electronic devices including a semiconductor device package, a substrate, and first and second solder joints. The semiconductor device package includes a die pad, leads and enhancement elements surrounding the die pad, a chip electrically connected to the leads, and a package body encapsulating the chip, portions of the leads, and portions of the enhancement elements, but leaving exposed at least a side surface of each enhancement element. Side surfaces of the enhancement elements and the package body are coplanar. The substrate includes first pads corresponding to the leads and second pads corresponding to the enhancement elements. The first solder joints are disposed between the first pads and the leads. The second solder joints are disposed between the second pads and the enhancement elements. The second solder joints contact side surfaces of the enhancement elements. The surface area of the second pads is greater than the surface area of the corresponding enhancement elements.
|
1. An electronic device, comprising:
a semiconductor device package including
a die pad;
a plurality of leads disposed about the die pad, each lead including a first outer surface;
a plurality of enhancement elements disposed about the die pad adjacent to edges of the semiconductor device package, each enhancement element including a second outer surface, a surface area of the second outer surface being larger than a surface area of the first outer surface;
a chip disposed on the die pad and electrically connected to the leads;
a package body encapsulating the chip, at least portions of the leads, and at least portions of the enhancement elements; and
a substrate, the substrate including a plurality of first pads corresponding to the leads and a plurality of second pads corresponding to the enhancement elements, a plurality of first solder joints disposed between the first pads and the leads, and a plurality of second solder joints disposed between the second pads and the enhancement elements;
wherein a surface area of each of the second pads is larger than a surface area of a corresponding one of the enhancement elements.
2. The electronic device of
3. The electronic device of
4. The electronic device of
5. The electronic device of
6. The electronic device of
7. The electronic device of
8. The electronic device of
9. The electronic device of
10. The electronic device of
11. The electronic device of
12. The electronic device of
13. The electronic device of
14. The electronic device of
15. The electronic device of
16. The electronic device of
|
This application is a continuation of co-pending U.S. patent application Ser. No. 13/433,061, filed on Mar. 28, 2012, which claims priority to Taiwan Patent Application Serial No. 100123897, filed on Jul. 6, 2011. The priority applications are incorporated herein by reference in their entireties.
The present embodiments relate to semiconductor device packages, and more particularly to semiconductor device packages having a lead frame and related manufacturing methods.
A quad-flat no-leads (QFN) package is a type of semiconductor device package having short signal traces and, thus, fast signal transmission speed. Therefore, QFN packages are well suited to chip packages with high frequency transmission (e.g. high frequency transmission through the RF bandwidth), and have become common for package applications in the wireless field, for example.
In one method of making a conventional QFN package, a lead frame having die pads and leads is provided. Chips, or dies, are configured on the die pads and electrically connected to the leads via bonding wires. The leads, the bonding wires, and the chips are encapsulated and protected by a molding compound, or encapsulant, and the bottom surfaces of the leads are exposed from the encapsulant for electrical connection to an external device, such as a printed circuit board (PCB). A singulation process is then performed to divide the structure into individual QFN packages.
After PCB surface mount, a drop test may be performed to evaluate solder joint reliability between the QFN package and the PCB. During the drop test, the solder joint is usually broken at the corners of the QFN package. Therefore, there is a need to improve the solder joint strength at the corners.
One of the present embodiments comprises an electronic device. The electronic device comprises a semiconductor device package. The semiconductor device package includes a die pad, a plurality of leads disposed about the die pad, and a plurality of enhancement elements disposed about the die pad. Each of the enhancement elements has a substantially triangular outer surface and three side surfaces. The semiconductor device package further includes a chip disposed on the die pad and electrically connected to the leads, and a package body encapsulating the chip, at least portions of the leads and at least portions of the enhancement elements, but leaving exposed at least two of the side surfaces of each enhancement element. The exposed side surfaces of the enhancement elements are coplanar with side surfaces of the package body. The electronic device further comprises a substrate including a plurality of first pads corresponding to the leads and a plurality of second pads corresponding to the enhancement elements. The electronic device further comprises a plurality of first solder joints disposed between the first pads and the leads. The electronic device further comprises a plurality of second solder joints disposed between the second pads and the enhancement elements. A surface area of each of the second pads is larger than a surface area of a corresponding one of the enhancement elements. The second solder joints contact the side surfaces of the enhancement elements.
Another of the present embodiments comprises an electronic device. The electronic device comprises a semiconductor device package. The semiconductor device package includes a die pad and a plurality of leads disposed about the die pad. The semiconductor device package further includes a plurality of enhancement elements disposed symmetrically about the die pad. Each enhancement element including substantially rectangular inner and outer surfaces. The semiconductor device package further includes a chip disposed on the die pad and electrically connected to the leads, and a package body encapsulating the chip, at least portions of the leads and at least portions of the enhancement elements, but leaving exposed at least one side surface of each enhancement element. The exposed side surfaces of the enhancement elements are coplanar with side surfaces of the package body. The electronic device further comprises a substrate including a plurality of first pads corresponding to the leads and a plurality of second pads corresponding to the enhancement elements. The electronic device further comprises a plurality of first solder joints disposed between the first pads and the leads. The electronic device further comprises a plurality of second solder joints disposed between the second pads and the enhancement elements. The enhancement elements include first enhancement elements disposed at corners of the package body and second enhancement elements disposed at a center of each edge of the package body. The second solder joints contact the side surfaces of the enhancement elements.
Another of the present embodiments comprises a method of manufacturing an electronic device. The method comprises providing a semiconductor device package. The semiconductor device package comprises a die pad, a plurality of leads surrounding the die pad, and a plurality of enhancement elements surrounding the die pad. The semiconductor device package further comprises a chip disposed on the die pad and electrically connected to the leads, and a package body encapsulating the chip, portions of the leads and portions of the enhancement elements, but leaving exposed at least a side surface of each enhancement element. The side surface of each enhancement element is coplanar to the side surface of the package body. The method further comprises providing a substrate. The substrate comprises a plurality of first pads corresponding to the leads and second pads corresponding to the enhancement elements. The method further comprises mounting the semiconductor device package to the substrate by first and second solder joints. The first solder joints are disposed between the first pads and the leads. The second solder joints are disposed between the second pads and the enhancement elements. The area of each of the second pads is greater than the area of each of the corresponding enhancement elements.
Common reference numerals are used throughout the drawings and the detailed description to indicate the same elements. The present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings.
Referring to
With reference to
With reference to
With continued reference to
With reference to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In alternative embodiments, the enhancement elements 230a, 230b, 236c, 236d, 236e, 236f may be changed to other forms and/or shapes. However, it is preferred that the surface areas of the second outer surfaces 234a, 237b, 237c, 237d, 237e, 237f, 239d, 239f of the enhancement elements 230a, 230b, 236c, 236d, 236e, 236f are larger than the surface areas of the first outer surface 224 of each lead 220. The ratio of the surface area of each the outer surfaces of the enhancement elements to the surface area of the outer surface of each the lead is larger than or equal to 4. This configuration can enhance the connection strength and improve the solder joint reliability between the semiconductor device package and the PCB.
Referring to
The PCB 20a includes a plurality of enhancement pads 40a, which are located at the corners C of the carrier 200b, and are symmetrically disposed about the die pad 210 as a center. Positions of the enhancement pads 40a of the PCB 20a correspond to positions of the enhancement element portions 236b of the semiconductor device package 100b. The surface area of each enhancement pad 40a is larger than the surface area of the outer surface 237b of each first enhancement element portion 236b.
Referring to
The surface area of the exposed surface 42a of the enhancement pad 40a is larger than the surface area of the exposed surface 32a of the bonding pad 30a. Positions of the bonding pads 30a correspond to positions of the leads 220. Positions of the enhancement pads 40a correspond to positions of the enhancement elements 230b. The enhancement pads 40a extend outside the carrier 200b of the semiconductor device package 100b in the direction away from the chip 300. The exposed surface 42a of each enhancement pad 40a has a width Wd in the direction away from the chip 300. The outer surface 237b of the enhancement element portion 236b of the semiconductor device package 100b has a width Wb in the same direction, and the ratio (Wd/Wb) is preferably greater than or equal to 1.3.
The solder 600 is disposed between the leads 220 of the semiconductor device package 100b and the bonding pads 30a of the PCB 20a. Although not shown in
Referring to
The first enhancement element portions 236h are located at the corners C of the carrier 200h and symmetrically disposed about the die pad 210 as a center. The second enhancement element portions 238h are symmetrically disposed at centers of the edges of the carrier 200h with the die pad 210 as a center. The shapes of the outer surfaces 237h and the inner surfaces 237h′ of the first enhancement element portions 236h are substantially triangular. The shapes of the outer surfaces 239h and the inner surfaces 239h′ of the second enhancement element portions 238h are substantially semicircular.
Positions of the second enhancement pad portions 46b correspond to positions of the second enhancement element portions 238h. A surface area of the exposed surface of the second enhancement pad portion 46b is larger than a surface area of the outer surface 239h of the second enhancement element portion 238h. In addition, the edges of the outer surfaces 239h of the second enhancement element portions 238h are substantially aligned with the lateral edges of the molding compound 500. Positions of the first and second enhancement pad portions 45a, 46b correspond to positions of the first and second enhancement element portions 236h, 238h. The first and second enhancement pad portions 45a, 46b extend outside the carrier 200h of the semiconductor device package 100h in the direction away from the chip 300. The surface area of the exposed surfaces of first and second enhancement pad portions 45a, 46b are larger than the surface area of the outer surfaces the first and second enhancement element portions 236h, 238h respectively. This configuration allows the solder 600 to overflow to the side surfaces of the first and second enhancement element portions 236h, 238h. The overflowed solder 600 can provide additional joint strength and improve the solder joint reliability between the semiconductor device package 100h and the PCB 20b due to the increased contact area between the solder 600 and the package 100h.
While the invention has been described and illustrated with reference to specific embodiments thereof, these descriptions and illustrations do not limit the invention. It should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention as defined by the appended claims. The illustrations may not necessarily be drawn to scale. There may be distinctions between the artistic renditions in the present disclosure and the actual apparatus due to manufacturing processes and tolerances. There may be other embodiments of the present invention which are not specifically illustrated. The specification and the drawings are to be regarded as illustrative rather than restrictive. Modifications may be made to adapt a particular situation, material, composition of matter, method, or process to the objective, spirit and scope of the invention. All such modifications are intended to be within the scope of the claims appended hereto. While the methods disclosed herein have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the invention. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not limitations of the invention.
Tsai, Yu-Fang, Hu, Ping-Cheng, Chiang, Po-Shing
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5847458, | May 21 1996 | Shinko Electric Industries Co., Ltd. | Semiconductor package and device having heads coupled with insulating material |
6001671, | Apr 18 1996 | Tessera, Inc | Methods for manufacturing a semiconductor package having a sacrificial layer |
6238952, | Feb 29 2000 | Advanced Semiconductor Engineering, Inc. | Low-pin-count chip package and manufacturing method thereof |
6242284, | May 05 2000 | Advanced Semiconductor Engineering, Inc. | Method for packaging a semiconductor chip |
6261864, | Jan 28 2000 | Advanced Semiconductor Engineering, Inc. | Low-pin-count chip package and manufacturing method thereof |
6291271, | Nov 19 1999 | Advanced Semiconductor Engineering, Inc. | Method of making semiconductor chip package |
6306685, | Feb 01 2000 | Advanced Semiconductor Engineering, Inc. | Method of molding a bump chip carrier and structure made thereby |
6312974, | Oct 26 2000 | Industrial Technology Research Institute | Simultaneous bumping/bonding process utilizing edge-type conductive pads and device fabricated |
6333252, | Jan 05 2000 | Advanced Semiconductor Engineering, Inc. | Low-pin-count chip package and manufacturing method thereof |
6342730, | Jan 28 2000 | Advanced Semiconductor Engineering, Inc. | Low-pin-count chip package and manufacturing method thereof |
6348726, | Jan 18 2001 | National Semiconductor Corporation | Multi row leadless leadframe package |
6400004, | Aug 17 2000 | Advanced Semiconductor Engineering, Inc. | Leadless semiconductor package |
6451627, | Sep 07 1999 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Semiconductor device and process for manufacturing and packaging a semiconductor device |
6495909, | Jan 05 2000 | Advanced Semiconductor Engineering, Inc. | Low-pin-count chip package and manufacturing method thereof |
6498099, | Jun 10 1998 | UTAC Hong Kong Limited | Leadless plastic chip carrier with etch back pad singulation |
6528893, | Jan 28 2000 | Advanced Semiconductor Engineering, Inc. | Low-pin-count chip package and manufacturing method thereof |
6534330, | Jun 09 2000 | Sanyo Electric Co., Ltd. | Light irradiating device manufacturing method |
6545347, | Mar 06 2001 | UTAC Hong Kong Limited | Enhanced leadless chip carrier |
6586677, | Aug 25 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Plastic integrated circuit device package having exposed lead surface |
6658734, | Aug 04 1997 | Dai Nippon Insatsu Kabushiki Kaisha | Method of manufacturing a circuit member for a resin-sealed semiconductor device |
6664615, | Nov 20 2001 | NATIONAL SEMICONDUCTOR DRIVE; National Semiconductor Corporation | Method and apparatus for lead-frame based grid array IC packaging |
6700188, | Feb 29 2000 | Advanced Semiconductor Engineering, Inc. | Low-pin-count chip package having concave die pad and/or connections pads |
6812552, | Apr 29 2002 | UNISEM M BERHAD | Partially patterned lead frames and methods of making and using the same in semiconductor packaging |
6861295, | Jan 28 2000 | Advanced Semiconductor Engineering, Inc. | Low-pin-count chip package and manufacturing method thereof |
6927096, | Nov 15 2002 | RENESAS SEMICONDUCTOR PACKAGE & TEST SOLUTIONS CO , LTD | Method of manufacturing a semiconductor device |
6927483, | Mar 07 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package exhibiting efficient lead placement |
6993594, | Apr 19 2001 | Method, product, and apparatus for requesting a resource from an identifier having a character image | |
6995459, | Sep 09 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with increased number of input and output pins |
7049177, | Jan 28 2004 | UTAC HEADQUARTERS PTE LTD | Leadless plastic chip carrier with standoff contacts and die attach pad |
7060535, | Oct 29 2003 | UTAC HEADQUARTERS PTE LTD | Flat no-lead semiconductor die package including stud terminals |
7183630, | Apr 15 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Lead frame with plated end leads |
7247526, | Jun 10 1998 | UTAC HEADQUARTERS PTE LTD | Process for fabricating an integrated circuit package |
7271032, | Jun 10 1998 | UTAC HEADQUARTERS PTE LTD | Leadless plastic chip carrier with etch back pad singulation |
7608930, | Apr 05 2007 | Rohm Co., Ltd. | Semiconductor device and method of manufacturing semiconductor device |
7683461, | Jul 21 2006 | STATS CHIPPAC PTE LTE | Integrated circuit leadless package system |
7807498, | Jul 31 2007 | Seiko Epson Corporation | Substrate, substrate fabrication, semiconductor device, and semiconductor device fabrication |
8076787, | Oct 09 2008 | Renesas Electronics Corporation | Semiconductor device, manufacturing method thereof, and manufacturing method of semiconductor module |
8115825, | Feb 20 2008 | Apple Inc. | Electronic device with two image sensors |
8120152, | Mar 14 2008 | Advanced Semiconductor Engineering, Inc | Advanced quad flat no lead chip package having marking and corner lead features and manufacturing methods thereof |
8377750, | Dec 14 2010 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Integrated circuit packaging system with multiple row leads and method of manufacture thereof |
8492883, | Mar 14 2008 | Advanced Semiconductor Engineering, Inc | Semiconductor package having a cavity structure |
8502363, | Jul 06 2011 | Advanced Semiconductor Engineering, Inc. | Semiconductor device packages with solder joint enhancement element and related methods |
20030006055, | |||
20030025201, | |||
20050247944, | |||
20070018291, | |||
20070052076, | |||
20070059863, | |||
20070085199, | |||
20070181983, | |||
20080067649, | |||
20080258278, | |||
20090230524, | |||
20100044843, | |||
20100290202, | |||
20110079885, | |||
20110108966, | |||
CN101442035, | |||
CN101540309, | |||
CN101694837, | |||
CN102044510, | |||
JP11195733, | |||
JP2001024135, | |||
JP5166985, | |||
TW423135, | |||
WO2007074601, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 29 2013 | Advanced Semiconductor Engineering, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 01 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 30 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 31 2018 | 4 years fee payment window open |
Oct 01 2018 | 6 months grace period start (w surcharge) |
Mar 31 2019 | patent expiry (for year 4) |
Mar 31 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 31 2022 | 8 years fee payment window open |
Oct 01 2022 | 6 months grace period start (w surcharge) |
Mar 31 2023 | patent expiry (for year 8) |
Mar 31 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 31 2026 | 12 years fee payment window open |
Oct 01 2026 | 6 months grace period start (w surcharge) |
Mar 31 2027 | patent expiry (for year 12) |
Mar 31 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |