A method of treating an object with radiation that includes generating volumetric image data of an area of interest of an object and emitting a therapeutic radiation beam towards the area of interest of the object in accordance with a reference plan. The method further includes evaluating the volumetric image data and at least one parameter of the therapeutic radiation beam to provide a real-time, on-line or off-line evaluation and on-line or off-line modification of the reference plan.
|
44. A planning and control system for radiotherapy comprising:
a system that captures and evaluates parameters of a volumetric image of an area of interest of an object, a therapeutic radiation beam directed towards said area of interest of said object in accordance with a reference plan, and an image of said area of interest formed from said therapeutic radiation beam so as to provide 1) a real-time evaluation of said reference plan and 2) a real-time modification of said reference plan, wherein real-time is defined to be a time period when said therapeutic radiation beam is emitted towards said area of interest of said object, wherein said system constructs a treatment dose based on said captured parameters of said volumetric image and said therapeutic radiation beam and estimates a final treatment dose in said area of interest by performing parameter estimation for random processes of patient anatomical variation; and
a monitor that displays information based on one or more of the captured parameters of said volumetric image and said therapeutic radiation beam.
82. A method of treating an object with radiation, comprising:
planning on emitting a therapeutic radiation beam towards an area of interest of an object in accordance with a reference plan during a real-time time period when said object is on-line;
generating on-line volumetric image data of said area of interest of said object during said real-time time period when said object is on-line, and off-line volumetric image data of said area of interest of said object during a non-real time off-line time period, wherein real-time period is defined to be a time period when said therapeutic radiation beam is emitted towards said area of interest of said object;
generating an image based on said therapeutic radiation beam;
altering said reference plan based on said image based on said therapeutic radiation beam and one or more of said on-line and off-line volumetric image data;
constructing a treatment dose received in said area of interest; and
estimating a final treatment dose in said area of interest by performing parameter estimation for random processes of patient anatomical variation.
62. A method of planning and controlling a radiation therapy session, the method comprising:
capturing and evaluating parameters of a volumetric image of an area of interest of an object, a therapeutic radiation beam directed towards said area of interest of said object in accordance with a reference plan, and an image of said area of interest formed from said therapeutic radiation beam so as to provide 1) a real-time evaluation and 2) a real-time modification of said reference plan, wherein real-time is defined to be a time period when said therapeutic radiation beam is emitted towards said area of interest of said object;
planning and controlling a radiation therapy session based on said real-time evaluation;
displaying information based on one or more of said captured parameters of said volumetric image and said therapeutic radiation beam;
constructing a treatment dose based on said captured parameters of said volumetric image and said therapeutic radiation beam; and
estimating a final treatment dose in said area of interest by performing parameter estimation for random processes of patient anatomical variation.
75. A system for radiotherapy comprising:
a radiation source that is programmed to emit a therapeutic radiation beam towards an area of interest of an object in accordance with a reference plan during a real-time time period when said object is on-line;
a first imaging system that generates on-line volumetric image data of said area of interest of said object during said real-time time period when said object is on-line, and off-line volumetric image data of said area of interest of said object during a non-real time off-line time period, wherein real-time is defined to be a time period when said therapeutic radiation beam is emitted towards said area of interest of said object;
a second imaging system that generates an image based on said therapeutic radiation beam; and
a processing system (a) that receives and processes said image based on said therapeutic radiation beam and one or more of said on-line and off-line volumetric image data to alter said reference plan, (b) that constructs a treatment dose received in said area of interest, and (c) that estimates a final treatment dose in said area of interest by performing parameter estimation for random processes of patient anatomical variation.
27. A method of treating an object with radiation, comprising:
generating volumetric image data of an area of interest of an object, wherein said generating volumetric image data comprises:
emitting x-rays towards said object; and
detecting x-rays penetrating through said area of interest of said object and generating signals to generate said volumetric image data of said area of interest of said object;
emitting a therapeutic radiation beam towards said area of interest of said object in accordance with a reference plan;
generating an image based on said therapeutic radiation beam;
evaluating said volumetric image data, said image based on said therapeutic beam, and at least one parameter of said therapeutic radiation beam to provide 1) a real-time evaluation of said reference plan and 2) a real-time modification of said reference plan, wherein real-time is defined to be a time period when said therapeutic radiation beam is emitted towards said area of interest of said object;
constructing a treatment dose received in said area of interest; and
estimating a final treatment dose in said area of interest by performing parameter estimation for random processes of patient anatomical variation.
1. A system for radiotherapy comprising:
an imaging system that generates volumetric image data of an area of interest of an object, wherein said imaging system comprises a cone-beam computed tomography system comprising:
an x-ray source that emits x-rays towards said object;
a first detector for receiving x-rays penetrating through said area of interest of said object and generating signals to generate said volumetric image data of said area of interest of said object, wherein said first detector receives fan-shaped x-rays after they pass through said area of interest of said object, said first detector generating a first imaging signal for each of said received fan-shaped x-rays; and
a computer connected to said detector so as to receive said first imaging signals for each of said received fan-shaped x-rays, wherein said x-ray source and said first detector rotate about said object so that multiple imaging signals are reconstructed by said computer to generate a three-dimensional cone-beam computed tomography image therefrom;
a radiation source that emits a therapeutic radiation beam towards said area of interest of said object in accordance with a reference plan;
a second detector that receives radiation from said therapeutic radiation beam that passes through said area of interest, said second detector generating second imaging signals from said radiation; and
a processing system (a) that receives and evaluates said volumetric image data, said second imaging signals and at least one parameter of said therapeutic radiation beam to provide 1) a real-time evaluation of said reference plan and 2) a real-time modification of said reference plan, wherein real-time is defined to be a time period when said therapeutic radiation beam is emitted towards said area of interest of said object, (b) that constructs a treatment dose received in said area of interest, and c) that estimates a final treatment dose in said area of interest by performing parameter estimation for random processes of patient anatomical variation.
3. The system of
4. The system of
5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
10. The system of
11. The system of
12. The system of
13. The system of
14. The system of
15. The system of
16. The system of
17. The system of
18. The system of
19. The system of
20. The system of
21. The system of
22. The system of
23. The system of
24. The system of
25. The system of
26. The system of
28. The method of
29. The method of
30. The method of
31. The method of
32. The method of
33. The method of
34. The method of
35. The method of
36. The method of
37. The method of
38. The method of
39. The method of
40. The method of
41. The method of
42. The method of
43. The method of
45. The planning and control system of
46. The planning and control system of
47. The planning and control system of
48. The planning and control system of
49. The planning and control system of
50. The planning and control system of
51. The planning and control system of
52. The planning and control system of
53. The planning and control system of
54. The planning and control system of
55. The planning and control system of
56. The planning and control system of
57. The planning and control system of
58. The planning and control system of
59. The system of
60. The system of
61. The system of
63. The method of
64. The method of
65. The method of
66. The method of
67. The method of
68. The method of
69. The method of
70. The method of
71. The method of
72. The method of
73. The method of
74. The method of
76. The system of
77. The system of
78. The system of
79. The system of
80. The system of
81. The system of
86. The method of
87. The method of
88. The method of
|
Applicants claim, under 35 U.S.C. §119(e), the benefit of priority of 1) the filing date of May 25, 2006, of U.S. Provisional Patent Application Ser. No. 60/808,343, filed on the aforementioned date and 2) the filing date of Jan. 18, 2007, of U.S. Provisional Patent Application Ser. No. 60/881,092, filed on the aforementioned date, the entire contents of each of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to image guided radiotherapy, and in particular, the invention relates to volumetric image guided adaptive radiotherapy.
2. Discussion of the Related Art
Presently, online treatment dose construction and estimation include portal ex-dose reconstruction to reconstruct treatment dose on a conventional linear accelerator. Specifically, the exit dose is measured using an MV portal imager to estimate treatment dose in the patient. However, this method has not been employed for patient treatment dose construction, since the dose reconstruction method lacks patient anatomic information during the treatment, and the scattered exit dose is difficult to calibrate properly.
In the past, a single pre-treatment computed tomography scan has been used to design a patient treatment plan for radiotherapy. Use of such a single pre-treatment scan can lead to a large planning target margin and uncertainty in normal tissue dose due to patient variations, such as organ movement, shrinkage and deformation, that can occur from the start of a treatment session to the end of the treatment session.
One aspect of the present invention regards a system for radiotherapy that includes an imaging system that generates volumetric image data of an area of interest of an object and a radiation source that emits a therapeutic radiation beam towards the area of interest of the object in accordance with a reference plan. The system for radiotherapy further includes a processing system that receives and evaluates the volumetric image data and at least one parameter of the therapeutic radiation beam to provide a real-time, on-line or off-line evaluation and on-line or off-line modification of the reference plan.
A second aspect of the present invention regards a method of treating an object with radiation that includes generating volumetric image data of an area of interest of an object and emitting a therapeutic radiation beam towards the area of interest of the object in accordance with a reference plan. The method further includes evaluating the volumetric image data and at least one parameter of the therapeutic radiation beam to provide a real-time, on-line or off-line evaluation and on-line or off-line modification of the reference plan.
A third aspect of the present invention regards a planning and control system for radiotherapy that includes a system that captures and evaluates parameters of a volumetric image of an area of interest of an object and a therapeutic radiation beam directed towards the area of interest of the object in accordance with a reference plan so as to provide a real-time, on-line or off-line evaluation and on-line or off-line modification of the reference plan. The system further includes a monitor that displays information based on one or more of the captured parameters of the volumetric image and the therapeutic radiation beam.
A fourth aspect of the present invention regards a method of planning and controlling a radiation therapy session, the method including capturing and evaluating parameters of a volumetric image of an area of interest of an object and a therapeutic radiation beam directed towards the area of interest of the object in accordance with a reference plan so as to provide a real-time, on-line or off-line evaluation and on-line or off-line modification of the reference plan. The method further including displaying information based on one or more of the captured parameters of the volumetric image and the therapeutic radiation beam.
A fifth aspect of the present invention regards a system for radiotherapy that includes a radiation source that is programmed to emit a therapeutic radiation beam towards an area of interest of an object in accordance with a reference plan during a real-time time period when the object is on-line. The system further includes an imaging system that generates on-line volumetric image data of the area of interest of the object during the real-time time period when the object is on-line, and off-line volumetric image data of the area of interest of the object during a non-real time off-line time period. The system further includes a processing system that receives and processes one or more of the on-line and off-line volumetric image data to alter the reference plan.
A sixth aspect of the present invention regards a method of treating an object with radiation that includes planning on emitting a therapeutic radiation beam towards an area of interest of an object in accordance with a reference plan during a real-time time period when the object is on-line. The method includes generating on-line volumetric image data of the area of interest of the object during the real-time time period when the object is on-line, and off-line volumetric image data of the area of interest of the object during a non-real time off-line time period. The method further includes altering the reference plan based on one or more of the on-line and off-line volumetric image data.
A seventh aspect of the present invention regards a method of forming a portal image, the method including forming a two-dimensional image of an object of interest and superimposing an image of a collimator element on the two-dimensional image. The image represents the position of the collimator element when a radiation therapy beam is to be directed towards the object of interest.
One or more aspects of the present invention provide the advantage of providing online and offline treatment dose reconstruction, and a treatment decision tool that provides real-time, on-line and off-line treatment evaluation and on-line or off-line modification of a reference plan.
Additional objects, advantages and features of the present invention will become apparent from the following description and the appended claims when taken in conjunction with the accompanying drawings.
In accordance with the present invention, a volumetric image guided adaptive radiotherapy system, such as cone-beam computerized tomography (CBCT) image guided adaptive radiotherapy (IGART) system 100, and a corresponding workflow sequence for auto-construction and evaluation of daily cumulative treatment dose are shown in
Three-Dimensional Volumetric Imaging System
Mechanical operation of a cone-beam computed tomography system 200 is similar to that of a conventional computed tomography system, with the exception that an entire volumetric image is acquired through less than two rotations (preferably one rotation) of the source and detector. This is made possible by the use of a two-dimensional (2-D) detector, as opposed to the one-dimensional (1-D) detectors used in conventional computed tomography.
An example of a known cone-beam computed tomography imaging system is described in U.S. Pat. No. 6,842,502, the entire contents of which are incorporated herein by reference. The patent describes an embodiment of a cone-beam computed tomography imaging system that includes a kilovoltage x-ray tube and a flat panel imager having an array of amorphous silicon detectors. As a patient lies upon a treatment table, the x-ray tube and flat panel image rotate about the patient in unison so as to take a plurality of images as described previously.
As shown in
The cone-beam computed tomography system 200 includes an x-ray source, such as x-ray tube 202, a rotary collimator 204 and a flat-panel imager/detector 206 mounted on a gantry 208. As shown in
Note that the detector 206 can be composed of a two-dimensional array of semiconductor sensors that may be each made of amorphous silicon (α-Si:H) and thin-film transistors. The analog signal from each sensor is integrated and digitized. The digital values are transferred to the data storage server 102.
After the fan beams from collimator 204 traverse the width of a patient and impinge on the entire detector 206 in the manner described above, computer 234 of
While the above described embodiment for the collimator 208 is rotary, a linear moving collimator can be used instead as described in pending U.S. patent application Ser. No. 11/786,781, entitled “Scanning Slot Cone-Beam Computed Tomography and Scanning Focus Spot Cone-Beam Computed Tomography” and filed on Apr. 12, 2007, the entire contents of which are incorporated herein by reference.
Radiation Therapy Source and Imager
As shown in
As mentioned above, the particles are used to treat a specific area of interest of a patient, such as a tumor. Prior to arriving at the area of interest, the beam of particles is shaped to have a particular cross-sectional area via a multi-leaf collimator 308. The cross-sectional area is chosen so that the beam of particles interacts with the area of interest to be treated and not areas of the patient that are healthy. The radiation penetrating through the area of interest can be imaged via imager 304 in a well known manner.
Alternative Embodiments for Volumetric Imaging System and Radiation Source and Imager
Another embodiment of a cone-beam computed tomography system 200a and megavoltage portal imaging system 300a is shown in
As with the embodiment of
Another embodiment of a scanning slot cone-beam computed tomography system 200b is shown in
Treatment Dose Tracking and Feedback System
As shown in
The treatment dose tracking and feedback system 600 further includes a workstation or data server 112 that includes processors dedicated to perform a treatment dose construction process based on 1) the segmentation/registration process performed by workstation 110 and 2) parameters of the beam of radiation emitted from the source 302 as it impinges on the patient that are measured and stored in server 102, such as angular position, beam energy and cross-sectional shape of the beam, in accordance with the reference plan 502. Such parameters can be in the form of the angular position of the gantry 208, the angular orientation of the collimator 308, the positions of the leaves of the multi-leaf collimator 308, position of the table 306 and energy of the radiation beam. Once the position and shape of a subvolume of image data is known, the treatment dosage received by that very same subvolume can be determined/constructed based on the above mentioned parameters of the beam of radiation emitted from the source 302 as it impinges on the patient. Such a determination is made for each of the subvolumes of image data for each of the volumetric images generated by system 200.
The treatment dose tracking and feedback system 600 further includes a workstation or data server 114 that includes processors dedicated to perform a an adaptive planning process that can either 1) adjust the radiation therapy treatment for the particular day in a real-time manner based on off-line and on-line information or 2) adjust a radiation therapy treatment plan in a non-real-time manner based on off-line information. The adjustment is based on how the dose calculated by the workstation 112 differs from dose preferred by the treatment plan. Note that the term “real-time” refers to the time period when the radiation therapy source is activated and treating the patient. The term “on-line” regards when a patient is on the treatment table and “off-line” refers to when the patient is off the treatment table.
In summary, the treatment dose tracking and feedback system 600 can perform real time treatment dose construction and 4D adaptive planning based on volumetric image information and therapy beam parameters that are measured in a real time manner during a therapy session. The system 600 can also perform adaptive planning in a non-real-time manner as well. Such real time and non-real time processes will be discussed in more detail with respect to the process schematically shown in
With the above description of the onboard cone-beam computed tomography system 200, megavoltage imaging and radiation therapy system 300, QA evaluation station 116 and the treatment dose tracking and feedback system 600 in mind, the operation of the CBCT IGART system 100 of
As shown in
As shown in
The QA station 116 provides an update execution status to job execution log server 132 that supplies information whether processing of information is presently occurring, whether processing is completed or whether an error has occurred. Whenever a task of treatment dose construction or adaptive planning modification is completed by workstations 112 and 114, respectively, the evaluation station 116 provides treatment evaluation information which includes both the current treatment status and the completed treatment dose and outcome parameters estimated based on the patient and treatment data from previous treatments. The user at QA evaluation station 116 can then provide commands or a new clinical schedule to the high priority job request server 120 to either request new information or modify clinical treatment schedule. In addition, the user can also make decisions to execute a new adaptive plan or perform a treatment/patient position correction through the server 124.
The CBCT IGART system 100 performs a number of processes, including a kV portal imaging process via kV portal imaging processor/software 400 and a an image guided adapted radiation therapy process 500, both of which will be described below with respect to
Pre-Treatment Process
As an example of how the radiation therapy process proceeds, assume a patient who has undergone previous radiation therapy sessions at a clinic has another session scheduled for a particular day. The patient arrives at the clinic on the scheduled day and proceeds to the therapy room similar to that shown in
At this point of time, a reference treatment plan for applying therapeutic radiation to the patient has previously been determined for the patient based on the previous radiation therapy sessions. A reference treatment plan is designed before the treatment delivery based on the most likely planning volumetric image of the area of interest to be treated. The reference treatment plan contains patient setup position, therapy machine parameters and expected daily and cumulative doses to be applied to various areas of the patient. Such a reference plan specifies the area(s) of the patient to be exposed to radiation and the dosage the area(s) are to receive from the radiation source during a single session. Thus, the reference plan will include information regarding the beam angle/gantry position, beam energy and cross-sectional area of the beam formed by the multi-leaf collimator 308. Based on the reference plan, the patient is instructed per step 402 of a pre-treatment kV portal imaging process, to move to a particular position, such as on his or her side, that is optimal for applying radiation to the area of interest within the patient per the reference plan. While at the particular position, the previously mentioned pre-treatment kV portal imaging process employing kV processor/software 400 is performed prior to the radiation therapy session. The pre-treatment kV portal imaging process is schematically shown in
The cone-beam computed tomographic image 404 of the area of interest while the patient is at the particular position and the positions of the leaves/outlines 410 are then stored and processed in a processor of workstation 110 as shown in
In addition to the treatment dose, kV portal image can also be constructed for treatment recordation and verification as shown in
The estimation is then used to provide information for the treatment evaluation and plan modification decision to determine when to switch on the adaptive planning modification engine.
On-Line, Off-Line Image Guided Adaptive Radiation Therapy Planning
After the kV imaging process is completed, resulting in the initial radiation therapy plan being modified or retained, the patient is repositioned to receive radiation therapy per the modified/original reference plan and image guided adapted radiation therapy process 500 is performed as schematically shown in
Once the reference plan 502 is implemented per process 504, the reference plan 502 can be altered to account for various factors that occur during the radiation therapy session. For example, the process 500 can entail having the system 100 monitor real-time, on-line machine treatment parameters of the linear source 302 and its radiation output online per process 506. The process 506 entails monitoring treatment parameters, such as beam angle, beam energy and cross-sectional shape of the beam. Such parameters can entail the position of the gantry, the angular position of the collimator 308, position of the leaves of the multi-leaf collimator 308, position of the table 306, the energy of the beam.
The real-time, on-line information obtained by the above mentioned monitoring process 506 is fed to workstation 112 of
While a radiation therapy beam is applied to the patient per process 504, the area of interest to be treated is imaged via the cone-beam computed tomography system 200. The three-dimensional volumetric image is used to register and track various individual volumes of interest in a real-time and on-line manner. Prior to registration and tracking, a correction parameter must be determined by server 102 per process 510 so as to be applied to the volumetric image. The correction parameter is associated with the fact that rigid body components of the volumetric image are often not oriented in a preferred manner due to a number of factors, such as the position of the patient on the table 306 and the angular position of the collimator. Based on the measurement of those factors, a correction parameter is determined per process 510 that when applied to the three-dimensional image the image is re-oriented to a preferred position. The re-oriented three-dimensional image is stored at workstation 102 of
Once the correction parameter is determined, the segmentation-deformable organ registration workstation 110 receives the volumetric image generated by system 200 and correction parameter from server 102 via process 512. The workstation 110 executes process 512 so as to match the patient anatomical elements manifested on the volumetric image to those on the reference planning volumetric image associated with the reference plan. The image registration results are used to map the pre-treatment organ contours on the planning volumetric image commonly delineated by clinicians, to the corresponding points on the treatment volumetric image automatically. The registration methods applied for this process are quite standard such as the finite element method and the method of image similarity maximization. However, there have been number of modifications performed to optimize these methods for the specific applications of the CBCT image and organs of interest in radiotherapy, such as described in the publications: 1) Liang J., et al., “Reducing Uncertainties in Volumetric Image Based Deformable Organ Registration,” Med Phys, 30(8), 2003, pp. 2116-2122, 2) Chi Y., et al., “Sensitivity Study on the Accuracy of Deformable Organ Registration Using Linear Biomechical Models,” Med Phys, 33: (2006), pp. 421-33, 3) Zhang T., et al., “Automatic Delineation of Online Head and Neck CT Images: Towards Online Adaptive Radiotherapy,” International Journal of Radiation Oncology Biology Physics, 68(2), (2007) pp. 522-30 and 4) Yan D., et al., “A Model to Accumulate Fractionated Dose in a Deforming Organ,” International Journal of radiation Oncology, Biology Physics, 44(3): (1999), pp. 665-675, the entire contents of each of which is incorporated herein by reference.
Once each point in the volumetric image is tracked, that information is sent to workstation 112, which also receives the parameters per process 506. At workstation 112, an online daily and cumulative dose construction process 508 is performed. The daily dose construction process entails calculating/constructing for a real-time treatment the dose received for each volume of image data within the volumetric image tracked per process 512. After the treatment session for the day is completed, the daily dose for each volume of image data is stored in server 102. The daily dose for each volume of image data can be combined with daily doses for the same volumes of image data calculated/constructed from previous therapy sessions so that an accumulated dosage over time for each volume of image data is determined per process 508 and stored in server 102. Further details of the construction of the daily and cumulative treatment doses are discussed in the publications: 1) Yan D., et al., “A Model to Accumulate Fractionated Dose in a Deforming Organ,” International Journal of radiation Oncology, Biology Physics, 44(3): (1999), pp. 665-675, 2) Yan D. et al. “Organ/Patient Geometric Variation in External Beam Radiotherapy and Its Effect,” Medical Physics, 28(4), (2001), pp. 593-602 and 3) Lockman D., et al., “Estimating the Dose Variation in a Volume of Interest with Explicit Consideration of Patient Geometric Variation,” Medical Physics, 27: (2000) pp. 2100-2108, the entire contents of each of which is incorporated herein by reference.
As shown in
Final treatment dose and outcome estimation are used to provide information for the treatment evaluation and plan modification decision to determine when to switch on the adaptive planning modification engine per process 514 of
The first task of treatment evaluation is related to treatment delivery and plan comparison performed by workstation 112 per process 514. If the comparison shows that the daily or cumulative treatment dosage for a particular subvolume of the image and the corresponding daily or cumulative planned dosages for the corresponding subvolume are outside a certain tolerance (see, Yan D., et al., “A New Model for ‘Accept Or Reject’ Strategies in On-Line and Off-Line Treatment Evaluation,” International Journal of Radiation Oncology, Biology Physics, 31(4): (1995) pp. 943-952, the entire contents of which are incorporated herein by reference.), then this means that the reference plan currently being implemented needs to be revised during the present therapy session. Note that the above described daily and cumulative dosages of a subvolume of interest can be tracked/displayed in time, such as on monitor 117 of
Besides comparing the dosages, the positioning of areas to be treated with respect to the therapeutic beam is tested by forming a kV portal image per the previously described process of
If either of the comparisons described above are outside the corresponding tolerance, then a revision of the reference therapy treatment plan is performed in the on-line or off-line adaptive planning optimization process 516. Adaptive planning optimization is different than conventional radiotherapy planning where only pre-treatment computed tomographic image data is used. Instead, adaptive planning intends to utilize individual treatment history from patient anatomy/dose tracking as feedback to optimize treatment control parameters. Examples of techniques of adaptive planning optimization are described in the following publications: 1) Yan D., et al., “An Off-Line Strategy for Constructing a Patient-Specific Planning Target Volume for Image Guided Adaptive Radiotherapy of Prostate Cancer,” International Journal of radiation Oncology, Biology Physics, 48(1), (2000) pp. 289-302, 2) Birkner M., et al., “Adapting Inverse Planning to Patient and Organ Geometrical Variation: Algorithm and Implementation,” Med Phys, 30(10): (2003), pp. 2822-2831, 3) Yan D., “On-Line Adaptive Strategy for Dose Per Fraction Design,” Proceeding, XIIIth International Conference on The Use of Computers in Radiotherapy, Heidelberg, Germany (2000), pp. 518-520 and 4) Yan D., et al., “Strategies for Off-Line and On-Line Image Feedback Adaptive Radiotherapy,” Editors: B K Paliwal, D E Herbert, J F Fowler, M P Mehta, Biological & Physical Basis of IMRT & Tomotherapy, AAPM Symposium Proceeding No. 12, 2002, pp. 139-50.
Note that the above-described process regarding
While the above description demonstrates how “real-time” data/information can be used to revise a therapy plan via the process of
In summary, the system 100 and process 500 provide volumetric image guided adaptive radiotherapy, which can be performed in real time, online and offline for treatment dose construction and feedback. Therefore, they provide all possible feedback information for image guided real time, online and offline radiotherapy. Thus, the system 100 and process 500 are able to fully utilize individual treatment information, which primarily includes the patient dose delivered in the previous treatment, patient anatomy in the present treatment and patient anatomy estimated for remaining treatment deliveries.
The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3778614, | |||
3780291, | |||
4132895, | Aug 28 1976 | Thorn EMI Patents Limited | Radiography |
4145613, | Oct 25 1977 | CGR Medical Corporation | Motorized X-ray tube assembly |
4304999, | Jan 02 1979 | Technicare Corporation | Eccentric source collimator assembly for rotating source CT scanner |
4315157, | May 01 1980 | UAB RESEARCH FOUNDATION, THE, NON-PROFIT CORP | Multiple beam computed tomography (CT) scanner |
4380818, | Jun 23 1980 | Siemens Aktiengesellschaft | X-Ray diagnostic system comprising a radiography unit with an X-ray tube which emits a fan-shaped radiation beam |
4389569, | Dec 14 1979 | SHIMADZU CORPORATION A CORP OF JAPAN | Emission computed tomograph |
4405745, | Sep 24 1982 | PHILIPS PETROLEUM COMPANY, A CORP OF DEL | Polymer stabilization |
4414682, | Nov 17 1980 | UNITED STATES TRUST COMPANY | Penetrating radiant energy imaging system with multiple resolution |
4534051, | Dec 27 1982 | John K., Grady | Masked scanning X-ray apparatus |
4547892, | Apr 01 1977 | PICKER INTERNATIONAL, INC | Cardiac imaging with CT scanner |
4712226, | Sep 13 1985 | Siemens Aktiengesellschaft | Stereoscopic x-ray tube |
4920552, | Mar 24 1988 | U S PHILIPS CORPORATION, 100 EAST 42ND STREET, NY, NY, 10017, A CORP OF DE | X-ray apparatus comprising an adjustable slit-shaped collimator |
5039867, | Aug 24 1987 | Mitsubishi Denki Kabushiki Kaisha | Therapeutic apparatus |
5125012, | Jul 18 1990 | Siemens Aktiengesellschaft | Computer tomography apparatus |
5157707, | Feb 20 1989 | AO Medical Products AB | Method and a cassette holder for performing X-ray examination |
5214686, | Dec 13 1991 | WAKE FOREST UNIVERSITY HEALTH SCIENCES | Three-dimensional panoramic dental radiography method and apparatus which avoids the subject's spine |
5335255, | Mar 24 1992 | Varian Medical Systems, Inc | X-ray scanner with a source emitting plurality of fan beams |
5379333, | Nov 19 1993 | General Electric Company | Variable dose application by modulation of x-ray tube current during CT scanning |
5394452, | Mar 19 1992 | VENTURE INVESTORS EARLY STAGE FUND III LIMITD PARTNERSHIP; ADVANTAGE CAPITAL WISCONSIN PARTNERS I LIMITED PARTNERSHIP; AVALON TECHNOLOGY, LLC A MICHIGAN LIMITED LIABILITY COMPANY | Verification system for radiation therapy |
5411026, | Oct 08 1993 | Best Medical International, Inc | Method and apparatus for lesion position verification |
5485494, | Aug 03 1994 | General Electric Company | Modulation of X-ray tube current during CT scanning |
5521957, | Mar 15 1994 | X-ray imaging system | |
5533082, | Jan 28 1992 | Computer tomograph | |
5602892, | Mar 21 1996 | EC ENGINEERING CONSULTANTS LLC | Method for optimization of radiation therapy planning |
5625661, | Apr 30 1994 | Shimadzu Corporation | X-ray CT apparatus |
5657364, | Dec 14 1995 | General Electric Company | Methods and apparatus for detecting beam motion in computed tomography imaging systems |
5661773, | Mar 19 1992 | VENTURE INVESTORS EARLY STAGE FUND III LIMITD PARTNERSHIP; ADVANTAGE CAPITAL WISCONSIN PARTNERS I LIMITED PARTNERSHIP; AVALON TECHNOLOGY, LLC A MICHIGAN LIMITED LIABILITY COMPANY | Interface for radiation therapy machine |
5663995, | Jun 06 1996 | General Electric Company | Systems and methods for reconstructing an image in a CT system performing a cone beam helical scan |
5675625, | Jun 17 1994 | LAP GmbH Laser Applikationen | Apparatus for positioning and marking a patient at a diagnostic apparatus |
5699805, | Jun 20 1996 | Mayo Foundation for Medical Education and Research | Longitudinal multiplane ultrasound transducer underfluid catheter system |
5719914, | Nov 13 1995 | GE Medical Systems Global Technology Company, LLC | Method for correcting spherical aberration of the electron beam in a scanning electron beam computed tomography system |
5724400, | Jun 09 1993 | VENTURE INVESTORS EARLY STAGE FUND III LIMITD PARTNERSHIP; ADVANTAGE CAPITAL WISCONSIN PARTNERS I LIMITED PARTNERSHIP; AVALON TECHNOLOGY, LLC A MICHIGAN LIMITED LIABILITY COMPANY | Radiation therapy system with constrained rotational freedom |
5748700, | May 10 1994 | Radiation therapy and radiation surgery treatment system and methods of use of same | |
5751781, | Oct 07 1995 | ELE KKTA AB | Apparatus for treating a patient |
5754622, | Jul 20 1995 | Siemens Medical Solutions USA, Inc | System and method for verifying the amount of radiation delivered to an object |
5835558, | Jul 09 1996 | Siemens Healthcare GmbH | Mobile x-ray exposure apparatus |
5848126, | Nov 26 1993 | Kabushiki Kaisha Toshiba | Radiation computed tomography apparatus |
5864597, | Apr 03 1996 | Toshiba Medical Systems Corporation | X-ray computed tomography device and method |
5877501, | Nov 26 1996 | Philips Electronics North America Corporation | Digital panel for x-ray image acquisition |
5912943, | Nov 26 1997 | Picker International, Inc. | Cooling system for a sealed housing positioned in a sterile environment |
5929449, | Jul 31 1995 | HANGER SOLUTIONS, LLC | Flat panel detector for radiation imaging with reduced electronic noise |
5949811, | Oct 08 1996 | Hitachi Medical Corporation | X-ray apparatus |
5966422, | Nov 02 1995 | PICKER MEDICAL SYSTEMS, LTD | Multiple source CT scanner |
5999587, | Jul 03 1997 | ROCHESTER, UNIVERSITY OF | Method of and system for cone-beam tomography reconstruction |
6031888, | Nov 26 1997 | Picker International, Inc.; PICKER INTERNATIONAL, INC | Fluoro-assist feature for a diagnostic imaging device |
6041097, | Apr 06 1998 | Picker International, Inc. | Method and apparatus for acquiring volumetric image data using flat panel matrix image receptor |
6113264, | Jun 04 1997 | Toshiba Medical Systems Corporation | X-ray diagnostic apparatus with C-shaped arms |
6148058, | Oct 23 1998 | Analogic Corporation | System and method for real time measurement of detector offset in rotating-patient CT scanner |
6152598, | Sep 02 1997 | Toshiba Medical Systems Corporation | R/F and chest radiography compatible X-ray imaging table |
6200024, | Nov 27 1998 | PICKER INTERNATIONAL, INC | Virtual C-arm robotic positioning system for use in radiographic imaging equipment |
6229870, | Nov 25 1998 | Picker International, Inc.; PICKER INTERNATIONAL, INC | Multiple fan beam computed tomography system |
6256370, | Jan 24 2000 | General Electric Company | Method and apparatus for performing tomosynthesis |
6259766, | Dec 16 1997 | U S PHILIPS CORPORATION | Computer tomography device |
6269143, | Aug 31 1998 | Shimadzu Corporation | Radiotherapy planning system |
6285739, | Feb 19 1999 | The Research Foundation of State University of New York | Radiographic imaging apparatus and method for vascular interventions |
6292534, | Dec 10 1997 | U.S. Philips Corporation | X-ray examination apparatus |
6307914, | Mar 12 1998 | Hokkaido University | Moving body pursuit irradiating device and positioning method using this device |
6318892, | Oct 28 1998 | Hitachi Medical Corporation | Radiography apparatus with rotatably supported cylindrical ring carrying image pickup unit |
6325537, | Oct 16 1998 | Kabushiki Kaisha Toshiba | X-ray diagnosis apparatus |
6345114, | Oct 27 1993 | Wisconsin Alumni Research Foundation | Method and apparatus for calibration of radiation therapy equipment and verification of radiation treatment |
6385286, | Aug 06 1998 | Wisconsin Alumni Research Foundation | Delivery modification system for radiation therapy |
6385288, | Jan 19 2001 | Mitsubishi Denki Kabushiki Kaisha | Radiotherapy apparatus with independent rotation mechanisms |
6389104, | Jun 30 2000 | Siemens Medical Solutions USA, Inc | Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data |
6393096, | May 27 1998 | Best Medical International, Inc | Planning method and apparatus for radiation dosimetry |
6435715, | Nov 30 1998 | Siemens Healthcare GmbH | Radiography device |
6463122, | Aug 21 2000 | Varian Medical Systems, Inc | Mammography of computer tomography for imaging and therapy |
6546073, | Nov 05 1999 | Georgia Tech Research Corporation | Systems and methods for global optimization of treatment planning for external beam radiation therapy |
6560311, | Aug 06 1998 | Wisconsin Alumni Research Foundation | Method for preparing a radiation therapy plan |
6582121, | Nov 15 2001 | GE Medical Systems Global Technology | X-ray positioner with side-mounted, independently articulated arms |
6618466, | Feb 21 2002 | ROCHESTER, UNIVERSITY | Apparatus and method for x-ray scatter reduction and correction for fan beam CT and cone beam volume CT |
6628745, | Jul 01 2000 | REVEAL IMAGING TECHNOLOGIES, INC | Imaging with digital tomography and a rapidly moving x-ray source |
6633627, | Sep 28 2000 | GE MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC, | X-ray CT system, gantry apparatus, console terminal, method of controlling them, and storage medium |
6661870, | Mar 09 2001 | MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT | Fluence adjustment for improving delivery to voxels without reoptimization |
6707876, | May 22 2001 | GE Medical Systems Global Technology Company, LLC | X-ray CT apparatus and method |
6760402, | Aug 01 2002 | Siemens Medical Solutions USA, Inc. | Verification of mlc leaf position and of radiation and light field congruence |
6792074, | Mar 05 2001 | Brainlab AG | Method for producing or updating radiotherapy plan |
6842502, | Feb 18 2000 | WILLIAM BEAUMONT HOSPITAL | Cone beam computed tomography with a flat panel imager |
6865254, | Jul 02 2002 | C-Rad Innovation AB | Radiation system with inner and outer gantry parts |
6888919, | Nov 02 2001 | Varian Medical Systems, Inc | Radiotherapy apparatus equipped with an articulable gantry for positioning an imaging unit |
6907100, | Oct 25 2001 | Kabushiki Kaisha Toshiba | Cone beam type of X-ray CT system for three-dimensional reconstruction |
6915005, | Mar 09 2001 | MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT | Method for reconstruction of limited data images using fusion-aligned reprojection and normal-error-aligned reprojection |
6980627, | Oct 06 2000 | NURAY TECHNOLOGY CO , LTD | Devices and methods for producing multiple x-ray beams from multiple locations |
6990175, | Oct 18 2001 | Toshiba Medical Systems Corporation | X-ray computed tomography apparatus |
6993112, | Mar 12 2002 | Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts | Device for performing and verifying a therapeutic treatment and corresponding computer program and control method |
7030386, | Oct 07 2002 | SUNNYBROOK HEALTH SCIENCES CENTRE; SUNNYBROOK AND WOMEN S COLLEGE HEALTH SCIENCES CENTRE | High quantum efficiency x-ray detector for portal imaging |
7062006, | Jan 19 2005 | AIRDRIE PARTNERS I, LP | Computed tomography with increased field of view |
7072436, | Aug 24 2001 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | Volumetric computed tomography (VCT) |
7127035, | Aug 29 2001 | TOSHIBA ELECTRON TUBES & DEVICES CO , LTD | Rotary anode type X-ray tube |
7145981, | Aug 24 2001 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | Volumetric computed tomography (VCT) |
7154991, | Oct 17 2003 | MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT | Patient positioning assembly for therapeutic radiation system |
7170975, | Sep 16 2002 | Siemens Healthcare GmbH | Method for operating a computed tomography apparatus having a diaphragm at the radiation detector |
7193227, | Jan 24 2005 | Board of Regents, The University of Texas System | Ion beam therapy system and its couch positioning method |
7227923, | Apr 18 2005 | General Electric Company | Method and system for CT imaging using a distributed X-ray source and interpolation based reconstruction |
7227925, | Oct 02 2002 | Varian Medical Systems, Inc | Gantry mounted stereoscopic imaging system |
7280631, | Nov 26 2003 | General Electric Company | Stationary computed tomography system and method |
7305063, | Jul 18 2003 | Koninklijke Philips Electronics N.V. | Cylindrical x-ray tube for computed tomography imaging |
7388940, | Nov 24 2006 | General Electric Company; The Board of Trustees of the Leland Stanford Junior University | Architectures for cardiac CT based on area x-ray sources |
7428292, | Nov 24 2006 | General Electric Company | Method and system for CT imaging using multi-spot emission sources |
7471765, | Feb 18 2000 | WILLIAM BEAUMONT HOSPITAL | Cone beam computed tomography with a flat panel imager |
7496181, | Nov 28 2005 | The Board of Trustees of the Leland Stanford Junior University | X-ray collimator for imaging with multiple sources and detectors |
7657304, | Oct 05 2002 | Varian Medical Systems, Inc | Imaging device for radiation treatment applications |
7760849, | Apr 14 2006 | WILLIAM BEAUMONT HOSPITAL | Tetrahedron beam computed tomography |
7826592, | Feb 18 2000 | WILLIAM BEAUMONT HOSPITAL | Cone-beam computed tomography with a flat-panel imager |
7945021, | Dec 18 2002 | Varian Medical Systems, Inc | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
8073104, | May 25 2006 | WILLIAM BEAUMONT HOSPITAL | Portal and real time imaging for treatment verification |
20030072407, | |||
20030095627, | |||
20030138077, | |||
20030191363, | |||
20030235271, | |||
20040002641, | |||
20040081270, | |||
20040086074, | |||
20040096033, | |||
20040120452, | |||
20040165696, | |||
20040174949, | |||
20040184578, | |||
20040254448, | |||
20050013404, | |||
20050027196, | |||
20050053189, | |||
20050054937, | |||
20050058237, | |||
20050080336, | |||
20050085710, | |||
20050111610, | |||
20050111616, | |||
20050111621, | |||
20050197564, | |||
20050234327, | |||
20050249432, | |||
20050251029, | |||
20060002506, | |||
20060008047, | |||
20060017009, | |||
20060239409, | |||
20060245543, | |||
20060259282, | |||
20060269049, | |||
20060274885, | |||
20060285639, | |||
20060285640, | |||
20060285641, | |||
20070003123, | |||
20070016014, | |||
20070019782, | |||
20070053492, | |||
20070076846, | |||
20070280408, | |||
20080031406, | |||
20100008467, | |||
20100054410, | |||
20100119032, | |||
20100135454, | |||
20110002439, | |||
20110080992, | |||
20110211666, | |||
CN1419891, | |||
CN1424925, | |||
CN1589744, | |||
CN1723743, | |||
CN1748217, | |||
CN1758876, | |||
DE1992708, | |||
DE2822241, | |||
EP314231, | |||
EP922943, | |||
JP10033520, | |||
JP10113400, | |||
JP10328318, | |||
JP10511595, | |||
JP11047290, | |||
JP11160440, | |||
JP11276463, | |||
JP1199148, | |||
JP2000126164, | |||
JP2000176029, | |||
JP2000308634, | |||
JP2002210028, | |||
JP2003210596, | |||
JP4242736, | |||
JP4307035, | |||
JP5172764, | |||
JP5252594, | |||
JP56101579, | |||
JP56168578, | |||
JP5894835, | |||
JP7255717, | |||
JP8122438, | |||
JP9218939, | |||
JP9327453, | |||
WO2006018761, | |||
WO9713552, | |||
WO9852635, | |||
WO9903397, | |||
WO160236, | |||
WO2004061744, | |||
WO2004061864, | |||
WO2004080309, | |||
WO2006034973, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 24 2007 | WILLIAM BEAUMONT HOSPITAL | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Apr 21 2018 | 4 years fee payment window open |
Oct 21 2018 | 6 months grace period start (w surcharge) |
Apr 21 2019 | patent expiry (for year 4) |
Apr 21 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 21 2022 | 8 years fee payment window open |
Oct 21 2022 | 6 months grace period start (w surcharge) |
Apr 21 2023 | patent expiry (for year 8) |
Apr 21 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 21 2026 | 12 years fee payment window open |
Oct 21 2026 | 6 months grace period start (w surcharge) |
Apr 21 2027 | patent expiry (for year 12) |
Apr 21 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |