An aircraft capable of thrust-borne flight can be automatically retrieved, serviced, and launched. In one embodiment, for retrieval, the aircraft drops a tether and pulls the tether at low relative speed into contact with a horizontal guide. The tether is pulled across the guide until the guide is captured b an end effector. The tether length is adjusted as necessary, and the aircraft swings on the guide to hang in an inverted position. Translation of the tether along the guide then brings the aircraft to a docking carriage, in which the aircraft parks for servicing. For launch, the carriage is swung upright, the end effector is released from the guide, and the aircraft thrusts into free flight. A full ground-handling cycle can thus be accomplished automatically with a simple, economical apparatus. It can be used with low risk of damage and requires moderate accuracy in manual or automatic flight control.

Patent
   9004402
Priority
Mar 26 2010
Filed
Sep 23 2013
Issued
Apr 14 2015
Expiry
May 14 2031
Extension
74 days
Assg.orig
Entity
Small
46
106
currently ok
1. An apparatus comprising:
(a) a suspension support;
(b) a docking carriage supported by the suspension support and configured to receive a flying object:
(c) a flying object capturer suspended by the suspension support, the flying object capturer including at least two teeth configured to capture a portion of the fling object therebetween; and
(d) a motor operatively coupled to the flying object capturer and configured to move the flying object capturer relative to the suspension support.
20. An apparatus comprising:
(a) a suspension support;
(b) a docking carriage supported b the suspension support and configured to receive a flying object;
(c) a flying object capturer suspended by the suspension support, the flying object capturer including at least two teeth configured to capture a portion of the flying object therebetween; and
(d) a motor operatively coupled to the flying object capturer and configured to, after the portion of the flying object is captured, move the flying object capturer toward the suspension support until the docking carriage receives the flying object.
21. An apparatus comprising:
(a) a suspension support;
(b) a docking carriage supported by the suspension support and configured to receive a flying object;
(c) a flying object capturer suspended by the suspension support in a substantially horizontal orientation, the flying object capturer including a first set of two teeth and a second different set of two teeth, wherein the teeth of the first set are configured to capture a portion of the flying object therebetween and the teeth of the second set are configured to capture the portion of the flying, object therebetween; and
(d) a motor operatively coupled to the flying object capturer and configured to, after the portion of the flying object is captured, move the flying object capturer toward the suspension support until the docking carriage receives the flying object.
2. The apparatus of claim 1, wherein the at least two teeth of the flying object capturer include a first set of two teeth and a second different set of two teeth, wherein the teeth of the first set are configured to capture the portion of the flying, object therebetween and the teeth of the second set are configured to capture the portion of the flying object therebetween.
3. The apparatus of claim 1, which includes a guide supported by the suspension support, the guide supporting the flying object capturer.
4. The apparatus of claim 3, wherein the motor is configured to move the flying object capturer relative to the guide.
5. The apparatus of claim 1, wherein the suspension support suspends the flying object capturer in a substantially horizontal orientation.
6. The apparatus of claim 1, wherein the portion of the flying object includes a flexible member.
7. The apparatus of claim 1, wherein the motor is configured to, after the portion of the flying object is captured, move the flying object capturer toward the suspension support until the docking carriage receives the flying object.
8. The apparatus of claim 1, Wherein the docking carriage includes at least one constraining surface configured to guide the flying object into the docking carriage.
9. The apparatus of claim 8, wherein the at least one constraining surface includes at least one of: an arm a longeron, and a wing trailing-edge support.
10. The apparatus of claim 1, wherein the docking carriage is configured to service the flying object after receiving the flying object.
11. The apparatus of claim 10, wherein said servicing is performed automatically.
12. The apparatus of claim 10, wherein the docking carriage is configured to service the flying object via a fueling probe insertable into a receptacle of the flying object.
13. The apparatus of claim 12, wherein the fueling probe is configured to add fuel to the flying object and remove fuel from the flying object.
14. The apparatus of claim 10, wherein the docking carriage is configured to service the flying object via an oil connector insertable into a receptacle of the flying object.
15. The apparatus of claim 14, Wherein the oil connector is configured to add oil to the flying object and remove oil from the flying object.
16. The apparatus of claim 1, wherein the docking carriage is configured to service the flying object via an electricity connector insertable into a receptacle of the flying object.
17. The apparatus of claim 16, wherein the electricity connector is configured to charge a power source of the flying, object.
18. The apparatus of claim 1, which includes one or more sensors configured to measure at least one of: (a) a position of the flying object relative to the apparatus, (b) a velocity of the flying object relative to the apparatus, and (c) an orientation of the flying object.
19. apparatus of claim 1, wherein the flying object capturer includes a chain.

This patent application is a continuation of, and claims priority to and the benefit of, U.S. patent application Ser. No. 13/037,436, filed on Mar. 1, 2011, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/317,803, filed on Mar. 26, 2010, now expired, the entire contents of each of which are incorporated herein by reference.

The present application relates to the following commonly-owned pending patent applications: U.S. patent application Ser. No. 13/743,069, filed on Jan. 15, 2013, U.S. patent application Ser. No. 13/899,172, filed on May 21, 2013, U.S. patent application Ser. No. 13/901,283, filed on May 23, 2013, U.S. patent application Ser. No. 13/901,295, filed on May 23, 2013, U.S. patent application Ser. No. 13/717,147, filed on Dec. 17, 2012, U.S. patent application Ser. No. 13/900,191, filed on May 22, 2013, and U.S. patent application Ser. No. 13/527,177, filed on Jun. 19, 2012.

1. Field of Invention

The present invention addresses launch, retrieval, and servicing of a hovering aircraft, especially in turbulent winds or onto an irregularly-moving platform, such as a ship in a rough sea. The invention is especially suited to unmanned aircraft of small size. It allows for a fully automated operations cycle, whereby the aircraft can be repeatedly launched, retrieved, serviced, and re-launched, without manual intervention at any point, and while requiring only modest accuracy in piloting.

2. Description of Prior Art

Hovering aircraft, be they helicopters, thrust-vectoring jets, “tail-sitters”, or other types, usually land by gently descending in free thrust-borne flight onto a landing surface, coming to rest on an undercarriage of wheels, skids, or legs. This elementary technique can be problematic in certain situations, as for example when targeting a small, windswept landing pad on a ship moving in a rough sea. The well-known Beartrap or RAST (Stewart & Baekken 1968) as well as the harpoon-and-grid system (Wolters & Reimering 1994) are used to permit retrieval with acceptable safety in such conditions. These systems require an expensive and substantial plant in the landing area, as well as manual operations coordinated between helicopter and shipboard crew. Furthermore the helicopter must carry a complete undercarriage in addition to the components necessary for capturing the retrieval apparatus.

Desirable improvements relative to such existing systems include (a) simplification of apparatus, and (b) automated rather than manual operation. Ideally automation would encompass not only retrieval but also subsequent refueling and launch. This would be particularly desirable for an unmanned aircraft, whose operations cycle could then be made fully autonomous. Some experimental work toward this objective has been done for a hovering aircraft by Mullens, et al. (2004), but with limited success even with light wind and a stationary base. The present invention by contrast provides for fully automated operation in calm or rough conditions, using apparatus which is simple, portable, and suitable for a small vessel or similarly confined base.

In one embodiment of the present invention, an aircraft would proceed automatically from free thrust-borne flight through retrieval, servicing, and subsequent launch through the following sequence of actions.

Since loads can be low during retrieval from hover, the apparatus can be light and portable. Furthermore, easy targeting makes the technique well-suited for both manual control and economical automation.

Additional features and advantages are described herein, and will be apparent from the following Detailed Description and the figures.

FIGS. 1A, 1B, 1C, 1D, 1E, 1F, and 1G are a series of perspective views of an embodiment of the present invention for a hovering “tail-sitter” aircraft, showing the aircraft sequentially:

    • a. contacting a horizontal guide with a tether, the guide in this case taking the form of a cylindrical beam;
    • b. capturing the guide;
    • c. swinging around the guide into an inverted position;
    • d. entering a docking carriage;
    • e. swinging in the docking carriage back to an upright position;
    • f. starting its engine, and releasing its hook from the guide; and
    • g. launching into free flight.

FIG. 2 is a perspective view of one embodiment of a hook used to attach the tether to a horizontal guide beam or cable.

FIG. 3 is a perspective view of another embodiment of a hook which incorporates rolling elements to enable translation with low friction along a horizontal guide.

FIGS. 4A, 4B, and 4C are a series of perspective views of a representative docking carriage, showing:

    • a. the carriage by itself;
    • b. an aircraft entering the carriage; and
    • c. the carriage and aircraft swinging around the horizontal guide.

FIGS. 5A and 5B are a pair of perspective views of a representative fueling connection, showing the connection when (a) open; and (b) mated.

FIGS. 6A, 6B, and 6C are a series of perspective views showing one mechanism for releasing the hook of FIG. 2 from a cylindrical horizontal guide.

FIG. 7 is a perspective view of an embodiment of the base station, in which the horizontal guide is a cable.

FIG. 8 is a perspective view of one mechanism for releasing the hook of FIG. 3 from a cable guide as in FIG. 7.

FIG. 9 is a diagrammatic perspective of an embodiment of the base station, in which the horizontal guide takes the form of a chain which runs on a bar, and in which the chain is captured by the aircraft using a ball on the end of the tether.

FIG. 10 is a diagrammatic perspective view showing one mechanism for releasing the ball of FIG. 9 from the chain.

FIG. 1 shows an illustrative embodiment of the present invention, as used with a “tailsitter” or “tilt-body” aircraft which adopts a nose-vertical orientation for thrust-borne flight. For thrust, in this example, aircraft 1 uses a main rotor 2, and for attitude control it applies a combination of variable blade pitch on the main rotor with variable power on wing-tip thrusters 3.

In preparation for retrieval, the aircraft uses an onboard winch to extend a tension element such as a lightweight tether 4 having an effector or end fitting 5, which in this embodiment takes the form of a hook as shown in FIG. 2. The aircraft approaches a horizontal guide comprising a crossbar 6 along an approximately horizontal path at low relative speed. This brings the tether into contact with the crossbar as shown in FIG. 1(a). In one embodiment a screen 7 or other suitable fixture may be suspended below the crossbar to damp pendulous oscillations of the tether, which would otherwise cause contact with the crossbar to be intermittent. After contact is made, the aircraft can draw the hook 5 against the crossbar by some combination of (1) continued translation along the approach path; (2) climb; or (3) retraction of the tether. The crossbar is thereby pulled through the gate 8 of the hook as shown in FIG. 2, and the crossbar is then captured by the aircraft as shown in FIG. 1(b).

Note, however, that if the hook fails to capture the crossbar then the aircraft will continue unimpeded in thrust-borne free flight, and can return for another approach.

In most practical cases the tether will be attached to the aircraft below the aircraft mass centre. Hence, once attached to the horizontal guide, the aircraft can be maintained upright only by appropriate application of active control to counter inverted-pendulum instability. Control authority, however, may be insufficient to reject disturbances caused by wind gusts or base motion (as on a rocking ship). Sensitivity to such disturbances increases as tether length decreases. A tether attachment on the aircraft, as illustrated in FIG. 1, is therefore problematic if the aircraft is required to remain upright after capture. However this problem is turned into a virtue by having the aircraft swing inverted as shown in FIG. 1(c). In the inverted position, hanging from the guide, the aircraft can handle relatively large disturbances. The swing can be done immediately after capture, or later. For example, the aircraft may rotate after the tether is shortened while the aircraft remains upright. Inverting with a short tether has the advantage of minimizing the crossbar height necessary to clear underlying obstacles. Once inverted, the aircraft can reduce thrust while maintaining attitude-control authority.

The next step is to translate along the guide toward a docking carriage 12. If the guide has sufficiently low sliding friction, or if the hook has rollers or effective rolling elements, as illustrated in FIG. 3, then the aircraft can pull the tether along-guide by tilting its thrust axis. Alternatively, the guide can incorporate a mechanism for translating the tether. For example, the crossbar of FIG. 1 and FIG. 2 is wound with a screw thread 9 whose crests engage the hook. Spinning the crossbar, for example with a motor 10, thus draws the aircraft along the crossbar toward a docking carriage 12. The docking carriage is shown in detail in FIG. 4(a).

As the aircraft approaches the docking carriage, the aircraft can be guided into alignment by various constraining surfaces, including for example arms 11, longerons 13, and wing trailing-edge supports 14, as shown in FIG. 1(d) and FIG. 4(b). When the tether reaches an appropriate position along the crossbar, the aircraft can winch itself firmly and precisely into the docking carriage. The aircraft's powerplant may then be switched off.

In the embodiment of FIG. 1, the docking carriage includes a linkage 16, as shown in more detail in FIG. 5, whereby winching the aircraft into the carriage causes a fueling probe 17 to be inserted into a receptacle 18 on the aircraft. Connections for oil or electricity could be made similarly, or by a suitable mechanism actuated independently after docking is complete. The aircraft can be serviced through such connections at any time while in the docking carriage. For example, fuel may be pumped from a tank 19 on the base station through a supply line 42 into the aircraft. The aircraft or docking station could include appropriate sensors for measuring flow and quantity so that a specified amount of fuel could be automatically on- or off-loaded.

In preparation for launch of the aircraft, the docking carriage must be swung upright. In the embodiment of FIG. 1(e) and FIG. 4(c), this is done by a telescoping actuator 20 and linkage 21. As the carriage swings, the guide arms 11 rotate under gravity around hinges 22, thus clearing a path for the aircraft to launch without fouling the empennage 23. The aircraft meanwhile remains constrained by the longerons 13 and wing supports 14.

When convenient, the aircraft powerplant could be started by an onboard motor, or by an external motor coupled to the engine by a suitable linkage. Pre-launch checks could then be executed automatically.

For launch, the hook 5 must be released from the guide 6. One method for hook release is shown in FIG. 6. First, the tether is extended so that a patch of Velcro or like material 26 on the hook's gate 8 comes into contact with a mating pad 27 wrapped around the crossbar 6, as shown in FIG. 6(a). Then the motor 10 slowly spins the crossbar 6. Meanwhile, the material 26 on the hook's gate 8 and the mating pad 27 remain in contact, and so in effect “unwrap” the gate from the crossbar, as shown in FIG. 6(b). Hence the hook drops away from the crossbar, and can be retracted into the aircraft as illustrated in FIG. 6(c).

The aircraft is then restrained only by gravity and the remaining carriage constraints. These could be configured to have some appropriate break-out force, so that the aircraft could exit into free flight only if it had some selected excess of thrust over weight. This would ensure that, upon pulling free of the docking carriage, the aircraft would accelerate briskly away from the base station and any nearby obstacles. The carriage 12 would then be swung to the inverted position in preparation for the next retrieval.

For automated operation, the aircraft and base station could each be equipped with satellite navigation or comparable equipment for measurement of relative position and velocity in three dimensions, using antennas on the aircraft 28 and on a reference point 29 near the docking carriage. Each could also have magnetic or inertial sensors for measurement of orientation, as well as appropriate mechanisms for computation, power supply, and communication.

Other illustrative embodiments are shown in FIG. 7 through FIG. 10. The embodiment of FIG. 7 uses a tensioned cable 30 as the horizontal guide. This has the advantage of being light and easily packed for transport. The cable could be strung from the docking carriage to a support pole 31, or to a support-of-opportunity, such as a tree. The apparatus would be used as previously described, with the aircraft using thrust-tilt to pull a rolling-element hook, such as the one shown in FIG. 3, along the guide. For hook release the end of the cable could be fitted with a concentric cylindrical section 32, as shown in detail by FIG. 8. The hook would be pulled over the cylindrical section as the aircraft entered the docking carriage. The aircraft could then be released by the same sequence of steps as described with respect to FIG. 6, with the cylindrical section being spun by the motor 10.

FIG. 9 shows a further alternative embodiment in which the horizontal guide is formed by a chain 33 on a bar 34. One advantage of this embodiment is that the end-effector on the tether can be a simple bob 37 rather than the hook as in FIG. 2 or FIG. 3. For retrieval, the aircraft 1 deploys its tether 4 and draws it at low relative speed across the bar. The tether enters one of the apertures formed by teeth 35 attached to the links of the chain, and thence is channeled into the slot 36 between the teeth. The tether is then pulled through the slot until the bob meets the teeth. To complete capture, the aircraft must then swing inverted on the side of the bar opposite the ball. Note that this constraint does not apply with the embodiments of FIG. 1 and FIG. 7, in which capture is completed before inversion, and which allow the aircraft to invert on either side of the bar.

After inversion, the chain is retracted by a motor 10 into a stowage area 38 until the ball reaches the vicinity of the docking carriage 12. The aircraft can then park as described above. The carriage is then swung upright, which must be done in the direction that reverses the aircraft inversion (again this condition does not apply with the embodiments of FIG. 1 and FIG. 7). The ball can then be released. This could be done as shown in FIG. 10, whereby further retraction of the chain 33 pulls the tether along a ramp 39, which ejects the ball 37 from the teeth 35. The aircraft can then retract the tether, and launch as described earlier.

It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

McGeer, Brian Theodore, McMillan, Damon Lucas, Stafford, John William, Heavey, III, Robert Joseph

Patent Priority Assignee Title
10144511, Apr 02 2013 Hood Technology Corporation Helicopter-mediated system and method for launching and retrieving an aircraft
10183741, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10293929, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10399702, Mar 15 2016 Aerovel Corporation Capture and launch apparatus and method of using same for automated launch, retrieval, and servicing of a hovering aircraft
10414493, Jul 11 2014 Aerovel Corporation Apparatus and method for automated launch, retrieval, and servicing of a hovering aircraft
10457389, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10501176, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10538318, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10538319, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10549851, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10569868, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10577094, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10583920, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10589851, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10597149, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10633085, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10696385, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10696388, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10696419, Apr 02 2013 Hood Technology Corporation Helicopter-mediated system and method for launching and retrieving an aircraft
10696420, Aug 17 2016 Hood Technology Corporation Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft into and from free flight
10730615, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10745121, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10752345, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10752357, Mar 22 2016 Hood Technology Corporation Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft into and from free flight
10836477, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10899441, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
10988257, May 11 2017 Hood Technology Corporation Aircraft-retrieval system
11027844, Sep 06 2017 Hood Technology Corporation Rotorcraft-assisted system for launching and retrieving a fixed-wing aircraft into and from free flight
11204612, Jan 23 2017 Hood Technology Corporation Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft
11235892, May 22 2019 Hood Technology Corporation Aircraft retrieval system and method
11286059, Apr 02 2013 Hood Technology Corporation Helicopter-mediated system and method for launching and retrieving an aircraft
11299264, Apr 02 2013 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
11305888, Mar 15 2016 Aerovel Corporation Capture and launch apparatus and method of using same for automated launch, retrieval, and servicing of a hovering aircraft
11312492, Nov 09 2017 Hood Technology Corporation Rotorcraft-assisted systems and methods for launching and retrieving a fixed-wing aircraft into and from free flight
11319068, Jul 11 2014 Aerovel Corporation Apparatus and method for automated launch, retrieval, and servicing of a hovering aircraft
11414187, Sep 06 2017 Hood Technology Corporation Parasail-assisted systems and methods for launching and retrieving a fixed-wing aircraft into and from free flight
11524797, May 11 2017 Hood Technology Corporation Aircraft-retrieval system
11608191, Aug 17 2016 Hood Technology Corporation Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft into and from free flight
11639236, Sep 06 2017 Hood Technology Corporation Apparatus and method for launching a fixed-wing aircraft into free flight
11667398, Sep 06 2017 Hood Technology Corporation Multicopter-assisted systems and methods for launching and retrieving a fixed-wing aircraft into and from free flight
11697509, May 22 2019 Hood Technology Corporation Aircraft retrieval system and method
11897628, Sep 06 2017 Hood Technology Corporation Rotorcraft-assisted system for launching and retrieving a fixed-wing aircraft into and from free flight
9221557, Mar 07 2013 Lockheed Martin Corporation UAV retrieval system and method
9434481, Sep 23 2013 Aerovel Corporation Apparatus and method for launch and retrieval of a hovering aircraft
9656765, Apr 02 2013 Hood Technology Corporation Helicopter-mediated system and method for launching and retrieving an aircraft
D903005, Aug 07 2019 Water rocket
Patent Priority Assignee Title
1144505,
1306860,
1383595,
1499472,
1582188,
1625020,
1686298,
1716670,
1731091,
1748663,
1836010,
1848828,
1912723,
2415071,
2435197,
2448209,
2488050,
2488051,
2552115,
2807429,
3351325,
3785316,
3980259, Apr 03 1974 British Aerospace Public Limited Company Aircraft recovery methods
4079901, Apr 07 1976 All American Industries, Inc. Launching apparatus for flying device
4116408, Oct 29 1974 Soloy Conversions, Ltd. Portable heliport
4123020, Feb 23 1976 VTOL launching and retrieval systems
4147317, Jun 23 1977 All American Industries, Inc. Mobile RPV landing deck
4311290, Nov 01 1979 The United States of America as represented by the Secretary of the Navy Arrestment system
4575026, Jul 02 1984 The United States of America as represented by the Secretary of the Navy Ground launched missile controlled rate decelerator
4680962, Jan 20 1984 Fluid flow rate and direction measuring apparatus
4753400, Feb 13 1987 PIONEER AEROSPACE CORPORATION, C O WALTER, CONSTON, ALEXANDER & GREEN, P C , 90 PARK AV , NEW YORK, NY 10016, A DE CORP Shipboard air vehicle retrieval apparatus
4790497, Jun 05 1987 Point-landing method for non vertical take off and landing flying objects
4842222, Sep 19 1988 Kite load-releasing device
5039034, Jun 01 1987 Indal Technologies Inc. Apparatus for capturing, securing and traversing remotely piloted vehicles and methods therefor
5042750, Nov 16 1989 ENGINEERED ARRESTED SYSTEMS CORP Aircraft arresting system
5054717, May 03 1989 GEC-Marconi Limited Aircraft capture systems
5092540, Jun 01 1987 Indal Technologies Inc. Apparatus for capturing, securing and traversing remotely piloted vehicles and methods therefor
5687930, Feb 02 1989 Indal Technologies Inc. System and components useful in landing airborne craft
5799900, Jul 15 1996 Advanced Product Development, LLC Landing and take-off assembly for vertical take-off and landing and horizontal flight aircraft
5806795, Mar 13 1996 CALZONI S P A Apparatus for manoeuvring helicopters in specially prepared areas of zones, provided with a movable frame on a cross-piece
6264140, Jun 08 1999 INSITU GROUP, THE Method for retrieving a fixed-wing aircraft without a runway
6824102, Mar 10 2003 AIRBORNE SYSTEMS NA INC Parafoil mid-air retrieval
6874729, Jul 23 1999 ADVANCED AEROSPACE TECHNOLOGIES, INC Launch and recovery system for unmanned aerial vehicles
6961018, Oct 06 2003 Insitu, Inc Method and apparatus for satellite-based relative positioning of moving platforms
7066430, Jan 17 2003 Insitu, Inc Methods and apparatuses for capturing and recovering unmanned aircraft, including extendable capture devices
7097137, Jul 23 1999 ADVANCED AEROSPACE TECHNOLOGIES, INC Launch and recovery system for unmanned aerial vehicles
7104495, Jan 17 2003 Insitu, Inc Methods and apparatuses for launching, capturing, and storing unmanned aircraft, including a container having a guide structure for aircraft components
7121507, Jan 17 2003 Insitu, Inc Methods and apparatuses for capturing and storing unmanned aircraft, including methods and apparatuses for securing the aircraft after capture
7140575, Jan 17 2003 Insitu, Inc Methods and apparatuses for launching unmanned aircraft, including methods and apparatuses for releasably gripping aircraft during launch
7143974, Apr 01 2003 Insitu, Inc Methods and apparatuses for launching airborne devices along flexible elongated members
7143976, Feb 04 2005 Lockheed Martin Corp. UAV arresting hook for use with UAV recovery system
7152827, Jan 17 2003 Insitu, Inc Methods and apparatuses for launching, capturing, and storing unmanned aircraft, including a container having a guide structure for aircraft components
7165745, Jan 17 2003 Insitu, Inc Methods and apparatuses for launching unmanned aircraft, including releasably gripping aircraft during launch and braking subsequent grip motion
7175135, Jan 17 2003 Insitu, Inc Methods and apparatuses for capturing unmanned aircraft and constraining motion of the captured aircraft
7219856, Feb 04 2005 Lockheed Martin Corporation UAV recovery system
7264204, Dec 12 2005 The United States of America as represented by the Secretary of the Navy Unmanned aerial vehicle catcher
7344108, Jun 03 2004 The Boeing Company Landing assist apparatus interface bulkhead and method of installation
7360741, Jan 17 2003 Insitu, Inc. Methods and apparatuses for launching unmanned aircraft, including releasably gripping aircraft during launch and breaking subsequent grip motion
7410125, May 05 2005 Lockheed Martin Corporation Robotically assisted launch/capture platform for an unmanned air vehicle
7464650, Mar 17 2006 Lockheed Martin Corporation Ground handling system for an airship
7510145, Jan 06 2006 Lockheed Martin Corporation UAV recovery system II
7562843, Nov 12 2003 Robonic Ltd Oy Method of launching a catapult, catapult, and locking device
7712702, Jan 17 2003 Insitu, Inc. Methods and apparatuses for launching unmanned aircraft, including releasably gripping aircraft during launch and breaking subsequent grip motion
7954758, Aug 24 2006 Aerovel Corporation Method and apparatus for retrieving a hovering aircraft
8245968, Aug 24 2006 Aeroval Corporation Method and apparatus for retrieving a hovering aircraft
8276844, Jul 31 2006 ELBIT SYSTEMS LTD Unmanned aerial vehicle launching and landing system
8348193, Aug 24 2006 Aerovel Corporation Method and apparatus for retrieving a hovering aircraft
8453966, Feb 12 2009 Aerovel Corporation Method and apparatus for automated launch, retrieval, and servicing of a hovering aircraft
8464981, Jan 26 2011 Infoscitex Corporation Unmanned aerial vehicle(UAV) recovery system
968339,
20020100838,
20030222173,
20040256519,
20050133665,
20050151014,
20050178894,
20050178895,
20050189450,
20050230536,
20060065780,
20060102783,
20060175463,
20060175466,
20060249623,
20070051849,
20070075185,
20070158498,
20070252034,
20080156932,
20080203220,
20090224097,
20110024559,
20110133024,
20110233329,
20120187243,
20120223182,
20120273612,
20130161447,
CA781808,
CA839101,
EP2186728,
EP472613,
GB2071031,
WO107318,
WO2008015663,
WO2013171735,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 18 2011HEAVEY, ROBERT JOSEPH, IIIAerovel CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0313100681 pdf
Feb 18 2011STAFFORD, JOHN WILLIAMAerovel CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0313100681 pdf
Feb 20 2011MCMILLAN, DAMON LUCASAerovel CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0313100681 pdf
Feb 21 2011MCGEER, BRIAN THEODOREAerovel CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0313100681 pdf
Sep 23 2013Aerovel Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 20 2018M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Nov 14 2022M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Nov 14 2022M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity.


Date Maintenance Schedule
Apr 14 20184 years fee payment window open
Oct 14 20186 months grace period start (w surcharge)
Apr 14 2019patent expiry (for year 4)
Apr 14 20212 years to revive unintentionally abandoned end. (for year 4)
Apr 14 20228 years fee payment window open
Oct 14 20226 months grace period start (w surcharge)
Apr 14 2023patent expiry (for year 8)
Apr 14 20252 years to revive unintentionally abandoned end. (for year 8)
Apr 14 202612 years fee payment window open
Oct 14 20266 months grace period start (w surcharge)
Apr 14 2027patent expiry (for year 12)
Apr 14 20292 years to revive unintentionally abandoned end. (for year 12)