A resonant converter comprising: a controllable current source; a resonant tank circuit coupled to the current source; and an isolated buck-type converter coupled to the resonant tank circuit, the isolated buck-type converter having an output, wherein the resonant tank circuit enables switches in the isolated buck-type converter to switch under soft-switching conditions. In some embodiments, the controllable current source is a switch-mode-type current source. In some embodiments, the isolated buck-type converter comprises a half-bridge converter. In some embodiments, the isolated buck-type converter comprises a full-bridge converter. In some embodiments, the isolated buck-type converter comprises a push-pull converter.
|
21. A resonant converter comprising:
a power factor correction (pfc) boost converter;
a resonant tank circuit comprising a capacitor and an inductor;
a controllable current source coupled between the pfc boost converter and the resonant tank circuit such that the controllable current source receives a dc voltage from the pfc boost converter and outputs a constant dc current to the resonant tank circuit; and
an isolated buck-type converter coupled to the output of the resonant tank circuit.
22. A resonant converter comprising:
a controllable current source that outputs a constant dc current;
a resonant tank circuit comprising a capacitor and an inductor and coupled to the output of the controllable current source; and
an isolated buck-type converter directly coupled to the output of the resonant tank circuit, wherein the resonant tank circuit is not coupled to the isolated buck-type converter by a linking capacitor, and further wherein the resonant tank circuit enables switches in the isolated buck-type converter to switch under soft-switching conditions.
1. A resonant converter comprising:
a controllable current source having a constant dc output current;
a resonant tank circuit coupled to the controllable current source and having a capacitor and one or more inductors; and
an isolated buck-type converter coupled to the resonant tank circuit and having a transformer and an output, wherein at least one of the inductors of the resonant tank circuit is directly coupled to the transformer and the output current of the controllable current source is coupled to the transformer, and further wherein the resonant tank circuit enables switches in the isolated buck-type converter to switch under soft-switching conditions.
23. A resonant converter comprising:
a power factor correction (pfc) boost converter;
a switch-mode-type controllable current source coupled to a dc output of the pfc boost converter and including a switch, a diode, a capacitor and an inductor, wherein the switch-mode- type controllable current source generates a constant output current based on the dc output utilizing a switching operation;
a resonant tank circuit comprising a capacitor and an inductor and coupled to the switch-mode-type controllable current source; and
an isolated buck-type converter coupled to the resonant tank circuit, the isolated buck-type converter having an output, wherein the resonant tank circuit enables switches in the isolated buck-type converter to switch under soft-switching conditions.
2. The resonant converter of
3. The resonant converter of
4. The resonant converter of
the pfc boost converter is configured to provide a dc input voltage to the input of the controllable current source; and
the isolated buck-type converter is configured to provide a dc output voltage to the output of the isolated buck-type converter.
5. The resonant converter of
6. The resonant converter of
a transformer having a first primary winding, a second primary winding, a first secondary winding, and a second secondary winding, wherein the controllable current source is coupled to a node between the first and second primary windings to form a primary center tap;
a first primary switch coupled between the first primary winding and the controllable current source; and
a second primary switch coupled between the second primary winding and the controllable current source.
7. The resonant converter of
a first secondary diode coupled between the first secondary winding and the output of the isolated buck-type converter; and
a second secondary diode coupled between the second secondary winding and the output of the isolated buck-type converter.
8. The resonant converter of
a first primary inductor coupled between the first primary winding and the first primary switch; and
a second primary inductor coupled between the second primary winding and the second primary switch.
9. The resonant converter of
a first secondary inductor coupled between the first secondary winding and the output of the isolated buck-type converter; and
a second secondary inductor coupled between the second secondary winding and the output of the isolated buck-type converter.
10. The resonant converter of
a first secondary switch coupled between the first secondary winding and the output of the isolated buck-type converter; and
a second secondary switch coupled between the second secondary winding and the output of the isolated buck-type converter.
11. The resonant converter of
a transformer having a first primary winding, a first secondary winding, and a second secondary winding;
a first primary switch coupled between a first terminal of the first primary winding and the controllable current source;
a second primary switch coupled between a second terminal of the first primary winding and the controllable current source;
a third primary switch coupled between the first terminal of the first primary winding and the controllable current source, wherein the first primary switch and the third primary switch are coupled to the first terminal of the first primary winding through a first common node; and
a fourth primary switch coupled between the second terminal of the first primary winding and the controllable current source, wherein the second primary switch and the fourth primary switch are coupled to the second terminal of the first primary winding through a second common node.
12. The resonant converter of
a first secondary diode coupled between the first secondary winding and the output of the isolated buck-type converter; and
a second secondary diode coupled between the second secondary winding and the output of the isolated buck-type converter.
13. The resonant converter of
14. The resonant converter of
15. The resonant converter of
a first secondary switch coupled between the first secondary winding and the output of the isolated buck-type converter; and
a second secondary switch coupled between the second secondary winding and the output of the isolated buck-type converter.
16. The resonant converter of
a transformer having a first primary winding, a first secondary winding, and a second secondary winding;
a first primary switch coupled between a first terminal of the first primary winding and the controllable current source; and
a second primary switch coupled between the first terminal of the first primary winding and the controllable current source, wherein the first primary switch and the second primary switch are coupled to the first terminal of the first primary winding through a common node.
17. The resonant converter of
a first secondary diode coupled between the first secondary winding and the output of the isolated buck-type converter; and
a second secondary diode coupled between the second secondary winding and the output of the isolated buck-type converter.
18. The resonant converter of
19. The resonant converter of
20. The resonant converter of
a first secondary switch coupled between the first secondary winding and the output of the isolated buck-type converter; and
a second secondary switch coupled between the second secondary winding and the output of the isolated buck-type converter.
|
The present invention relates to the field of converter topology. More particularly, the present invention relates to a two stage resonant DC/DC converter.
In DC/DC converters, a DC input voltage is converted to a lower DC output voltage. Normally, the output voltage needs to be precisely regulated and input to output isolation is necessary in order to meet safety requirements.
In this and other prior art converters, the switches of the second stage work under hard switching conditions, resulting in high switching losses, and thereby affecting the total efficiency of the converter and limiting the switching frequency. Additionally, the second stage needs a current-limiting circuit to provide over-current protection during abnormal conditions, such as during an output short circuit. This need for over-current protection increases the complexity of the control circuit.
What is needed in the art is a simplified DC/DC converter design that reduces switching losses.
In one aspect of the present invention, a resonant converter comprises a controllable current source, a resonant tank circuit coupled to the current source, and an isolated buck-type converter coupled to the resonant tank circuit. The isolated buck-type converter has an output. The resonant tank circuit enables switches in the isolated buck-type converter to switch under soft-switching conditions.
In some embodiments, the controllable current source is a switch-mode-type current source. In some embodiments, the resonant converter further comprises a power factor correction (PFC) boost converter coupled to an input of the controllable current source, wherein the PFC boost converter is configured to provide a voltage to the input of the controllable current source. In some embodiments, the PFC boost converter is configured to provide a DC input voltage to the input of the controllable current source, and the isolated buck-type converter is configured to provide a DC output voltage to the output of the isolated buck-type converter. In some embodiments, the isolated buck-type converter comprises one of the group consisting of: a half-bridge converter, a full-bridge converter and a push-pull converter.
In some embodiments, the isolated buck-type converter includes a push-pull converter that comprises: a transformer having a first primary winding, a second primary winding, a first secondary winding, and a second secondary winding, wherein the controllable current source is coupled to a node between the first and second primary windings to form a primary center tap; a first primary switch coupled between the first primary winding and the controllable current source; and a second primary switch coupled between the second primary winding and the controllable current source.
In some embodiments, the push-pull converter further comprises a first secondary diode coupled between the first secondary winding and the output of the isolated buck-type converter, and a second secondary diode coupled between the second secondary winding and the output of the isolated buck-type converter.
In some embodiments, the push-pull converter further comprises a first primary inductor coupled between the first primary winding and the first primary switch, and a second primary inductor coupled between the second primary winding and the second primary switch.
In some embodiments, the push-pull converter further comprises a first secondary inductor coupled between the first secondary winding and the output of the isolated buck-type converter, and a second secondary inductor coupled between the second secondary winding and the output of the isolated buck-type converter.
In some embodiments, the push-pull converter further comprises a first secondary switch coupled between the first secondary winding and the output of the isolated buck-type converter, and a second secondary switch coupled between the second secondary winding and the output of the isolated buck-type converter.
In some embodiments, the isolated buck-type converter includes a full-bridge converter that comprises: a transformer having a first primary winding, a first secondary winding, and a second secondary winding; a first primary switch coupled between a first terminal of the first primary winding and the controllable current source; a second primary switch coupled between a second terminal of the first primary winding and the controllable current source; a third primary switch coupled between the first terminal of the first primary winding and the controllable current source, wherein the first primary switch and the third primary switch are coupled to the first terminal of the first primary winding through a common node; and a fourth primary switch coupled between the second terminal of the first primary winding and the controllable current source, wherein the second primary switch and the fourth primary switch are coupled to the second terminal of the first primary winding through a common node.
In some embodiments, the full-bridge converter further comprises a first secondary diode coupled between the first secondary winding and the output of the isolated buck-type converter, and a second secondary diode coupled between the second secondary winding and the output of the isolated buck-type converter.
In some embodiments, the full-bridge converter further comprises a primary inductor coupled between the first terminal of the first primary winding and the common node of the first primary switch and the third primary switch.
In some embodiments, the full-bridge converter further comprises a secondary inductor coupled between a common node between the first and second secondary windings and the output of the isolated buck-type converter.
In some embodiments, the full-bridge converter further comprises a first secondary switch coupled between the first secondary winding and the output of the isolated buck-type converter, and a second secondary switch coupled between the second secondary winding and the output of the isolated buck-type converter.
In some embodiments, the isolated buck-type converter includes a half-bridge converter that comprises: a transformer having a first primary winding, a first secondary winding, and a second secondary winding; a first primary switch coupled between a first terminal of the first primary winding and the controllable current source; a second primary switch coupled between the first terminal of the first primary winding and the controllable current source, wherein the first primary switch and the second primary switch are coupled to the first terminal of the first primary winding through a common node.
In some embodiments, the half-bridge converter further comprises a first secondary diode coupled between the first secondary winding and the output of the isolated buck-type converter, and a second secondary diode coupled between the second secondary winding and the output of the isolated buck-type converter.
In some embodiments, the half-bridge converter further comprises a primary inductor coupled between the first terminal of the first primary winding and the common node of the first primary switch and the second primary switch.
In some embodiments, the half-bridge converter further comprises a secondary inductor coupled between a common node between the first and second secondary windings and the output of the isolated buck-type converter.
In some embodiments, the half-bridge converter further comprises a first secondary switch coupled between the first secondary winding and the output of the isolated buck-type converter, and a second secondary switch coupled between the second secondary winding and the output of the isolated buck-type converter.
The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the described embodiments will be readily apparent to those skilled in the art and the generic principles herein can be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown, but is to be accorded the widest scope consistent with the principles and features described herein.
In some embodiments, a first secondary diode 356 is coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary diode 358 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, the output of the isolated buck-type converter is coupled to a load resistor 354. In some embodiments, an output capacitor 360 is coupled in parallel between the transformer 340 and the output of the isolated buck-type converter. In some embodiments, a first primary inductor 352 is coupled between the first primary winding P1 and the first primary switch 344, and a second primary inductor 350 is coupled between the second primary winding P2 and the second primary switch 346. In some embodiments, a resonant capacitor 348 is coupled in parallel between the controllable DC current source 330 and the transformer 340. Together with the first primary inductor 352 and the second primary inductor 350, resonant capacitor 348 forms a resonant tank circuit.
In
In
From T1 on, diode 358 (D3) turns on and begins to conduct current. The voltage of transformer secondary winding S2 is clamped to Vo. Accordingly, the voltage of transformer primary winding P1 is clamped to N*Vo, with N being the turns ratio of primary winding to secondary winding. Resonant capacitor 348 (Cr) is resonant with first primary inductor 352 (Lr2), and the drain current of switch 344 (Id-Q2) increases from zero. Current Id-Q2 can be divided into two portions, the resonant portion, which equals Id3/N and transfers to the secondary side though the transformer, and the magnetizing portion. At T2 point, the resonant portion reduces to zero. Accordingly the secondary diode 358 (D3) turns off at ZCS (zero current switching condition) condition, and the switching loss is reduced. From T2 to T3, diode current is zero, so the transformer secondary side is “open.” On the primary side, only the magnetizing current is remaining.
At T3, switch 344 (Q2) is turned off by the drive signal. This is a near ZCS turn off because only a small magnetizing current flow through switch 344 (Q2). T3 to T4 is a “dead time”, during which both switch 344 (Q2) and switch 346 (Q3) are off. On the primary side of the transformer, the magnetizing current consists of two parts: (1) the drain current of switch 344 (Id-Q2), which flows from Q2′s drain to source and charges the output capacitance of switch 344 (Q2); and (2) the drain current of switch 346 (Id-Q3), which flows from Q3's source to drain and discharges the output capacitance of switch 346 (Q3). At time point T4, the drain current of switch 344 (Id-Q2) has reduced to zero and all the magnetizing current has flown through the body diode of MOSFET switch 346 (Q3). Switch 346 (Q3) turns on by the drive signal at ZVS condition. The next half cycle will repeat the similar work mechanism.
In some embodiments, a first secondary diode 556 is coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary diode 558 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, a first secondary inductor 552 is coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary inductor 554 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, a resonant capacitor 548 is coupled in parallel between the controllable DC current source 530 and the transformer 540. Together with the first secondary inductor 552 and the second secondary inductor 554, resonant capacitor 548 forms a resonant tank circuit. In some embodiments, the output of the isolated buck-type converter is coupled to a load resistor 550. In some embodiments, an output capacitor 560 is coupled in parallel between the transformer 540 and the output of the isolated buck-type converter. In some embodiments, a ground terminal 562 is coupled between the transformer 540 and the output of the isolated buck-type converter.
In some embodiments, a first primary inductor 652 is coupled between the first primary winding P1 and the first primary switch 644, and a second primary inductor 650 is coupled between the second primary winding P2 and the second primary switch 646. In some embodiments, a resonant capacitor 648 is coupled in parallel between the controllable DC current source 630 and the transformer 640. Together with the first primary inductor 652 and the second primary inductor 650, resonant capacitor 648 forms a resonant tank circuit. In some embodiments, a first secondary switch 658 is coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary switch 660 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, the output of the isolated buck-type converter is coupled to a load resistor 654. In some embodiments, an output capacitor 664 is coupled in parallel between the transformer 640 and the output of the isolated buck-type converter. In some embodiments, a ground terminal 662 is coupled between the transformer 640 and the output of the isolated buck-type converter.
The two stage resonant converter 700 comprises a controllable DC current source 730 and a transformer 740. The transformer 740 comprises a first primary winding P1, a first secondary winding S1, and a second secondary winding S2. A first primary switch 742 is coupled between a first terminal of the first primary winding P1 and the controllable current source 730. A second primary switch 744 is coupled between a second terminal of the first primary winding P1 and the controllable current source 730. A third primary switch 746 is coupled between the first terminal of the first primary winding P1 and the controllable current source 730. A fourth primary switch 748 is coupled between the second terminal of the first primary winding P1 and the controllable current source 730. The first primary switch 742 and the third primary switch 746 are coupled to the first terminal of the first primary winding P1 through a common node 750. The second primary switch 744 and the fourth primary switch 748 are coupled to the second terminal of the first primary winding P1 through a common node 752.
In some embodiments, a first secondary diode 760 coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary diode 762 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, the output of the isolated buck-type converter is coupled to a load resistor 758. In some embodiments, an output capacitor 764 is coupled in parallel between the transformer 740 and the output of the isolated buck-type converter. In some embodiments, a primary inductor 756 is coupled between the first terminal of the first primary winding P1 and the common node 750 of the first primary switch 742 and the third primary switch 746. In some embodiments, a resonant capacitor 754 is coupled in parallel between the controllable DC current source 730 and the transformer 740. Together with the primary inductor 756, resonant capacitor 754 forms a resonant tank circuit.
In some embodiments, a first secondary diode 858 is coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary diode 860 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, a secondary inductor 862 is coupled between a common node, between the second terminal of the first secondary winding S1 and first terminal of the second secondary winding S2, and the output of the isolated buck-type converter. In some embodiments, the output of the isolated buck-type converter is coupled to a load resistor 856. In some embodiments, an output capacitor 864 is coupled in parallel between the transformer 840 and the output of the isolated buck-type converter. In some embodiments, a resonant capacitor 854 is coupled in parallel between the controllable DC current source 830 and the transformer 840. Together with the secondary inductor 862, resonant capacitor 854 forms a resonant tank circuit.
In some embodiments, a primary inductor 956 is coupled between the first terminal of the first primary winding P1 and the common node 950 of the first primary switch 942 and the third primary switch 946. In some embodiments, a resonant capacitor 954 is coupled between the controllable DC current source 930 and the transformer 940. Together with the primary inductor 956, resonant capacitor 954 forms a resonant tank circuit. In some embodiments, a first secondary switch 960 is coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary switch 962 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, the output of the isolated buck-type converter is coupled to a load resistor 958. In some embodiments, an output capacitor 968 is coupled in parallel between the transformer 940 and the output of the isolated buck-type converter. In some embodiments, a ground terminal 964 is coupled between the transformer 940 and the output of the isolated buck-type converter.
In some embodiments, a first secondary diode 1058 is coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary diode 1060 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, the output of the isolated buck-type converter is coupled to a load resistor 1056. In some embodiments, an output capacitor 1062 is coupled in parallel between the transformer 1040 and the output of the isolated buck-type converter. In some embodiments, a primary inductor 1054 is coupled between the first terminal of the first primary winding P1 and the common node 1046 of the first primary switch 1042 and the second primary switch 1044. In some embodiments, a first resonant capacitor 1048 and a second resonant capacitor 1050 are coupled between the controllable DC current source 1030 and the transformer 1040. In some embodiments, first resonant capacitor 1048 and second resonant capacitor 1050 are coupled to the second terminal of the first primary winding P1 through a common node 1052. Together with the primary inductor 1054, first resonant capacitor 1048 and second resonant capacitor 1050 form a resonant tank circuit.
In some embodiments, a first secondary diode 1156 is coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary diode 1158 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, the output of the isolated buck-type converter is coupled to a load resistor 1154. In some embodiments, an output capacitor 1162 is coupled in parallel between the transformer 1140 and the output of the isolated buck-type converter. In some embodiments, a second inductor 1160 is coupled between a common node of the first and second secondary windings S1, S2 and the output of the isolated buck-type converter. In some embodiments, a first resonant capacitor 1148 and a second resonant capacitor 1150 are coupled between the controllable DC current source 1130 and the transformer 1140. In some embodiments, first resonant capacitor 1148 and second resonant capacitor 1150 are coupled to the second terminal of the first primary winding P1 through a common node 1152. Together with the secondary inductor 1160, first resonant capacitor 1148 and second resonant capacitor 1150 form a resonant tank circuit.
In some embodiments, a first secondary switch 1258 is coupled between the first secondary winding S1 and the output of the isolated buck-type converter, and a second secondary switch 1260 is coupled between the second secondary winding S2 and the output of the isolated buck-type converter. In some embodiments, the output of the isolated buck-type converter is coupled to a load resistor 1256. In some embodiments, an output capacitor 1264 is coupled in parallel between the transformer 1240 and the output of the isolated buck-type converter. In some embodiments, a ground terminal 1262 is coupled between the transformer 1240 and the output of the isolated buck-type converter. In some embodiments, a primary inductor 1254 is coupled between the first terminal of the first primary winding P1 and the common node 1246 of the first primary switch 1242 and the second primary switch 1244. In some embodiments, a first resonant capacitor 1248 and a second resonant capacitor 1250 are coupled between the controllable DC current source 1230 and the transformer 1240. In some embodiments, first resonant capacitor 1248 and second resonant capacitor 1250 are coupled to the second terminal of the first primary winding P1 through a common node 1252. Together with the primary inductor 1254, first resonant capacitor 1248 and second resonant capacitor 1250 form a resonant tank circuit.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made and equivalents may be substituted for elements in the embodiments chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.
Patent | Priority | Assignee | Title |
9450500, | Dec 10 2012 | FLEXTRONICS INDUSTRIAL, LTD ; FLEXTRONICS AMERICA, LLC | Method and apparatus for modulating lower powers in resonant converters |
Patent | Priority | Assignee | Title |
4051425, | Feb 03 1975 | Telephone Utilities and Communications Industries, Inc. | AC to DC power supply circuit |
4184197, | Sep 28 1977 | California Institute of Technology | DC-to-DC switching converter |
4273406, | Dec 28 1978 | Mitsuoka Electric Mfg. Co., Ltd. | Electrical cord adapter |
4370703, | Jul 20 1981 | Park-Ohio Industries, Inc. | Solid state frequency converter |
4563731, | Jan 07 1982 | Matsushita Electric Industrial Co., Ltd. | Resonant type constant voltage supply apparatus |
4645278, | Sep 09 1985 | Texas Instruments Incorporated | Circuit panel connector, panel system using the connector, and method for making the panel system |
4695933, | Feb 11 1985 | Sundstrand Corporation | Multiphase DC-DC series-resonant converter |
4712160, | Jul 02 1985 | Matsushita Electric Industrial Co., Ltd. | Power supply module |
4788626, | Feb 15 1986 | Brown, Boveri & Cie AG | Power semiconductor module |
4806110, | Jun 19 1986 | CINCH CONNECTORS, INC | Electrical connectors |
4823249, | Apr 27 1987 | BELL TELEPHONE LABORATORIES, INCORPORATED, 600 MOUNTAIN AVENUE, MURRAY HILL, NEW JERSEY, 07974-2070, A CORP OF NEW YORK; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, 550 MADISON AVENUE, NEW YORK, NEW YORK 10022-3201, A CORP OF NEW YORK | High-frequency resonant power converter |
4841220, | Sep 23 1987 | Center for Innovative Technology | Dc-to-Dc converters using multi-resonant switches |
4857822, | Sep 23 1987 | VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VA | Zero-voltage-switched multi-resonant converters including the buck and forward type |
4866367, | Apr 11 1988 | Virginia Polytechnic Institute and State University | Multi-loop control for quasi-resonant converters |
4890217, | Jun 10 1987 | Norand Corporation | Universal power supply, independent converter stages for respective hardware components of a computerized system |
4893227, | Jul 08 1988 | Eldec Corporation | Push pull resonant flyback switchmode power supply converter |
4899256, | Jun 01 1988 | Chrysler Motors Corporation | Power module |
4901069, | Jul 16 1987 | Schlumberger Technology Corporation | Apparatus for electromagnetically coupling power and data signals between a first unit and a second unit and in particular between well bore apparatus and the surface |
4975821, | Oct 10 1989 | PIONEER MAGNETICS, INC | High frequency switched mode resonant commutation power supply |
5065302, | Jul 28 1989 | Kabushiki Kaisha Toshiba | Adjustable AC power supply equipment for air-conditioner system |
5090919, | Jan 26 1989 | Omron Corporation | Terminal piece sealing structure |
5101322, | Mar 07 1990 | TEMIC AUTOMOTIVE OF NORTH AMERICA, INC | Arrangement for electronic circuit module |
5132890, | Jan 09 1991 | Koss Corporation | Power supply based on normally parasitic resistance of solid state switch |
5164657, | Aug 08 1988 | Synchronous switching power supply comprising buck converter | |
5235491, | May 10 1990 | Vero Electronics GmbH | Safety power supply |
5262932, | Mar 04 1991 | COOPERHEAT INTERNATIONAL LIMITED | Power converter |
5295044, | Sep 26 1991 | Kabushiki Kaisah Toshiba | Semiconductor device |
5325283, | Jun 08 1992 | VIRGINIA TECH INTELLECUTAL PROPERTIES, INC | Novel zero-voltage-switching family of isolated converters |
5365403, | Jul 17 1992 | VLT, INC | Packaging electrical components |
5373432, | Dec 10 1992 | Hughes Electronics Corporation | Fixed frequency DC to DC converter with a variable inductance controller |
5438294, | Mar 19 1992 | Astec International, Ltd. | Gate drive circuit |
5442540, | Jun 12 1992 | Virginia Tech Intellectual Properties, Inc | Soft-switching PWM converters |
5490052, | Apr 24 1992 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Switching power supply |
5565761, | Sep 02 1994 | Fairchild Semiconductor Corporation | Synchronous switching cascade connected offline PFC-PWM combination power converter controller |
5565781, | Jul 09 1991 | SEB S A | Device for detecting the malfunctioning of a load such as a magnetron |
5592128, | Mar 30 1995 | Fairchild Semiconductor Corporation | Oscillator for generating a varying amplitude feed forward PFC modulation ramp |
5673185, | Apr 07 1995 | U S PHILIPS CORPORATION | Circuit arrangement for generating a DC-separated output voltage |
5712772, | Feb 03 1995 | Ericsson Raynet | Controller for high efficiency resonant switching converters |
5742151, | Jun 20 1996 | Fairchild Semiconductor Corporation | Input current shaping technique and low pin count for pfc-pwm boost converter |
5747977, | Mar 30 1995 | Fairchild Semiconductor Corporation | Switching regulator having low power mode responsive to load power consumption |
5768118, | May 05 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Reciprocating converter |
5786687, | Dec 03 1996 | HTC Corporation | Transformer-isolated pulse drive circuit |
5786992, | Apr 08 1994 | VLT, INC | Efficient power conversion |
5798635, | Jun 20 1996 | Fairchild Semiconductor Corporation | One pin error amplifier and switched soft-start for an eight pin PFC-PWM combination integrated circuit converter controller |
5804950, | Jun 20 1996 | Fairchild Semiconductor Corporation | Input current modulation for power factor correction |
5811895, | Aug 12 1994 | LENOVO SINGAPORE PTE LTD | Power supply circuit for use with a battery and an AC power adaptor |
5818207, | Dec 11 1996 | Fairchild Semiconductor Corporation | Three-pin buck converter and four-pin power amplifier having closed loop output voltage control |
5838554, | Apr 26 1994 | COMARCO WIRELESS SYSTEMS LLC | Small form factor power supply |
5859771, | Jul 31 1996 | Transtechnik GmbH | Half/full bridge converter |
5870294, | Sep 26 1997 | Astec International Limited | Soft switched PWM AC to DC converter with gate array logic control |
5894243, | Dec 11 1996 | Fairchild Semiconductor Corporation | Three-pin buck and four-pin boost converter having open loop output voltage control |
5903138, | Mar 30 1995 | Fairchild Semiconductor Corporation | Two-stage switching regulator having low power modes responsive to load power consumption |
5905369, | Oct 17 1996 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Variable frequency switching of synchronized interleaved switching converters |
5923543, | Dec 14 1996 | Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD | Resonance-type power switching device |
5949672, | Sep 27 1996 | ABB Patent GmbH | Three-phase matrix converter and method for operation thereof |
6009008, | Mar 31 1997 | International Rectifier Corporation | Soft strat bridge rectifier circuit |
6058026, | Jul 26 1999 | ABB POWER ELECTRONICS INC | Multiple output converter having a single transformer winding and independent output regulation |
6069803, | Feb 12 1999 | Astec International Limited | Offset resonance zero volt switching flyback converter |
6091233, | Jan 14 1999 | Fairchild Semiconductor Corporation | Interleaved zero current switching in a power factor correction boost converter |
6091611, | Apr 26 1994 | COMARCO WIRELESS SYSTEMS LLC | Connectors adapted for controlling a small form factor power supply |
6160725, | Mar 12 1999 | MINEBEA CO , LTD | System and method using phase detection to equalize power from multiple power sources |
6183302, | Aug 20 1998 | Fujitsu Component Limited | Plug connector |
6191957, | Jan 31 2000 | BAE SYSTEMS CONTROLS INC | Extended range boost converter circuit |
6272015, | Nov 24 1997 | Infineon Technologies Americas Corp | Power semiconductor module with insulation shell support for plural separate substrates |
6282092, | Jun 12 1998 | Shindengen Electric Manufacturing Co., Ltd.; Honda Giken Kogyo Kabushiki Kaisha | Electronic circuit device and method of fabricating the same |
6307761, | Mar 23 1998 | Fidelix Y.K. | Single stage high power-factor converter |
6323627, | Feb 28 1998 | Robert Bosch GmbH | D.C.-d.c. converter with a transformer and a reactance coil |
6326740, | Dec 22 1998 | Philips Electronics North America Corporation | High frequency electronic ballast for multiple lamp independent operation |
6344980, | Jan 14 1999 | Semiconductor Components Industries, LLC | Universal pulse width modulating power converter |
6366483, | Jul 24 2000 | Rockwell Automation Technologies, Inc. | PWM rectifier having de-coupled power factor and output current control loops |
6385059, | Nov 14 2000 | DIALOG SEMICONDUCTOR INC | Transformer-coupled switching power converter having primary feedback control |
6388897, | Nov 30 2000 | Delta Electronics, Inc. | DC-to-DC converter and method for converting direct current to direct current |
6390854, | Jul 13 2000 | Denso Corporation | Resin shield circuit device |
6396277, | Oct 01 1999 | SNAP-ON TECHNOLOGIES, INC | Coil on plug signal detection |
6396716, | Sep 20 2001 | UNIVERSITY OF HONG KONG, THE | Apparatus for improving stability and dynamic response of half-bridge converter |
6407514, | Mar 29 2001 | General Electric Company | Non-synchronous control of self-oscillating resonant converters |
6452816, | Jun 01 2000 | Matsushita Electric Industrial Co., Ltd. | Switching power supply with delay circuit for light-load period |
6459175, | Nov 17 1997 | Universal power supply | |
6469914, | Jan 14 1999 | Semiconductor Components Industries, LLC | Universal pulse width modulating power converter |
6469980, | Apr 15 1996 | Matsushita Electric Industrial Co., Ltd. | Optical disk and a recording/reproduction apparatus using multiple address block groups shifted oppositely with multiple address blocks and non-pit data |
6483281, | Feb 11 2000 | Champion Microelectronic Corporation | Low power mode and feedback arrangement for a switching power converter |
6487095, | Oct 31 2001 | International Business Machines Corporation | Multiphase zero-volt-switching resonant DC-DC regulator |
6531854, | Mar 30 2001 | Champion Microelectronic Corp. | Power factor correction circuit arrangement |
6541944, | Feb 11 2000 | Champion Microelectronic Corp. | Low power mode and feedback arrangement for a switching power converter |
6549409, | Aug 21 2000 | Vicor Corporation | Power converter assembly |
6583999, | Jan 25 2002 | Appletec Ltd. | Low output voltage, high current, half-bridge, series-resonant, multiphase, DC-DC power supply |
6605930, | Feb 11 2000 | Champion Microelectronic Corp. | Low power mode and feedback arrangement for a switching power converter |
6618274, | Oct 09 2001 | TDK-Lambda Corporation | Synchronous rectifier controller to eliminate reverse current flow in a DC/DC converter output |
6650552, | May 25 2001 | TDK Corporation | Switching power supply unit with series connected converter circuits |
6654261, | Oct 27 2000 | THE SWITCH CONTROLS AND CONVERTERS, INC | Inverter DC link volts "tooth" modulation scheme |
6657417, | May 31 2002 | CHAMPION MICROELECRONIC CORP ; CHAMPION MICROELECTRONIC CORP | Power factor correction with carrier control and input voltage sensing |
6671189, | Nov 09 2001 | MINEBEA ELECTRONICS CO , LTD | Power converter having primary and secondary side switches |
6674272, | Jun 21 2001 | CHAMPION MICROELECTRONIC CORP | Current limiting technique for a switching power converter |
6721192, | Mar 24 2003 | FAIRCHILD TAIWAN CORPORATION | PWM controller regulating output voltage and output current in primary side |
6775162, | Dec 11 2001 | PLUG POWER INC | Self-regulated cooling system for switching power supplies using parasitic effects of switching |
6894461, | Oct 11 2002 | Analog Devices International Unlimited Company | Bidirectional power conversion with multiple control loops |
6899434, | Sep 05 2002 | Funai Electric Co., Ltd. | Projector and power supply device |
6958920, | Oct 02 2003 | Microchip Technology Incorporated | Switching power converter and method of controlling output voltage thereof using predictive sensing of magnetic flux |
6970366, | Apr 03 2003 | BEL POWER SOLUTIONS INC | Phase-shifted resonant converter having reduced output ripple |
6989997, | Jun 25 2003 | Virginia Polytechnic Institute & State University | Quasi-resonant DC-DC converters with reduced body diode loss |
7035126, | Jun 10 2002 | Comarco Wireless Technologies, Inc. | Programmable power supply capable of receiving AC and DC power input |
7038406, | Feb 07 2003 | COMSTAR AUTOMOTIVE TECHNOLOGIES PRIVATE LIMITED | Bi-directional field control for proportional control based generator/alternator voltage regulator |
7047059, | Aug 18 1998 | Quantum Magnetics, Inc | Simplified water-bag technique for magnetic susceptibility measurements on the human body and other specimens |
7064497, | Feb 09 2005 | National Taiwan University of Science and Technology | Dead-time-modulated synchronous PWM controller for dimmable CCFL royer inverter |
7102251, | Aug 22 2003 | SCHNEIDER ELECTRIC SOLAR INVERTERS USA, INC | Bi-directional multi-port inverter with high frequency link transformer |
7139180, | Sep 15 2004 | Three phase buck power converters having input current control | |
7208833, | Jan 17 2001 | Matsushita Electric Industrial Co., Ltd. | Electronic circuit device having circuit board electrically connected to semiconductor element via metallic plate |
7212420, | Feb 12 2002 | Universal serial bus voltage transformer | |
7235932, | Aug 01 2003 | PURESPECTRUM, INC | High efficiency ballast for gas discharge lamps |
7239532, | Dec 27 2006 | NIKO SEMICONDUCTOR CO , LTD | Primary-side feedback switching power supply |
7274175, | Aug 03 2005 | Multiple output power supply that configures itself to multiple loads | |
7286376, | Nov 23 2005 | Semiconductor Components Industries, LLC | Soft-switching power converter having power saving circuit for light load operations |
7324354, | Jul 08 2005 | BIO-RAD LABORATORIES, INC | Power supply with a digital feedback loop |
7386286, | Jun 01 2001 | ARRIS ENTERPRISES LLC | High frequency low noise phase-frequency detector and phase noise reduction method and apparatus |
7450388, | Jan 16 2002 | Rockwell Automation Technologies, Inc. | Power converter connection configuration |
7499301, | Jul 07 2006 | TINYPLUG TECHNOLOGY SHENZHEN LIMITED | Plugtype power supply unit |
7545256, | May 13 1996 | Round Rock Research, LLC | System and method for identifying a radio frequency identification (RFID) device |
7564706, | Jun 23 2006 | Power factor corrected single-phase AC-DC power converter using natural modulation | |
7570497, | May 26 2006 | POWER INTEGRATIONS, LIMITED | Discontinuous quasi-resonant forward converter |
7596007, | Oct 14 2005 | Astec International Limited | Multiphase DC to DC converter |
7639520, | Feb 26 2007 | NetApp, Inc | Efficient power supply |
8102678, | May 21 2008 | MYPAQ HOLDINGS LTD | High power factor isolated buck-type power factor correction converter |
8125181, | Sep 17 2008 | Toyota Motor Corporation | Method and apparatus for hybrid vehicle auxiliary battery state of charge control |
8155368, | Apr 30 2008 | SERENE GROUP, INC | Shoulder/neck supporting electronic application |
8194417, | Mar 09 2009 | Delta Electronics, Inc. | Two-stage switching power supply |
8213666, | Jun 26 2008 | Microsoft Technology Licensing, LLC | Headphones with embeddable accessories including a personal media player |
8344689, | May 12 2009 | SIVANTOS PTE LTD | Hearing aid and energy charger as well as associated method |
20020008963, | |||
20020011823, | |||
20020036200, | |||
20030035303, | |||
20030112645, | |||
20040062061, | |||
20040183510, | |||
20040228153, | |||
20040252529, | |||
20050024016, | |||
20050036338, | |||
20050105224, | |||
20050117376, | |||
20050138437, | |||
20050194942, | |||
20050225257, | |||
20050254268, | |||
20050270001, | |||
20050281425, | |||
20060002155, | |||
20060022637, | |||
20060109696, | |||
20060152947, | |||
20060176719, | |||
20060213890, | |||
20060232220, | |||
20070007933, | |||
20070040516, | |||
20070051712, | |||
20070120542, | |||
20070138971, | |||
20070247091, | |||
20070247877, | |||
20070263415, | |||
20070287447, | |||
20070298653, | |||
20080018265, | |||
20080043496, | |||
20080191667, | |||
20090034299, | |||
20090196073, | |||
20090231887, | |||
20090290384, | |||
20090290385, | |||
20090300400, | |||
20100039833, | |||
20100110732, | |||
20100289466, | |||
20100317216, | |||
20100322441, | |||
20130148385, | |||
JP10243640, | |||
JP2000083374, | |||
JP2000253648, | |||
JP2004208357, | |||
JP4217869, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 19 2007 | LIU, MARTIN | Flextronics | INVENTION DISCLOSURE FORM SHOWING FUNDING OWNERSHIP | 026571 | /0952 | |
Apr 22 2010 | Flextronics AP, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 09 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 16 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 24 2018 | 4 years fee payment window open |
Aug 24 2018 | 6 months grace period start (w surcharge) |
Feb 24 2019 | patent expiry (for year 4) |
Feb 24 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 24 2022 | 8 years fee payment window open |
Aug 24 2022 | 6 months grace period start (w surcharge) |
Feb 24 2023 | patent expiry (for year 8) |
Feb 24 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 24 2026 | 12 years fee payment window open |
Aug 24 2026 | 6 months grace period start (w surcharge) |
Feb 24 2027 | patent expiry (for year 12) |
Feb 24 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |