A plug assembly for a compressor having a shell, a terminal body on the shell, and a conductor pin extending through the terminal body, wherein a connector body of the plug assembly includes a plurality of electrical receptacles for electrical communication with the conductor pin at least partially disposed within a fence disposed around the terminal body. The plug assembly may be formed of a thermoplastic or thermoset material having a tensile modulus between 9500 MPa and 18000 MPa, and/or about 30 percent glass fibers. At least one electrical receptacle may be housed by an inner core of the plug assembly for electrical communication with the conductor pin. An annular sealing member may be supported by an outer body of the plug assembly for sealingly engaging the fence.
|
9. A plug assembly for a compressor, comprising:
an inner core having an outer surface;
an outer body surrounding said inner core and having an end cap, a connector body extending from said end cap and including an inner surface opposing and in contact with said outer surface of said inner core, and an annular flange extending from said inner surface and defining a first surface formed substantially parallel to and opposing said end cap, a second surface formed substantially parallel to said end cap and disposed on an opposite side of said annular flange than said first surface, and a third surface extending substantially parallel to said inner surface and between said first surface and said second surface, said inner core opposing said third surface and terminating at said second surface;
at least one electrical receptacle housed by said inner core; and
an annular sealing member encircling said outer body.
1. A compressor comprising:
a shell;
a compression mechanism disposed within said shell;
a motor for actuating said compression mechanism;
a terminal body secured to the shell;
at least one conductor pin extending through said terminal body;
a fence disposed around said terminal body and secured to said shell;
a plug including at least one electrical receptacle for electrical communication with said conductor pin at least partially disposed within said fence, and having an inner core surrounded by an outer body, said outer body having an end cap, a connector body extending from said end cap and including an inner surface opposing and in contact with an outer surface of said inner core, and an annular flange extending from said inner surface, said inner core disposed between said end cap and said annular flange and contacting said inner surface of said connector body along an entire length of said inner surface located between said end cap and a surface of said annular flange that opposes and is substantially parallel to said end cap; and
an annular sealing member supported by said outer body for sealingly engaging said fence disposed at an end of said plug assembly that is at least partially disposed within said fence.
18. A compressor comprising:
a shell;
a compression mechanism disposed within said shell;
a motor for actuating said compression mechanism;
a terminal body secured to the shell;
at least one conductor pin extending through said terminal body;
a fence disposed around said terminal body and secured to said shell;
a plug including at least one electrical receptacle for electrical communication with said conductor pin at least partially disposed within said fence, and having an inner core surrounded by an outer body, said outer body having an end cap, a connector body extending from said end cap and including an inner surface opposing an outer surface of said inner core, and an annular flange extending from said inner surface and defining a first surface formed substantially parallel to and opposing said end cap, a second surface formed substantially parallel to said end cap and disposed on an opposite side of said annular flange than said first surface, and a third surface extending substantially parallel to said inner surface and between said first surface and said second surface, said inner core having a first surface in contact with said end cap and a second surface disposed on an opposite end of said inner core than said first surface of said inner core, said second surface of said inner core being substantially flush with said second surface of said annular flange; and
an annular sealing member supported by said outer body for sealingly engaging said fence disposed at an end of said plug assembly that is at least partially disposed within said fence.
2. The compressor of
5. The compressor of
6. The compressor of
7. The compressor of
8. The compressor of
10. The plug assembly of
11. The plug assembly of
12. The plug assembly of
13. The plug assembly of
14. The plug assembly of
15. The plug assembly of
17. The plug assembly of
19. The compressor of
20. The compressor of
21. The compressor of
22. The compressor of
|
This application claims the benefit of U.S. Provisional Application No. 60/968,477, filed on Aug. 28, 2007. The entire disclosure of the above application is incorporated herein by reference.
The present disclosure relates to a compressor and a plug assembly for an electric terminal of a compressor.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Terminal assemblies for compressors may be used to provide electric current to various inner components of the compressor. To connect the terminal assembly to an electric current, a plug may be used. These plugs are typically formed of a flexible material.
A compressor comprising a shell, a compression mechanism disposed within the shell, and a motor for actuating the compression mechanism. A terminal body may be secured to the shell having at least one conductor pin extending through the terminal body. A fence may be disposed around the terminal body and secured to the shell. A plug assembly may be at least partially disposed within the fence and have an inner core surrounded by an outer body. A rigid and non-flexible thermoset or thermoplastic material may form the inner core and the outer body. At least one electrical receptacle may be housed by the inner core for electrical communication with the conductor pin, and an annular sealing member may be supported by the outer body for sealingly engaging the fence disposed at an end of the plug assembly that is at least partially disposed within the fence.
The outer body may include a circumferential groove for supporting the sealing member.
The material is flame resistant, or polyethylene terephthalate.
The sealing member may be an O-ring.
The inner core and the outer body may each be formed of different rigid and non-flexible thermoset or thermoplastic materials.
The present teachings also provide a compressor comprising a shell, a compression mechanism disposed within the shell, a motor for actuating the compression mechanism, and a terminal body secured to the shell. A plurality of conductor pins may extend through the terminal body, and a fence may be disposed around the terminal body and secured to the shell. A plug assembly formed of a thermoset or thermoplastic material including about 30% glass fibers having a connector body may include a plurality of electrical receptacles for electrical communication with the conductor pins and be at least partially disposed within the fence. An annular sealing member that may sealingly engage the fence may be disposed at an end of the connector body.
The material of the plug assembly may be flame resistant, rigid and non-flexible, or polyethylene terephthalate.
The sealing member may be an O-ring.
The plug assembly may include an inner core housing the electrical receptacle and an outer body that surrounds the inner core.
The inner core and the outer body may each formed of the thermoset or thermoplastic material including about 30% glass fibers.
The present teachings also provide a plug assembly for a compressor, comprising an inner core, and an outer body surrounding the inner core. A rigid and non-flexible thermoset or thermoplastic material may form the inner core and the outer body, at least one electrical receptacle may be housed by the inner core, and an annular sealing member may be supported by the outer body.
The material may be flame resistant, rigid and non-flexible, or polyethylene terephthalate.
The sealing member may be an O-ring.
The present teachings also provide a plug assembly for a compressor comprising a connector body formed of a thermoset or thermoplastic material including about 30% glass fibers, a plurality of electrical receptacles formed in the connector body, and an annular sealing member disposed at an end of the connector body.
The material may be flame resistant, rigid and non-flexible, or polyethylene terephthalate.
The sealing member may be an O-ring.
The present teaching also provide a method of manufacturing a plug assembly for a compressor that may include molding an inner core including at least one connector and at least one terminal connection assembly, and molding a rigid and non-flexible outer body over the inner core.
A material of the inner core may be different than a material of the outer body, or a material of the inner core and the outer body may be the same.
The material may be flame resistant, or the material may be polyethylene terephthalate.
The inner core and the outer body may be injection molded.
The step of molding the outer body may include forming a circumferential groove in the outer body.
The method may also include a step of providing a sealing member in the circumferential groove.
The present teachings also provide a molded plug kit, comprising a molded plug including multiple connectors and a plurality of wirings having different colored sheathings numbering more than the multiple connectors. The plurality of wirings may be interchangeable with the multiple connectors.
The molded plug may include an inner core surrounded by an outer body.
The outer body may be formed of a rigid and non-flexible material, a flame resistant material, or polyethylene terephthalate.
The present teachings further provide a plug assembly for a compressor including a connector body formed of a thermoplastic or thermoset material having a tensile modulus between 9500 MPa and 18000 MPa. The plug assembly may include a thermoplastic or thermoset material having a tensile modulus between 10000 MPa and 15000 MPa. A plurality of electrical receptacles formed in said connector body. An annular sealing member disposed at an end of said connector body.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Now referring to
Each of holes 34 may be adapted for receiving a respective fused glass insulator 26 which may be sealingly fused to both terminal body 24 and a respective connector pin 22. Each connector pin 22 may extend through a respective fused glass insulator 26 to provide electrical communication between an exterior and interior of shell 12. Each connector pin 22 may include a reduced diameter section 36 which may act as a fuse-link in the event of an internal short circuit.
Each connector pin 22 may have a respective ceramic insulator 28 secured to the end of pin 22 extending into chamber 16. Ceramic insulators 28 may insulate conductor pins 22 and their associated connection to the motor within chamber 16 from contact with terminal body 24 as well as provide insulation between adjacent pins 22. Silicon rubber molding 30 may be located on the outside of terminal body 24 and may include a plurality of upstanding jackets 40 which extend from a base 42. Upstanding jackets 40 may be equal to and arranged in the same pattern as the plurality of conductor pins 22. Each of upstanding jackets 40 may define an aperture 44 extending through molding 30 and be adapted to receive a respective conductor pin 22. The relationship between apertures 44 and conductive pins 22 may serve to both seal and provide oversurface insulation protection for conductor pins 22.
Fence 32 may be physically secured to the outside of shell 12 by resistance welding or other methods known to those skilled in the art. In this regard, terminal body 24 and fence 32 may be simultaneously resistance welded to shell 12 to provide a hermetic seal. Fence 32 may include a flange 46 that may have a welding bead 48 that extends circumferentially around flange 46. Welding bead 48 enhances the resistance welding operation that secures and seals fence 32 to shell 12.
Fence 32 may define an opening 49 that engages terminal body 24 to locate fence 32 on shell 12 as well as locating fence 32 with respect to conductor pins 22. This feature of locating fence 32 with respect to connector pins 22 allows for a close fit between a plug 54 and terminal 14. Fence 32 may also define a cavity 50 within which conductor pins 22 may be located. Attachment between fence 32 and shell 12 provides a seal that prohibits moisture and/or debris from leaking into cavity 50 causing corrosion of conductor pins 22.
Fence 32 also defines an opening 52 that may be adapted for receiving incoming wires 55 of plug 54 as shown in
Plug 54 allows for the connection of the portion of the conductor pins 22 located outside of shell 12 to the plurality of wires 55 that extend between plug 54 and the external supply of electrical power. Plug 54 may be a molded plug formed of a dual body structure. Plug 54 may include a molded outer body 64 surrounding a molded inner core 66. Inner core 66 houses connectors 68 that provide a female electrical receptacle 70 for receiving the respective connector pin 22. The plurality of receptacles 70 are equal in number to and arranged in the identical pattern to conductor pins 22 of terminal 14. The connection between conductor pins 22 and receptacles 70 provides for both an electrical connection between the two components as well as retention for keeping plug 54 in position on terminal 14. In addition, the location of receptacles 70 within plug 54 insures that the separation between wires 55 may be maintained.
Inner core 66 also includes a radially extending housing 72 that has a plurality of conduits 74 that provide access for the plurality of wires 55 that extend between plug 54 and the external source of electrical power. Housing 72 enables wires 55 to travel into plug 54 in an orderly manner and cooperate with receptacles 70 that include connectors 68 for conductor pins 22. Conduits 74 house terminal connection assemblies 76 that allow electrical communication between wires 55 and connectors 68.
Outer body 64 may include an end cap 78, a connector body 80, and a housing cover 81 that surround inner core 66. Cap 78 may seat against the outside edge of fence 32 when plug 54 is properly installed onto terminal 14. The seating of cap 78 against fence 32 aids in the sealing of cavity 50. Connector body 80 extends from cap 78 into cavity 50 and includes a pocket 82 which provides clearance for silicon rubber molding 30. It should be understood, however, that while connector body 80 is shown as having a single pocket 82, it is within the scope of the present teachings to provide a plurality of pockets equal to and in the same pattern as the plurality of conductor pins 22. Housing cover 81 covers radially extending housing 72.
An end of connector body 80 that mates with terminal 14 may be provided with a circumferential groove 84 that supports an annular sealing member 86. Sealing member 86 may be an O-ring having, as illustrated in
In addition, sealing member 86 ensures that moisture and/or debris will not be allowed to enter cavity 50 and corrupt the various electrical components including connector pins 22 and receptacle 70. Fence 32 in conjunction with the recessing of receptacle 70 at the bottom of pocket 82 ensures that electrical communication between conductor pins 22 and receptacle 70 will be terminated prior to pins 22 being able to be accessed by anyone removing plug 54 to service the assembly. This safety feature ensures that plug 54 must be installed to operate compressor 10 eliminating any access to the conducting portion or wire 55 while compressor 10 is connected to the power source.
Inner core 66 and outer body 64 may be molded from materials such as thermoset materials or thermoplastic materials. In this regard, inner core 66 and outer body 64 may be formed of different thermoset or thermoplastic materials, or be formed of the same material. Regardless, materials that are sufficiently rigid and non-flexible, flame resistant, and electrically insulating may be used. In addition to rigidity, flame resistance, and insulation properties, the material for inner core 66 and outer body 64 should provide adequate chemical resistance, resistance to oil, and be a high temperature material.
The selected thermoset or thermoplastic material may have a rigidity defined by the tensile modulus of the selected material. In addition, the selected thermoset or thermoplastic material may have a flame resistance defined by its ability to withstand a glow wire flammability ignition test of 775 degrees Celsius (C) and a glow wire flammability index of 850 degrees C. In addition, the selected thermoset or thermoplastic material may have a density in the range of 1.50 g/cm3 to 1.75 g/cm3, a tensile modulus in the range of 9500 Megapascal (MPa) to 18000 MPa, and a melting point in the range of 240 degrees C. to 295 degrees C. The tensile modulus range for the selected thermoset or thermoplastic may be further defined between 10000 MPa to 15000 MPa. Furthermore, the selected material should be able to withstand ball pressure testing at 125 degrees C. Examples of materials that are rigid, flame resistant, and electrically insulating are polyethylene terephthalate, polybutylene terephthalate, polyamide 4,6, and polyamide 6,6. Moreover, mixtures of polycarbonate and ABS (acrylonitrile butadiene styrene) are suitable. To further increase the rigidity, flame resistance, and insulating properties of these materials for inner core 66 and outer body 64, a glass fiber filler content that ranges between 30% and 50% may be used.
To form the dual body structure of plug 54, the thermoset or thermoplastic material used for plug 54 may be molded during a two-step process. In this regard, inner core 66 of plug 54 including terminal connection assemblies 76 and connectors 68 may be molded first. After inner core 66 is formed, outer body 64 may be molded over inner core 66. To mold plug 54, an injection molding process may be used. It is not out of the scope of the present teachings, however, to use a compression molding process to form inner core 66 and outer body 64. Alternatively, inner core 66 and outer body 64 may be molded using different molding processes. For example, inner core 66 may be injection molded and outer body 64 may be overmolded to inner core 66 using a compression molding process, or vice versa. Regardless, one skilled in the art would acknowledge and appreciate that any type of molding processes may be used without departing from the spirit and scope of the present teachings.
Wires 55 of molded plug 54 may be provided with sheathings that have different colorings. In this regard, different original equipment manufacturers (OEMs) may require different colored wirings for various applications. Molded plug 54, therefore, may be provided as a kit that includes a plurality of different colored wirings that may be interchanged depending on the various OEMs using molded plug 54. For example, wirings 55 may be provided with a red wire, a blue wire, and a black wire for one application, while yellow, orange, and green wirings may be used for a different application. By providing molded plug 54 in a kit, each of the different colored wirings may be provided with molded plug 54 and changed depending on the specific application desired.
The above description of the present teachings is merely exemplary in nature and, thus, variations that do not depart from the gist of the present teachings are intended to be within the scope of the present teachings. Such variations are not to be regarded as a departure from the spirit and scope of the present teachings.
Hoying, Jeffrey J., Hartong, Allan J., Zammouri, Fadhel
Patent | Priority | Assignee | Title |
10028399, | Jul 27 2012 | Emerson Climate Technologies, Inc. | Compressor protection module |
10485128, | Jul 27 2012 | Emerson Climate Technologies, Inc. | Compressor protection module |
10707609, | Dec 05 2017 | Sumitomo Wiring Systems, Ltd. | Connector |
9929497, | Nov 04 2015 | EMERSON CLIMATE TECHNOLOGIES, INC | Plug assembly for a compressor including a conduit adaptor |
Patent | Priority | Assignee | Title |
1658861, | |||
1658862, | |||
2205051, | |||
2658185, | |||
2728060, | |||
3016511, | |||
3022097, | |||
3031861, | |||
3417361, | |||
3605076, | |||
3684819, | |||
3696321, | |||
3850496, | |||
3873656, | |||
4059325, | Dec 13 1976 | General Electric Company | Terminal protection shield |
4120555, | Apr 04 1977 | McGraw-Edison Company | Connector-terminal assembly for electrical conductors |
4252394, | May 16 1979 | Tecumseh Products Company | Hermetic compressor motor terminal |
4469923, | Dec 10 1982 | Texas Instruments Incorporated | Pressure responsive switch with discrete pressure responsive unit |
4480151, | Jul 19 1982 | Temperature stable hermetically sealed terminal | |
4508413, | Apr 12 1982 | Behring Diagnostics GmbH | Connector |
4523798, | Nov 03 1983 | Carrier Corporation | Connector block |
4551069, | Mar 14 1984 | Copeland Corporation | Integral oil pressure sensor |
4597581, | Apr 30 1985 | PGI INTERNATIONAL LTD | Pressure seal for valve stems and the like |
4712430, | Aug 04 1986 | Dynisco Instruments LLC | Pressure transducer |
4743184, | Dec 06 1985 | Nissan Motor Co., Ltd.; Diesel Kiki Co., Ltd. | Rotary compressor with heating passage between discharge chamber and shaft seal |
4782197, | Mar 21 1988 | ABB POWER T&D COMPANY, INC , A DE CORP | Electrical bushing having a replaceable stud |
4840547, | Aug 10 1988 | Tecumseh Products Company | Compressor including protective cap for hermetic terminal |
4925404, | Oct 14 1988 | G&H TECHNOLOGY, INC | Environmentally protected EMI shielded connector |
4964788, | Mar 21 1990 | Tecumseh Products Company | Hermetic terminal with terminal pin assemblies having fusible links and motor compressor unit including same |
4966559, | Oct 12 1989 | Tecumseh Products Company | Internal terminal block for compressor hermetic terminal |
4984468, | Mar 07 1989 | Pfister GmbH | Pressure sensor and method for manufacturing it |
4984973, | Mar 21 1990 | Tecumseh Products Company | Hermetic motor compressor unit having a hermetic terminal with electrically insulating anti-tracking cap |
5035653, | Apr 02 1990 | Emerson Electric Co | Terminal block for a hermetic terminal assembly |
5121094, | Feb 26 1991 | Texas Instruments Incorporated | Dual condition responsive switch apparatus |
5134888, | Nov 11 1989 | Gewerkschaft Eisenhutte Westfalia GmbH | Electrical devices for measuring hydraulic pressure |
5152672, | Oct 15 1990 | BOSCH BRAKING SYSTEMS CO , LTD | Rotary pump with pressure switch |
5201673, | Apr 24 1991 | ASIN AW CO , LTD | Wiring connection structure for a vehicle motor |
5219041, | Jun 02 1992 | Johnson Controls Technology Company | Differential pressure sensor for screw compressors |
5252036, | Jun 19 1990 | Tecumseh Products Company | Normal direction heater for compressor crankcase heat |
5315878, | Feb 21 1992 | Dragerwerk AG | Measuring head for a pressure-measuring device with a pressure sensor for the simultaneous actuation of a switching contact |
5471015, | Jun 26 1992 | EMERSON ELECTRIC CO , A MO CORPORATION | Seal for hermetic terminal assemblies |
5493073, | May 31 1994 | Emerson Electric Co | Insulating arrangement for a fused hermetic terminal assembly |
5503542, | Jan 13 1995 | Copeland Corporation | Compressor assembly with welded IPR valve |
5513603, | Aug 11 1995 | Chrysler Corporation | Seal and fastener isolator system for a valve cover |
5522267, | Aug 05 1993 | The Foxboro Company | Modular diaphragm pressure sensor with peripherally mounted electrical terminals |
5580282, | Jan 14 1994 | Emerson Electric Co | Sealable shaped connector block for a terminal assembly |
5584716, | Jul 14 1994 | Copeland Corporation | Terminal assembly for hermetic compressor |
5669763, | Aug 11 1994 | The Whitaker Corporation | Fuel pump unit and an electrical connector therefor |
5712428, | Aug 01 1995 | ENDRESS + HAUSER GMBH + CO | Pressure sensor with a solid to minimize temperature-related measurement error |
5746622, | Jul 31 1996 | WHITAKER CORPORATION, THE | Board-mountable electrical connector |
5750899, | Aug 19 1995 | ENVEC MESS-UND REGELTECHNIK GMBH + CO | Capacitive pressure sensor with sensing element mechanically isolated from the casing |
5756899, | May 01 1996 | Hitachi, Ltd. | Integrated sensor |
5831170, | Apr 04 1996 | SSI TECHNOLOGIES, INC | Pressure sensor package and method of making the same |
5872315, | Feb 26 1996 | Denso Corporation | Pressure detecting apparatus |
5941730, | Jun 09 1995 | Sumitomo Wiring Systems, Ltd. | Connector installation structure for fuel tank |
5984645, | Apr 08 1998 | Mahle International GmbH | Compressor with combined pressure sensor and high pressure relief valve assembly |
6037423, | Sep 09 1998 | Toyo Boseki Kabushiki Kaisha | Polyester elastomer composition |
6102666, | Dec 28 1998 | U.S. Natural Resources, Inc. | Sealed electrical connector assembly |
6140592, | Jun 26 1992 | Emerson Electric Co. | Seal for hermetic terminal assemblies |
6224348, | Feb 01 1999 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Device and method for controlling displacement of variable displacement compressor |
6276901, | Dec 13 1999 | Tecumseh Products Company | Combination sight glass and sump oil level sensor for a hermetic compressor |
6290528, | Jul 14 1998 | Carrier Corporation | Electric power supply connector for sealed compressor |
6332327, | Mar 14 2000 | Hussmann Corporation | Distributed intelligence control for commercial refrigeration |
6350630, | Sep 07 1998 | Siemens Aktiengesellschaft | Method for attaching a micromechanical sensor in a housing and sensor assembly |
6351996, | Nov 12 1998 | Maxim Integrated Products, Inc. | Hermetic packaging for semiconductor pressure sensors |
6361281, | Aug 22 2000 | Mahle International GmbH | Electrically driven compressor with contactless control |
6372993, | Jun 13 1995 | Copeland Corporation | Sealed terminal assembly for hermetic compressor |
6375497, | Dec 17 1999 | Tecumseh Products Company | Recessed hermetic terminal assembly |
6422830, | Mar 15 1999 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Fluid machine |
6435017, | Mar 16 2000 | TEMIC AUTOMOTIVE OF NORTH AMERICA, INC | Snap-fit sensing apparatus |
6484585, | Feb 28 1995 | Rosemount Inc | Pressure sensor for a pressure transmitter |
6607367, | Dec 06 1999 | Daikin Industries, Ltd. | Scroll type compressor |
6716009, | Jun 11 2002 | Kabushiki Kaisha Toyota Jidoshokki | Scroll type compressor |
6752646, | Aug 27 2001 | Group Dekko, Inc | Compressor plug cap assembly |
6755631, | Jul 16 2001 | Sanyo Electric Co., Ltd. | Securing means for a compressor's terminal box |
6779989, | Mar 14 2001 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Method for connecting compressor with built-in electric motor and external wiring, connection device used therefor, and compressor with built-in electric motor using the same |
6866487, | Jun 08 2001 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Compressor with built-in motor and mobile structure using the same |
6883379, | May 17 2002 | NAGANO KEIKI CO., LTD. | Absolute-pressure type of pressure sensor |
6910904, | May 04 2001 | Tecumseh Products Company | Compressor with terminal assembly having dielectric material |
6923068, | Jun 19 2003 | Dynisco, Inc. | Pressure transducer |
6925885, | Feb 21 2002 | Denso Corporation | Pressure sensor |
7056104, | Feb 15 2002 | Kabushiki Kaisha Toyota Jidoshokki | Compressor unit with an electrical circuit device connected to the main body and an electrical power connector |
7077694, | Mar 04 2004 | Sumitomo Wiring Systems, Ltd. | Connector to be fixed to a device and method of fixing a connector to a device |
7108489, | Apr 15 2003 | Tecumseh Products Company | Terminal block assembly for a hermetic compressor |
7252005, | Aug 22 2003 | ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH, THE | System and apparatus for sensing pressure in living organisms and inanimate objects |
7290989, | Dec 30 2003 | Copeland Corporation | Compressor protection and diagnostic system |
7559794, | Aug 06 2004 | Sanden Holdings Corporation | Solenoid connector |
7866964, | May 20 2005 | Emerson Climate Technologies, Inc. | Sensor for hermetic machine |
8235687, | May 30 2005 | Sanden Holdings Corporation | Electric compressor |
20020081899, | |||
20020127120, | |||
20020130770, | |||
20020182935, | |||
20040020299, | |||
20040118146, | |||
20050028585, | |||
20050028596, | |||
20050217383, | |||
20060013697, | |||
20060068626, | |||
20060141838, | |||
20060144153, | |||
20060211810, | |||
20060275143, | |||
20070184697, | |||
20080136122, | |||
20090060749, | |||
20090234051, | |||
EP284633, | |||
EP677727, | |||
EP1020646, | |||
JP2001116638, | |||
JP2006097557, | |||
JP2104995, | |||
JP9032775, | |||
WO2006013872, | |||
WO2007074852, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 27 2008 | Emerson Climate Technologies, Inc. | (assignment on the face of the patent) | / | |||
Nov 03 2008 | HOYING, JEFFREY J | EMERSON CLIMATE TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021815 | /0586 | |
Nov 03 2008 | HARTONG, ALLAN J | EMERSON CLIMATE TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021815 | /0586 | |
Nov 04 2008 | ZAMMOURI, FADHEL | EMERSON CLIMATE TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021815 | /0586 | |
May 03 2023 | EMERSON CLIMATE TECHNOLOGIES, INC | COPELAND LP | ENTITY CONVERSION | 064058 | /0724 | |
May 31 2023 | COPELAND LP | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 064278 | /0598 | |
May 31 2023 | COPELAND LP | U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 064279 | /0327 | |
May 31 2023 | COPELAND LP | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 064280 | /0695 | |
Jul 08 2024 | COPELAND LP | U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 068241 | /0264 |
Date | Maintenance Fee Events |
Jul 27 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 22 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 27 2018 | 4 years fee payment window open |
Jul 27 2018 | 6 months grace period start (w surcharge) |
Jan 27 2019 | patent expiry (for year 4) |
Jan 27 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 27 2022 | 8 years fee payment window open |
Jul 27 2022 | 6 months grace period start (w surcharge) |
Jan 27 2023 | patent expiry (for year 8) |
Jan 27 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 27 2026 | 12 years fee payment window open |
Jul 27 2026 | 6 months grace period start (w surcharge) |
Jan 27 2027 | patent expiry (for year 12) |
Jan 27 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |