groups (second, fourth, sixth, . . . ) of logic gates in circuit 100, a NOR gate (such as NOR gate 165 in the second group) detects a rising transition of the signal under test, while an AND gate (such as AND gate 166 in the second group) detects a falling transition of the signal under test.
Referring to
Latches 281 through 286 shown in
Referring
Based on the foregoing, a method and apparatus for detecting rising and falling edges have been disclosed. However, numerous modifications and substitutions can be made without deviating from the sprit and scope of the present invention. Therefore, the present invention has been disclosed by way of examples and not limitation.
Koch, Michael, Hutzl, Guenther, Ringe, Matthias, Arp, Andreas
Patent | Priority | Assignee | Title |
11088684, | Nov 26 2018 | International Business Machines Corporation | Calibrating internal pulses in an integrated circuit |
Patent | Priority | Assignee | Title |
5198705, | May 11 1990 | Actel Corporation | Logic module with configurable combinational and sequential blocks |
7439724, | Aug 11 2003 | International Business Machines Corporation | On-chip jitter measurement circuit |
7797131, | Aug 24 2007 | International Business Machines Corporation | On-chip frequency response measurement |
7944299, | Mar 25 2010 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Method for adjusting threshold voltage and circuit therefor |
7973549, | Jun 12 2007 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Method and apparatus for calibrating internal pulses in an integrated circuit |
20030085734, | |||
CN102073008, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 30 2013 | ARP, ANDREAS | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031748 | /0360 | |
Aug 30 2013 | HUTZL, GUENTHER | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031748 | /0360 | |
Aug 30 2013 | RINGE, MATTHIAS | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031748 | /0360 | |
Sep 02 2013 | KOCH, MICHAEL | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031748 | /0360 | |
Dec 10 2013 | International Business Machines Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 10 2018 | REM: Maintenance Fee Reminder Mailed. |
Feb 25 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 20 2018 | 4 years fee payment window open |
Jul 20 2018 | 6 months grace period start (w surcharge) |
Jan 20 2019 | patent expiry (for year 4) |
Jan 20 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 20 2022 | 8 years fee payment window open |
Jul 20 2022 | 6 months grace period start (w surcharge) |
Jan 20 2023 | patent expiry (for year 8) |
Jan 20 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 20 2026 | 12 years fee payment window open |
Jul 20 2026 | 6 months grace period start (w surcharge) |
Jan 20 2027 | patent expiry (for year 12) |
Jan 20 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |