An encoder head includes one or more components arranged to: i) direct a first incident beam to the diffractive encoder scale at a first incident angle with respect to the encoder scale; ii) receive a first return beam from the encoder scale at a first return angle, the first return angle being different from the first incident angle; iii) redirect the first return beam to the encoder scale as a second incident beam at a second incident angle; and iv) receive a second return beam back from the encoder scale at a second return angle, the second return angle being different from the second incident angle, in which a difference between the first incident angle and second incident angle is less than a difference between the first incident angle and the first return angle and less than a difference between the second incident angle and the second return angle.
|
1. An encoder system comprising:
an encoder head for use with a diffractive encoder scale, wherein the encoder head comprises one or more optical components arranged to:
i) direct a first incident beam to the diffractive encoder scale at a first incident angle with respect to a normal to the encoder scale;
ii) receive a first return beam from the diffractive encoder scale at a first return angle with respect to the normal to the encoder scale, the first return angle being different from the first incident angle;
iii) redirect the first return beam to the diffractive encoder scale as a second incident beam at a second incident angle with respect to the normal to the encoder scale; and
iv) receive a second return beam back from the diffractive encoder scale at a second return angle with respect to the normal to the encoder scale, the second return angle being different from the second incident angle,
wherein a difference between the first incident angle and second incident angle is less than a difference between the first incident angle and the first return angle and less than a difference between the second incident angle and the second return angle.
2. The encoder system of
3. The encoder system of
receive an interference signal from the detector, the interference signal comprising a phase related to an optical path difference between the reference beam and the second return beam; and
determine information about a change in position of the encoder scale based on the phase.
5. The encoder system of
6. The encoder system of
receive the second return beam; and
redirect the second return beam to the beam splitting component.
7. The encoder system of
receive the first return beam from the first optical component; and
redirect the first return beam to the encoder scale as the second incident beam at the second incident angle.
8. The encoder system of
9. The encoder system of
a first retro-reflector; and
a first optical component, the first optical component being arranged to receive both the first return beam and the second return beam from the encoder scale, and redirect the first return beam and the second return beam to the first retro-reflector,
wherein the first retro-reflector is arranged to receive the second return beam from the first optical component, and redirect the second return beam to the beam splitting component.
10. The encoder system of
11. The encoder system of
12. The encoder system of
receive the first return beam; and
redirect, as the second incident beam, the first return beam to the measurement object.
13. The encoder system of
receive the reference beam from the beam splitting component; and
redirect the reference beam to the beam splitting component.
14. The encoder system of
15. The encoder system of
16. The encoder system of
17. The encoder system of
19. The encoder system of
20. The encoder system of
21. The encoder system of
22. The encoder system of
receive the second return beam from the encoder scale;
receive the reference beam from the beam splitting component; and
combine the second return beam with the reference beam to form the output beam.
23. The encoder system of
24. The encoder system of
25. The encoder system of
27. The encoder system of
28. The encoder system of
30. The encoder system of
31. A system comprising:
a moveable stage; and
the encoder system of
32. A lithography system comprising:
the encoder system of
a moveable stage, wherein either the encoder system or the measurement object is attached to the moveable stage;
an illumination system coupled to the encoder system, the illumination system including a radiation source, wherein during operation of the lithography system, the source directs radiation to the encoder system;
a detector to detect, during operation of the lithography system, an output beam from the encoder system;
an electronic processor configured to:
receive an interference signal from the detector, the interference signal comprising a phase related to an optical path difference; and
determine information about displacement of the encoder scale based on the phase; and
a positioning system coupled to the electronic processor and configured to adjust the position of the stage based on the information about the displacement of the encoder scale.
|
This application claims priority to Provisional Application No. 61/557,755, filed on Nov. 9, 2011, the contents of which are hereby incorporated by reference in their entirety.
In some cases, interferometric measuring systems monitor changes in the relative position of a measurement object based on an optical interference signal. For example, an interferometer generates the optical interference signal by overlapping and interfering a measurement beam reflected from the measurement object with a second beam, sometimes called a “reference beam,” where the measurement beam and the reference beam are derived from a common source. Changes in the relative position of the measurement object correspond to changes in the phase of the measured optical interference signal.
An example of such interferometric measuring systems are interferometric encoder systems, which evaluate the motion of an object by tracking a measuring graduation, called the encoder scale. Typically, an interferometric encoder system includes the encoder scale and an encoder head. The encoder head is an assembly that includes an interferometer. The interferometer directs a measurement beam to the encoder scale, where it diffracts. The interferometer combines the diffracted measurement beam with a reference beam to form an output beam that includes a phase related to the position of the object. Encoder systems are used extensively in lithographic applications for monitoring the motion of moveable stages in a lithography tool. Encoder systems can be advantageous in such applications due to their relative insensitivity to atmospheric turbulence.
The disclosure relates to double pass interferometric encoder systems and methods, and applications for the double pass interferometric encoder systems and methods.
Various aspects of the invention are summarized as follows.
In general, in a first aspect, the subject matter of the disclosure can be embodied in an encoder system that includes an encoder head for use with a diffractive encoder scale, in which the encoder head includes one or more optical components arranged to: i) direct a first incident beam to the diffractive encoder scale at a first incident angle with respect to a normal to the encoder scale; ii) receive a first return beam from the diffractive encoder scale at a first return angle with respect to the normal to the encoder scale, the first return angle being different from the first incident angle; iii) redirect the first return beam to the diffractive encoder scale as a second incident beam at a second incident angle with respect to the normal to the encoder scale; and iv) receive a second return beam back from the diffractive encoder scale at a second return angle with respect to the normal to the encoder scale, the second return angle being different from the second incident angle, in which a difference between the first incident angle and second incident angle is less than a difference between the first incident angle and the first return angle and less than a difference between the second incident angle and the second return angle.
Implementations of the system can include one or more of the following features and/or features of other aspects. For example, the one or more optical components can be arranged to combine the second return beam with a reference beam to form an output beam, and the encoder system includes a detector positioned to detect the output beam.
The encoder system can further include an electronic processor configured to: receive an interference signal from the detector, the interference signal including a phase related to an optical path difference between the reference beam and the second return beam; and determine information about a degree of freedom of the encoder scale based on the phase. The phase can include a heterodyne phase. The encoder system can further include the diffractive encoder scale. The encoder scale can include a one dimensional or a two dimensional grating.
In some implementations, each of the first return beam and the second return beam includes a diffracted beam. Each diffracted beam can include a first order diffracted beam.
In some implementations, the first incident beam and the first return beam are non-collinear and non-parallel, and the second incident beam and the second return beam are non-collinear and non-parallel.
In some implementations, the one or more optical components include a beam splitting component arranged to receive a source beam from an optical source and to derive the first incident beam from the source beam. Alternatively, or in addition, the beam splitting component is arranged to derive a reference beam from the source beam.
In some implementations, the system can further include a detector.
In some implementations, the one or more optical components include a first reflecting component arranged to: receive the second return beam; and redirect the second return beam to the beam splitting component. The one or more optical components also can include a second reflecting component, the first reflecting component being arranged to redirect the first return beam to the second reflecting component, and the second reflecting component being arranged to: receive the first return beam from the first reflecting component; and redirect the first return beam to the encoder scale as the second incident beam at the second incident angle. The first reflecting component can include a grating, in which the grating is configured to diffract both the first return beam and the second return beam.
In some implementations, the one or more optical components include a first retro-reflector and a first reflecting component, the first reflecting component being arranged to: receive both the first return beam and the second return beam from the encoder scale; and redirect the first return beam and the second return beam to the first retro-reflector, the first retro-reflector being arranged to redirect the second return beam to the beam splitting component. The one or more optical components can also include a second reflecting component, in which the retro-reflector is arranged to redirect the first return beam from the first reflecting component to the second reflecting component. The second reflecting component can be arranged to: receive the first return beam from the first reflecting component; and redirect the first return beam to the measurement object as the second incident beam at the second angle.
In some implementations, the one or more optical components include a first retro-reflector, in which the beam splitting component and the first retro-reflector are arranged in combination to: receive the first return beam; and redirect the first return beam as the second incident beam to the measurement object. The first retro-reflector can be arranged to: receive the reference beam from the beam splitting component; and redirect the reference beam to the beam splitting component. In some implementations, the one or more optical components include multiple prism components between the beam splitting component and the first retro-reflector, in which the multiple prism components are configured to increase a deviation between the first return beam and the reference beam. The multiple prism components can be arranged in a beam path of the reference beam and a beam path of the first return beam. The multiple prism components can include wedge prisms or birefringent prisms.
In some implementations, the system further includes a reference reflector arranged to receive, from the beam splitting component, the reference beam at a first position and at a second position. The reference reflector can include a mirror. The reference reflector can include a surface of the encoder grating. The system can further include a first quarter wave-plate, the first quarter wave-plate being arranged between the reference reflector and the beam splitting component.
In some implementations, the encoder system further includes a second quarter wave-plate, the second quarter wave-plate being arranged between the encoder grating and the beam splitting component.
In certain implementations, the one or more optical components include a beam combiner arranged to: receive the second return beam from the encoder scale; receive the reference beam from the beam splitting component; and combine the second return beam with the reference beam to form the output beam. The one or more optical components can include a prism pair and a retroreflector. The prism pair and the retro reflector can be arranged in combination to redirect the first return beam to the measurement object as the second incident beam.
In some implementations, the one or more optical components include a single optical component.
In some implementations, the encoder system can be coupled to an illumination system, in which the illumination system includes: a radiation source, where during operation of the lithography system, the source directs radiation to the encoder system; a detector to detect, during operation of the lithography system, an output beam from the encoder system; an electronic processor configured to receive an interference signal from the detector, the interference signal comprising a phase related to an optical path difference, and to determine information about displacement of the encoder scale based on the phase; and a positioning system coupled to the electronic processor and configured to adjust the position of the stage based on the information about the displacement of the encoder scale.
In certain aspects, the subject matter of the present disclosure can be embodied in a system that includes a moveable stage, and an encoder system. Either a diffractive encoder scale or a measurement object can be attached to the moveable stage. The encoder system can include an encoder head for use with the diffractive encoder scale, in which the encoder head includes one or more optical components arranged to: direct a first incident beam to the diffractive encoder scale at a first incident angle with respect to a normal to the encoder scale; receive a first return beam from the diffractive encoder scale at a first return angle with respect to the normal to the encoder scale, the first return angle being different from the first incident angle; redirect the first return beam to the diffractive encoder scale as a second incident beam at a second incident angle with respect to the normal to the encoder scale; and receive a second return beam back from the diffractive encoder scale at a second return angle with respect to the normal to the encoder scale, the second return angle being different from the second incident angle, in which a difference between the first incident angle and second incident angle is less than either a difference between the first incident angle and the first return angle or a difference between the second incident angle and the second return angle.
In certain aspects, the subject matter of the present disclosure can be embodied in a lithography system that includes a moveable stage and encoder system, in which either a diffractive encoder scale or a measurement object can be attached to the moveable stage. The lithography system can further include an illumination system coupled to the encoder system, in which the illumination system has a radiation source, such that during operation of the lithography system, the source directs radiation to the encoder system. The lithography system can further include a detector to detect, during operation of the lithography system, an output beam from the encoder system, and an electronic processor configured to receive an interference signal from the detector, the interference signal comprising a phase related to an optical path difference, and to determine information about displacement of the encoder scale based on the phase. The lithography system can further include a positioning system coupled to the electronic processor and configured to adjust the position of the stage based on the information about the displacement of the encoder scale.
Certain implementations may have particular advantages. For example, in some implementations,
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
Measurement object 101 is positioned some nominal distance from optical assembly 110 along the Z-axis. In many applications, such as where the encoder system is used to monitor the position of a wafer stage or reticle stage in a lithography tool, measurement object 101 is moved relative to the optical assembly 110 in the x- and/or y-directions while remaining nominally a constant distance from the optical assembly relative to the z-axis. This constant distance can be relatively small (e.g., a few centimeters or less). However, in such applications, the location of measurement object typically will vary a small amount from the nominally constant distance and the relative orientation of the measurement object within the Cartesian coordinate system can vary by small amounts too. During operation, encoder system 100 monitors one or more of these degrees of freedom of measurement object 101 with respect to optical assembly 110, including a position of measurement object 101 with respect to the x-axis, and further including, in certain embodiments, a position of the measurement object 101 with respect to the y-axis and/or z-axis and/or with respect to pitch and yaw angular orientations.
To monitor the position of measurement object 101, source module 120 directs an input beam 122 to optical assembly 110. Optical assembly 110 derives a measurement beam 112 from input beam 122 and directs measurement beam 112 to measurement object 101. Optical assembly 110 also derives a reference beam (not shown) from input beam 122 and directs the reference beam along a path different from the measurement beam. For example, optical assembly 110 can include a beam splitter that splits input beam 122 into measurement beam 112 and the reference beam. The measurement and reference beams can have orthogonal polarizations (e.g., orthogonal linear polarizations).
Measurement object 101 includes an encoder scale 105, which is a measuring graduation that diffracts the measurement beam from the encoder head into one or more diffracted orders. In general, encoder scales can include a variety of different diffractive structures such as gratings or holographic diffractive structures. Examples of gratings include sinusoidal, rectangular, or saw-tooth gratings. Gratings can be characterized by a periodic structure having a constant pitch, but also by more complex periodic structures (e.g., chirped gratings). In general, the encoder scale can diffract the measurement beam into more than one plane. For example, the encoder scale can be a two-dimensional grating that diffracts the measurement beam into diffracted orders in the x-z and y-z planes. The encoder scale extends in the x-y plane over distances that correspond to the range of the motion of measurement object 110.
In the present embodiment, encoder scale 105 is a grating having grating lines that extend orthogonal to the plane of the page, parallel to the y-axis of the Cartesian coordinate system of
At least one of these diffracted orders of the measurement beam (labeled beam 114), returns to optical assembly 110, where it is combined with the reference beam to form an output beam 132. For example, the once-diffracted measurement beam 114 can be the first-order diffracted beam.
Output beam 132 includes phase information related to the optical path length difference between the measurement beam and the reference beam. Optical assembly 110 directs output beam 132 to detector module 130 that detects the output beam and sends a signal to electronic processor 150 in response to the detected output beam. Electronic processor 150 receives and analyzes the signal and determines information about one or more degrees of freedom of measurement object 101 relative to optical assembly 110.
In certain embodiments, the measurement and reference beams have a small difference in frequency (e.g., a difference in the kHz to MHz range) to produce an interferometry signal of interest at a frequency generally corresponding to this frequency difference. This frequency is hereinafter referred to interchangeably as the “heterodyne” frequency. Information about the changes in the relative position of the measurement object generally corresponds to a phase of the interferometry signal at this heterodyne frequency. Signal processing techniques can be used to extract this phase. In general, the moveable measurement object causes this phase term to be time-varying. In this regard, the first order time derivative of the measurement object movement causes the frequency of the interferometry signal to shift from the heterodyne frequency by an amount referred to herein as the “Doppler” shift.
The different frequencies of the measurement and reference beams can be produced, for example, by laser Zeeman splitting, by acousto-optical modulation, using two different laser modes, or internal to the laser using birefringent elements, among other techniques. The orthogonal polarizations allow a polarizing beam-splitter to direct the measurement and reference beams along different paths, and combine them to form the output beam that subsequently passes through a polarizer, which mixes the orthogonally polarized components so they can interfere. In the absence of target motion, the interference signal oscillates at the heterodyne frequency, which is just the difference in the optical frequencies of the two components. In the presence of target motion, the heterodyne frequency incurs a change related to the velocity of the target through well-known Doppler relations. Accordingly, monitoring changes in the heterodyne frequency allows one to monitor motion of the target relative to the optical assembly.
In the embodiments described below, the “input beam” generally, refers to the beam emitted by the light source module. For heterodyne detection, the input beam includes components having slightly different frequencies, as discussed above.
In certain embodiments, the interferometer systems are designed so they do not operate at Littrow. For example, in general, the measurement beam is incident on measurement object 101 at an incident angle such that the once-diffracted measurement beam does not satisfy the Littrow condition. The Littrow condition refers to an orientation of a diffractive structure, such as a grating, with respect to an incident beam where the diffractive structure directs the diffracted beam back towards the source. In other words, in encoder system 100, the once-diffracted measurement beam does not satisfy the Littrow condition because the once-diffracted measurement beam is non-co-linear with the measurement beam that is incident on the encoder scale.
While encoder scale 105 is depicted in
In general, the diffractive structure (e.g., grating pitch) can vary depending on the wavelength of the input beam and the arrangement of optical assembly and diffracted orders used for the measurement. In some embodiments, the diffractive structure is a grating having a pitch in a range from about 1λ to about 20λ, where λ is a wavelength of the source. The grating can have a pitch in a range from about 1 μm to about 10 μm.
In some cases, optical errors can be introduced into the interferometric encoder system through a process typically referred to as beam mixing, in which “ghost” beams interfere with the measurement and/or reference beams. These ghost beams may have different amplitudes, different phase offsets, and/or difference frequencies from the beams with which they combine, resulting in a shift in a detected phase of the interferometry signal. Accordingly, measurements of the relative position of the encoder scale may deviate from the encoder scale's actual position, thus limiting the accuracy of displacement changes measured by the interferometer.
Such ghost beams can be caused by various imperfections in the interferometric encoder system. For example, if the measurement and reference beams have difference frequencies, ellipticity in the polarizations of the different frequency components of those beams may lead to unwanted leakage of the reference and/or measurement beams through one or more optical components of in the interferometric encoder system. Unwanted leakage of the reference and/or measurement beams can also be caused by imperfections in an optical component, itself. For example, the interferometric encoder system may include a polarizing beam splitter in which the beam splitter has a low extinction ratio, such that unwanted beam components are transmitted instead of being reflected by the beam splitter and vice versa. Ghost beams also can arise due to unwanted reflections from other components of the interferometric encoder system. For example, in some implementations, a portion of a beam incident on the encoder scale is diffracted back along the incident direction instead of being diffracted along a path that is non-colinear with the input beam.
Other optical errors also can occur in the interferometric encoder system due to the occurrence of beam shearing. Beam shear arises when the relative position of the encoder grating with respect to the encoder head increases or decreases (e.g., caused by movement of the encoder scale and/or the encoder head along the z-direction in
To improve the tolerance for the aforementioned errors, an interferometric encoder system can be configured such that the measurement beam makes a double pass to the encoder scale such that the measurement beam is twice diffracted from the encoder scale. By configuring the system to produce large angle differences between the incident beams and the corresponding diffracted beams, interference from ghost beams and other spurious beams can be reduced. In some implementations, the double pass arrangement for the interferometric encoder system also can compensate for beam shear that may occur when the relative distance between the encoder scale and the encoder head changes. Additionally, the double pass configuration has, in some implementations, the advantage of compensating, to a first order, small changes in the orientation of the object, such as tip, tilt and yaw.
The encoder system 200 is configured to detect displacements along the z coordinate and along the x coordinate, where z is orthogonal to the grating surface and x is in the plane of the grating surface and orthogonal to the grating grooves shown. The encoder head 210 includes a first beam splitter 202, a second beam splitter (beam combiner) 204, a retro-reflector 206, and a prism pair 208. During operation of the encoder system 200, the encoder head 210 receives a source beam 101 from an optical source 120. The first beam splitter 202 divides the source beam into a measurement beam and a reference beam 30, which are then directed along different paths. As shown in
The first return beam 12 is redirected by the combination of the retro-reflector 206 and prism pair 208 to return to the encoder scale 105 as the second incident beam 21, where the measurement beam is again diffracted to produce the second return beam 22. The second return beam 22 corresponds to a diffracted order (e.g., first order or second order) of the second incident beam 12. The beam splitter 204 then recombines the reference beam 30 and the second return beam 22 to form an output beam 207 that is directed toward detector. An interference signal formed at detector 130 then is passed to an electronic processor that determines position information about the encoder scale 105 based on the interference signal.
The source beam can be generated from a heterodyne source, such as a heterodyne laser, in which the source beam comprises two separate beams propagating with slightly different frequencies encoded by orthogonal polarizations. Beam splitter 202 can be a polarizing beam splitter that separates the two frequencies based on their different polarizations. Upon recombination of the reference beam 203 and the second return beam 22 at beam combiner 204, the output beam 207 propagates to a detector module 130. A sinusoidal signal is obtained from a beat frequency of the detected output beam 207, in which the phase of the signal is φm-φr, where φr is the reference phase, presumed stable or known, and φm, is the measurement phase.
Assuming that the plane of incidence for the first and second incident beams contains the x coordinate and defining angles with respect to the z coordinate shown, the angles at which the beams 11, 12, 21, 22 propagate with respect to a normal of the encoder scale 105 are θ11, θ12, θ21, θ22 respectively. The angle θ22 for second return beam 22 is shown in
sin(θ11)+sin(θ12)=mλ/D (1)
sin(θ21)+sin(θ22)=mλ/D (2)
where m is an integer known as the diffraction order and D is the grating pitch or spacing between the lines or repeated features of the encoder scale 105. As is evident from the figure, the following additional inequalities apply. The first return beam 12 is neither collinear nor parallel to the first incident beam 11:
θ12≠θ11 (3)
The second return beam 22 is neither collinear nor parallel to the second incident beam 21:
θ22≠θ21 (4)
A further basic characteristic of the configuration shown in
|θ11−θ21|<θ11−θ12|; (5)
and the difference between the angle of propagation of the first incident beam 11 and the angle of propagation of the second incident beam 21 is smaller than the difference between the angle of propagation of the second incident beam 21 and the angle of propagation of the second return beam 22:
|θ11−θ21|<|θ21−θ22|. (6)
Similarly, the difference between the angle of propagation of the first return beam 12 and the angle of propagation of the second return beam 22 is smaller than the difference between the angle of propagation of the first incident beam 11 and first return beam 12:
|θ12−θ22|<|θ11−θ12|. (7)
The difference between the angle of propagation of the first return beam 12 and the angle of propagation of the second return beam 22 is smaller than the difference between the angle of propagation of the second incident beam 21 and second return beam 22:
|θ12−θ22|<|θ21−θ22|. (8)
The magnitudes of the inequalities in equations (3) through (8) are large enough such that the beams are not obstructed by the optical components. For example, beam 11 shown in
θ11≈θ21 (9)
θ12≈θ22. (10)
In contrast, for the present example, neither incident beam is parallel to the corresponding reflected beam, as indicated in equations (3) and (4).
In some implementations, the differences in angles between the incident and return beams are large enough to reduce the measurement errors caused by contamination of the final interference signal from ghost reflections and other spurious beams. For example, in some implementations, the optical components of the encoder head 210 are arranged such that the inequalities in equations (5) through (8) are larger than about 1 mrad for 1 min beam diameters. In some cases, proportionally larger angles can be used for smaller beam diameters.
The double pass interferometric encoder system can be sensitive to the displacement of the encoder scale 105 along two orthogonal directions. For example, an in-plane displacement of the encoder scale 105 along the x coordinate changes the phase φm of the measurement beam after two reflections from the encoder (e.g., the second return beam 22) at a rate that can be expressed as
φm=(4πm/D)Δx, (11)
where Δx is the displacement of the encoder scale 105 along the x direction. Similarly, an out of plane displacement of the encoder scale 105 along the z coordinate is given by
φm=4πΔz√{square root over (1−)}(mλ/D)2, (12)
where Δz is the displacement of the encoder scale 105 along the z direction. Equations (11) and (12) also can apply for movement of the encoder head 210 relative to the encoder scale 105. Accordingly, once the electronic processor has evaluated the phase information from the detected interference signal, equations (11) and (12) can be used to determine the motion of the encoder head 210 or encoder scale 105 in x or in z directions. For example, as would be appreciated by one of ordinary skill in the art, the electronic processor can calculate the measurement phase φm, by subtracting the known reference phase φr from the phase information of the detected signal, and then calculate the displacement in the x or z direction using equations (11) and (12).
For applications in which either the encoder scale and/or encoder head move along two orthogonal directions (e.g., along the x and z directions), the encoder head 210 can be modified to extract position information along each of the different orthogonal directions of movement, separately. For example, in some implementations, the encoder head 210 is expanded to include a second set of the optical components shown in
The inequalities referred to in the equations above with respect to the system of
For example,
As shown in the example of
The beam splitter 302 also redirects the reference beam 303 toward the reference reflector 308. The reference reflector 308 can include any suitable reflecting surface such as, for example, a mirror. In some implementations, the position of the reflector 308 is adjustable. For example, in some cases, the reflector 308 can be attached to a moveable stage. The reference reflector 308 reflects the reference beam 303 back to the beam splitter 302, where the beam 303 is redirected by the combination of beam splitter 302 and retro-reflector 304 back again to the reference reflector 308. The reference reflector 308 reflects the reference beam 303 a second time to the beam splitter 302. Instead of passing through the beam splitter 302, the twice-reflected reference beam 303 then is combined with the second return beam 22 to form an output beam 307. Output beam 307 is recorded by a detector module 130 that includes a detector (e.g., photodetector) and a mixing polarizer. The beam separation is accomplished based on the different polarization of the incident beams. For example, beam 301 has an s-polarization component that reflects towards the reference mirror 308 and a p polarization component that transmits as a measurement beam towards the grating 105. After two passes through the quarter waveplate 314, the polarizations are reversed so that the reference beam is transmitted and the measurement beam is reflected.
In some embodiments, the encoder head can be designed to measure a first direction of motion independent of a second orthogonal direction of motion. For example,
When the reference beam 503 is incident on the encoder scale 105 at angle with respect to a normal of the encoder surface corresponding to −θ11 (negative of the angle at which incident measurement beam 11 impacts the encoder scale), the configuration shown in the example of
In general, the difference in angles between the incident beams and corresponding diffracted beams in the embodiments illustrated in
The encoder head 610 includes a beam splitter 602 to derive a reference beam and a first incident measurement beam 11 from a source beam 601. The first incident beam 11 propagates toward the encoder scale 105 and is diffracted to produce a first diffracted return beam 12. The return beam 12 is reflected by a first reflecting component 604 towards a second reflecting component 606. The second reflecting component 606 then redirects the first return beam 12 toward the encoder scale 105 as a second incident beam 21. The second incident beam 21 is diffracted by the encoder scale 105 to produce a second return beam 22, in which the second return beam 22 corresponds to a twice-diffracted measurement beam. The second return beam 22 then is redirected by first reflecting component 604 towards the beam splitter/combiner 602 and combined with the reference beam to produce an output beam 605 that passes to a detector module 130 (e.g., including a polarizer and a detector). The first reflecting component 604 and second reflecting component 606 can include any suitable highly reflective component such as, for example, a mirror.
For the purpose of illustration, diffraction of the incident beam is shown in
In some embodiments, a single monolithic optical component can be used to cause the measurement beam to make two passes to the encoder scale. Using a single monolithic optical component can enable more compact encoder system designs as well as reduce alignment requirements.
In some implementations, the encoder head configurations shown in
In some embodiments, the encoder head shown in
In some embodiments, the surfaces of the monolithic optical component that face the encoder scale 105 can be combined in a single continuous flat surface. For example,
In general, any of the analysis methods described above, including determining phase information from detected interference signals and degree of freedom information of the encoder scales, can be implemented in computer hardware or software, or a combination of both. For example, in some embodiments, electronic processor 150 can be installed in a computer and connected to one or more encoder systems and configured to perform analysis of signals from the encoder systems. Analysis can be implemented in computer programs using standard programming techniques following the methods described herein. Program code is applied to input data (e.g., interferometric phase information) to perform the functions described herein and generate output information (e.g., degree of freedom information). The output information is applied to one or more output devices such as a display monitor. Each program may be implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language can be a compiled or interpreted language. Moreover, the program can run on dedicated integrated circuits preprogrammed for that purpose.
Each such computer program is preferably stored on a storage medium or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The computer program can also reside in cache or main memory during program execution. The analysis methods can also be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.
Lithography Tool Applications
Lithography tools are especially useful in lithography applications used in fabricating large scale integrated circuits such as computer chips and the like. Lithography is the key technology driver for the semiconductor manufacturing industry. Overlay improvement is one of the five most difficult challenges down to and below 22 nm line widths (design rules), see, for example, the International Technology Roadmap for Semiconductors, pp. 58-59 (2009).
Overlay depends directly on the performance, i.e., accuracy and precision, of the metrology system used to position the wafer and reticle (or mask) stages. Since a lithography tool may produce $50-100M/year of product, the economic value from improved metrology systems is substantial. Each 1% increase in yield of the lithography tool results in approximately $1M/year economic benefit to the integrated circuit manufacturer and substantial competitive advantage to the lithography tool vendor.
The function of a lithography tool is to direct spatially patterned radiation onto a photoresist-coated wafer. The process involves determining which location of the wafer is to receive the radiation (alignment) and applying the radiation to the photoresist at that location (exposure).
During exposure, a radiation source illuminates a patterned reticle, which scatters the radiation to produce the spatially patterned radiation. The reticle is also referred to as a mask, and these terms are used interchangeably below. In the case of reduction lithography, a reduction lens collects the scattered radiation and forms a reduced image of the reticle pattern. Alternatively, in the case of proximity printing, the scattered radiation propagates a small distance (typically on the order of microns) before contacting the wafer to produce a 1:1 image of the reticle pattern. The radiation initiates photo-chemical processes in the resist that convert the radiation pattern into a latent image within the resist.
To properly position the wafer, the wafer includes alignment marks on the wafer that can be measured by dedicated sensors. The measured positions of the alignment marks define the location of the wafer within the tool. This information, along with a specification of the desired patterning of the wafer surface, guides the alignment of the wafer relative to the spatially patterned radiation. Based on such information, a translatable stage supporting the photoresist-coated wafer moves the wafer such that the radiation will expose the correct location of the wafer. In certain lithography tools, e.g., lithography scanners, the mask is also positioned on a translatable stage that is moved in concert with the wafer during exposure.
Encoder systems, such as those discussed previously, are important components of the positioning mechanisms that control the position of the wafer and reticle, and register the reticle image on the wafer. If such encoder systems include the features described above, the accuracy of distances measured by the systems can be increased and/or maintained over longer periods without offline maintenance, resulting in higher throughput due to increased yields and less tool downtime.
In general, the lithography tool, also referred to as an exposure system, typically includes an illumination system and a wafer positioning system. The illumination system includes a radiation source for providing radiation such as ultraviolet, visible, x-ray, electron, or ion radiation, and a reticle or mask for imparting the pattern to the radiation, thereby generating the spatially patterned radiation. In addition, for the case of reduction lithography, the illumination system can include a lens assembly for imaging the spatially patterned radiation onto the wafer. The imaged radiation exposes resist coated onto the wafer. The illumination system also includes a mask stage for supporting the mask and a positioning system for adjusting the position of the mask stage relative to the radiation directed through the mask. The wafer positioning system includes a wafer stage for supporting the wafer and a positioning system for adjusting the position of the wafer stage relative to the imaged radiation. Fabrication of integrated circuits can include multiple exposing steps. For a general reference on lithography, see, for example, J. R. Sheats and B. W. Smith, in Microlithography: Science and Technology (Marcel Dekker, Inc., New York, 1998), the contents of which is incorporated herein by reference.
Encoder systems described above can be used to precisely measure the positions of each of the wafer stage and mask stage relative to other components of the exposure system, such as the lens assembly, radiation source, or support structure. In such cases, the encoder system's optical assembly can be attached to a stationary structure and the encoder scale attached to a movable element such as one of the mask and wafer stages. Alternatively, the situation can be reversed, with the optical assembly attached to a movable object and the encoder scale attached to a stationary object.
More generally, such encoder systems can be used to measure the position of any one component of the exposure system relative to any other component of the exposure system, in which the optical assembly is attached to, or supported by, one of the components and the encoder scale is attached, or is supported by the other of the components.
An example of a lithography tool 1500 using an interferometry system 1526 is shown in
Suspended below exposure base 1504 is a support base 1513 that carries wafer stage 1522. Stage 1522 includes a measurement object 1528 for diffracting a measurement beam 1554 directed to the stage by optical assembly 1526. A positioning system for positioning stage 1522 relative to optical assembly 1526 is indicated schematically by element 1519. Positioning system 1519 can include, e.g., piezoelectric transducer elements and corresponding control electronics. The measurement object diffracts the measurement beam reflects back to the optical assembly, which is mounted on exposure base 1504. The encoder system can be any of the embodiments described previously.
During operation, a radiation beam 1510, e.g., an ultraviolet (UV) beam from a UV laser (not shown), passes through a beam shaping optics assembly 1512 and travels downward after reflecting from mirror 1514. Thereafter, the radiation beam passes through a mask (not shown) carried by mask stage 1516. The mask (not shown) is imaged onto a wafer (not shown) on wafer stage 1522 via a lens assembly 1508 carried in a lens housing 1506. Base 1504 and the various components supported by it are isolated from environmental vibrations by a damping system depicted by spring 1520.
In some embodiments, one or more of the encoder systems described previously can be used to measure displacement along multiple axes and angles associated for example with, but not limited to, the wafer and reticle (or mask) stages. Also, rather than a UV laser beam, other beams can be used to expose the wafer including, e.g., x-ray beams, electron beams, ion beams, and visible optical beams.
In certain embodiments, the optical assembly 1526 can be positioned to measure changes in the position of reticle (or mask) stage 1516 or other movable components of the scanner system. Finally, the encoder systems can be used in a similar fashion with lithography systems involving steppers, in addition to, or rather than, scanners.
As is well known in the art, lithography is a critical part of manufacturing methods for making semiconducting devices. For example, U.S. Pat. No. 5,483,343 outlines steps for such manufacturing methods. These steps are described below with reference to
Step 1654 is a wafer process that is called a pre-process wherein, by using the so prepared mask and wafer, circuits are formed on the wafer through lithography. To form circuits on the wafer that correspond with sufficient spatial resolution those patterns on the mask, interferometric positioning of the lithography tool relative the wafer is necessary. The interferometry methods and systems described herein can be especially useful to improve the effectiveness of the lithography used in the wafer process.
Step 1655 is an assembling step, which is called a post-process wherein the wafer processed by step 1654 is formed into semiconductor chips. This step includes assembling (dicing and bonding) and packaging (chip sealing). Step 1656 is an inspection step wherein operability check, durability check and so on of the semiconductor devices produced by step 1655 are carried out. With these processes, semiconductor devices are finished and they are shipped (step 1657).
Step 1667 is a developing process for developing the exposed wafer. Step 1668 is an etching process for removing portions other than the developed resist image. Step 1669 is a resist separation process for separating the resist material remaining on the wafer after being subjected to the etching process. By repeating these processes, circuit patterns are formed and superimposed on the wafer.
The encoder systems described above can also be used in other applications in which the relative position of an object needs to be measured precisely. For example, in applications in which a write beam such as a laser, x-ray, ion, or electron beam, marks a pattern onto a substrate as either the substrate or beam moves, the encoder systems can be used to measure the relative movement between the substrate and write beam.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made. Other embodiments are within the scope of the claims.
de Groot, Peter, Liesener, Jan
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4629886, | Mar 23 1983 | Yokogawa Electric Corporation | High resolution digital diffraction grating scale encoder |
4895447, | Oct 30 1987 | INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY | Phase-sensitive interferometric mask-wafer alignment |
5035507, | Dec 21 1988 | Mitutoyo Corporation | Grating-interference type displacement meter apparatus |
5442172, | May 27 1994 | International Business Machines Corporation | Wavefront reconstruction optics for use in a disk drive position measurement system |
7394550, | Dec 24 2004 | Mitutoyo Corporation | Displacement detector |
7440113, | Dec 23 2005 | Agilent Technologies, Inc | Littrow interferometer |
7545507, | Mar 15 2007 | Keysight Technologies, Inc | Displacement measurement system |
8300233, | Mar 30 2010 | Zygo Corporation | Interferometric encoder systems |
20060039006, | |||
20060092428, | |||
20070051884, | |||
20070146722, | |||
20080285051, | |||
20080304079, | |||
20090268210, | |||
20100128283, | |||
20100297561, | |||
20110255096, | |||
20120154780, | |||
20120194824, | |||
20130128255, | |||
EP1837630, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 08 2012 | Zygo Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jan 27 2018 | 4 years fee payment window open |
Jul 27 2018 | 6 months grace period start (w surcharge) |
Jan 27 2019 | patent expiry (for year 4) |
Jan 27 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 27 2022 | 8 years fee payment window open |
Jul 27 2022 | 6 months grace period start (w surcharge) |
Jan 27 2023 | patent expiry (for year 8) |
Jan 27 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 27 2026 | 12 years fee payment window open |
Jul 27 2026 | 6 months grace period start (w surcharge) |
Jan 27 2027 | patent expiry (for year 12) |
Jan 27 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |