A laterally tiltable, multitrack vehicle is disclosed. The vehicle includes a vehicle body and three wheels. The first and second wheels are assigned to a common axle to form a first wheel pair. A first cylinder unit supports the first wheel of the wheel pair on the vehicle body and a second cylinder unit supports the second wheel of the wheel pair on the vehicle body. Each cylinder unit includes a first cylinder and a second cylinder connected in series. Each first cylinder has a first diameter and each second cylinder has a second diameter larger than the first diameter. The first and second cylinder units are fluidly connected to each other. fluid is transferable between cylinder units between a first cylinder of the one cylinder unit and a second cylinder of the other cylinder unit.
|
9. A laterally tiltable, multitrack vehicle comprises:
a vehicle body;
three wheels, wherein first and second wheels of the three wheels are assigned to a common axle to form a first wheel pair;
a first cylinder unit supports the first wheel of the wheel pair on the vehicle body;
a second cylinder unit supports the second wheel of the wheel pair on the vehicle body;
wherein each cylinder unit includes a first cylinder and a second cylinder connected in series, each first cylinder having a first diameter and each second cylinder having a second diameter larger than the first diameter,
wherein the first cylinders of the first and second cylinder units are in continuous, direct fluid communication with each other and the second cylinders of the first and second cylinder units are in continuous, direct fluid communication with each other,and wherein fluid is further transferable between the cylinder units via a first cylinder of the one cylinder unit and a second cylinder of the other cylinder unit and vice versa.
19. A laterally tiltable, multitrack vehicle comprises:
a vehicle body;
three wheels, wherein first and second wheels of the three wheels are assigned to a common axle to form a first wheel pair;
a first cylinder unit supports the first wheel of the wheel pair on the vehicle body; and
a second cylinder unit supports the second wheel of the wheel pair on the vehicle body;
wherein each cylinder unit includes a first cylinder and a second cylinder connected in series, each first cylinder having a first diameter and each second cylinder having a second diameter larger than the first diameter,
wherein each first and second cylinder of the first and second cylinder units comprises a piston;
wherein the first and second cylinder units are fluidly connected to each other and fluid is transferrable between the cylinder units via the first cylinder of the first cylinder unit and the second cylinder of the second cylinder unit and vice versa;
wherein the pistons of the second cylinders are connected to respective sleeve-like piston rods guided in the first cylinders, wherein the pistons of the first cylinders move within the sleeve-like piston rods.
1. A laterally tiltable, multitrack vehicle, comprising:
a vehicle body;
three wheels;
first and second wheels of the three wheels being assigned to a common axle to form a first wheel pair;
a first cylinder unit supporting the first wheel of the wheel pair on the vehicle body and a second cylinder unit supporting the second wheel of the wheel pair on the vehicle body, each cylinder unit operating with a pneumatic or hydraulic fluid,
wherein each cylinder unit includes a first cylinder and a second cylinder connected in series, each first cylinder having a first diameter and each second cylinder having a second diameter larger than the first diameter, a piston being axially and displaceably guided in each of the first and second cylinders,
wherein the first and second cylinder units are fluidly connected to each other such that fluid is transferable between the first and second cylinder units by the pistons; and
wherein fluid is transferable between cylinder units from a first cylinder of the first cylinder unit into the second cylinder of the second cylinder unit, and fluid is transferable from the second cylinder of the first cylinder unit into the first cylinder of the second cylinder unit, and
wherein fluid is further transferable between cylinder units from a first cylinder of the second cylinder unit into the second cylinder of the first cylinder unit, and wherein fluid is further transferable from the second cylinder of the second cylinder unit into the first cylinder of the first cylinder unit;
wherein the piston of the second cylinder has a through opening which can be opened and closed, and through which fluid can be exchanged between the first and second cylinders of the same cylinder unit.
2. The vehicle as claimed in
3. The vehicle as claimed in
4. The vehicle as claimed in
5. The vehicle as claimed in
6. The vehicle as claimed in
7. The vehicle of
11. The vehicle of
12. The vehicle of
13. The vehicle of
14. The vehicle of
15. The vehicle of
16. The vehicle of
17. The vehicle of
18. The vehicle of
|
This application claims priority to German Application No. 102013203927.1, filed on Mar. 7, 2013, the entire content of which is incorporated by reference herein. This application also is related to German Application No. 102013203922.0, filed Mar. 7, 2013; German Application No. 102013203923.9, filed Mar. 7, 2013; German Application No. 102013203926.3, filed Mar. 7, 2013; and German Application No. 102013203924.7, filed Mar. 7, 2013, the entire content of each of which is incorporated by reference herein.
The present disclosure relates generally to a laterally tillable multitrack vehicle, such as a motor vehicle, and more particularly to a laterally tiltable multitrack vehicle having the ability to self-upright after tilting.
In recent years, interest in vehicles with innovative designs has grown in view of continued expansion of urban areas, the large number of vehicles operating in these areas, and the associated problems, such as traffic jams or environmental pollution. One way to solve parking problems and/or to improve the traffic flow is to design vehicles in a manner that permits a plurality of vehicles to share a parking space or a driving lane. In order for such a solution to be feasible, vehicles must be small and, in particular, narrow. A vehicle of this type is usually sized to convey no more than one to two persons. The small size and the low weight of such vehicles make it possible to reduce the engine power output and also the emissions caused by the vehicle without any loss of driving performance.
Many attempts have been made in recent years to develop multitrack, laterally tiltable vehicles, in which the entire vehicle or a part thereof tilts in toward a rotation center (e.g., the curve bend inner side) in a similar manner to a bicycle when driving around curves. With such tilting, the resultant of the weight force and the centrifugal force runs substantially along the vertical axis of the vehicle body, preventing the vehicle from turning over. Accordingly, lateral tipping of the vehicle toward the bend outer side can be prevented, even in the case of a relatively narrow track width of the laterally tiltable vehicle (as compared with conventional, multitrack vehicles).
Different types of laterally tiltable vehicles having three or four wheels have been disclosed in practice. For example, in some three-wheeled vehicles, merely the vehicle body and the central wheel can be tilted, whereas the wheel pair has two eccentric wheels which are arranged on a common axle and cannot be tilted. In general, however, a solution is preferred, in which all the wheels can tilt together with the vehicle body, since this solution requires less installation space in relation to the width of the vehicle and the vehicle is therefore of narrower overall design.
One important aspect in laterally tiltable vehicles is ability to right itself (self-uprighting) after tilting. Normally, the centroid of the vehicle drops during lateral tilting of the vehicle body. This means, however, that the vehicle body of the laterally tilted, multitrack vehicle will not upright itself again automatically. An elegant possibility for achieving automatic uprighting of the laterally tilted vehicle body is to raise the centroid of the vehicle during lateral tilting as the tilting angle increases. In addition, this solution affords the essential advantage that the vehicle automatically assumes a stable, upright position even at a standstill, since the centroid of the vehicle is at the lowest in this position. Accordingly, the present disclosure is directed to providing an automatic self-uprighting multitrack, laterally bitable vehicle. The present disclosure is further directed to providing such a vehicle having a compact overall design, in order to keep the required installation space as small as possible in order to realize a narrow vehicle.
In accordance with various exemplary embodiments, the present disclosure provides a laterally tiltable, multitrack vehicle. The vehicle comprises a vehicle body and three wheels, wherein first and second wheels of the three wheels are assigned to a common axle to form a first wheel pair. A first cylinder unit supports the first wheel of the wheel pair on the vehicle body and a second cylinder unit supports the second wheel of the wheel pair on the vehicle body. Each cylinder unit includes a first cylinder and a second cylinder connected in series, each first cylinder has a first diameter and each second cylinder has a second diameter, larger than the first diameter. The first and second cylinder units are fluidly connected to each other and fluid is transferable between the cylinder units via a first cylinder of one cylinder unit and a second cylinder of the other cylinder unit and vice versa.
In accordance with one aspect of the present disclosure, the laterally tiltable, multitrack vehicle is a motor vehicle.
Additional objects and advantages of the present disclosure will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the present disclosure. Various objects and advantages of the present disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and together with the description, serve to explain the principles of the present disclosure.
At least some features and advantages will be apparent from the following detailed description of embodiments consistent therewith, which description should be considered with reference to the accompanying drawings, wherein:
Although the following detailed description makes reference to illustrative embodiments, many alternatives, modifications, and variations thereof will be apparent to those skilled in the art. Accordingly, it is intended that the claimed subject matter be viewed broadly.
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. However, these various exemplary embodiments are not intended to limit the disclosure. To the contrary, the disclosure is intended to cover alternatives, modifications, and equivalents. In the drawings and the description, similar elements are provided with similar reference numerals. It is to be noted that the features explained individually in the description can be mutually combined in any technically expedient manner and disclose additional embodiments of the present disclosure.
In accordance with the present teachings, a laterally tiltable, multitrack motor vehicle is provided. The vehicle has at least three wheels, a vehicle body, for example a vehicle frame, and at least one wheel pair. The wheel pair includes two wheels which are assigned to a common axle. Each of the wheels of the wheel pair is suspended on the vehicle body via a respective cylinder unit which operates with a pneumatic or hydraulic fluid. In the context of the present disclosure, a cylinder unit comprises at least one cylinder, in which a piston is axially and displaceably guided. Moreover, the piston is generally connected to a piston rod.
In accordance with the present disclosure, each cylinder unit comprises two cylinders, having different internal diameters and connected in series. A piston is axially and displaceably guided in each cylinder unit. The cylinder unit associated with each wheel of the wheel pair are fluidly connected to one another. In particular, cylinders of the same size are connected to one another within a wheel pair. For example, the two cylinders with a smaller internal diameter of both cylinder units of the same wheel pair are connected in a fluid-conducting manner to one another at their axial ends, and the two cylinders with a larger internal diameter of the two cylinder units are likewise connected in a fluid-conducting manner to one another at their axial ends. Accordingly, the two cylinder units of the same wheel pair form a dosed, pneumatic or hydraulic circuit, in which the fluid contained therein, for example air or hydraulic oil, can be displaced between the two cylinder units of the same wheel pair by means of the pistons which are guided in the respective cylinders.
By means of the pistons, in particular, fluid can therefore be transferred from the cylinder with a smaller internal diameter (also referred to as the small cylinder herein) of one cylinder unit into the cylinder with a larger internal diameter (also referred to as the large cylinder herein) of the other cylinder unit and from the cylinder with a larger internal diameter of one cylinder unit into the cylinder with a smaller internal diameter of the other cylinder unit, and vice versa. This brings about a situation where, for example, when the fluid is transferred from the cylinder with a smaller internal diameter of one cylinder unit into the cylinder with a larger internal diameter of the other cylinder unit, the piston which is guided in the cylinder with a smaller internal diameter covers a greater axial displacement travel than the piston which is guided in the cylinder with a larger internal diameter, on account of the differences in the internal diameters. In the vehicle according to the present disclosure, therefore, in general the two wheels of the same wheel pair are coupled to one another via the cylinder units which are connected in a fluid-conducting manner to one another. This is utilized during the lateral tilting of the vehicle body as described below.
When driving around a bend, for example, both the vehicle body and the wheels of the wheel pair tilt toward the inner side of the bend in the vehicle. The inner wheel (the wheel closest to an inside curve of the bend) compresses, while the outer wheel (the wheel closest to the outside curve of the bend) extends. During extending of the outer wheel, the outer cylinder unit which supports the outer wheel on the vehicle body lengthens. This takes place, for example, by a piston rod of the outer cylinder unit extending out of the cylinder, which piston rod is connected to the piston of the cylinder with a smaller internal diameter. According to the present teachings, this displacement movement of the piston conveys fluid from the cylinder with a smaller internal diameter of the outer cylinder unit into the cylinder with a larger internal diameter of the inner cylinder unit, which inner cylinder unit shortens by an amount that is less an amount that the outer cylinder unit lengthens, due to the different internal diameters of the cylinders. This causes the vehicle body, which is tilted laterally toward the inner side of the bend, and the centroid of the vehicle to be raised. As a result, automatic self-uprighting of the vehicle body from the lateral tilted position into the upright, neutral position is possible, since the centroid of the vehicle has the lowest location when the vehicle is in the upright, neutral position.
The use of the two cylinder units, which are connected in a fluid-conducting manner to one another, advantageously requires a small amount of installation space. The solution according to the present disclosure for the automatic self-uprighting of the laterally tiltable, multitrack vehicle can therefore be realized in a particularly compact manner.
In accordance with one aspect of the present disclosure, the piston of the cylinder with a larger internal diameter has a through opening which can be opened and closed and through which fluid can be exchanged between cylinders within the same cylinder unit.
In accordance with the present teachings and allowing for a particularly simple construction, the through opening can be closed by way of the piston of the cylinder with a smaller internal diameter (also referred to as the small piston herein). A displacement movement of the small piston in the direction of the piston of the large cylinder (also referred to as the large piston herein) thus leads automatically to the closure of the through opening, as soon as the small piston is in contact with the large piston.
In accordance with one aspect of the present disclosure, and to provide reliable axial guidance of the large piston in the large cylinder and for a compact construction of the cylinder units, the piston of the cylinder with a larger internal diameter is connected to a sleeve-like piston rod which is guided in the cylinder with a smaller internal diameter, the piston of the cylinder with a smaller internal diameter being guided displaceably in the sleeve-like piston rod.
A wheel suspension system of compact construction in accordance with the present disclosure provides that the cylinder units form wheel control parts, by way of which the wheels of the wheel pair are not only supported on the vehicle body, but also are suspended on the vehicle body. Wheel control parts, for example longitudinal links, which are provided specifically for wheel control can then be dispensed with.
It should be understood by one of skill in the art that the wheels of the wheel pair can also be suspended on the vehicle body via dedicated wheel control parts, for example, by longitudinal links or wishbones. In this case, the cylinder nits can support the wheel control parts and therefore the wheels, which are mounted rotatably on the wheel control parts, with respect to the vehicle body.
As a result, the present disclosure can be used in an advantageous manner for both for the unsteered wheels, for example of a rear axle, and for the steered wheels of a front axle of a laterally tiltable, multitrack vehicle.
In order to provide satisfactory driving comfort of the vehicle in accordance with the present teachings, each wheel of the wheel pair is mounted on the respective cylinder unit in a manner which is resilient and damped in terms of oscillations. In particular, vibrations of the respective wheel, for example, due to uneven road surfaces, are therefore absorbed directly at the wheel itself and are not substantially transmitted, at least not in an undamped manner, to the cylinder units and therefore to the vehicle body or the other wheel of the same wheel pair.
In one exemplary embodiment, the multitrack, laterally tiltable vehicle includes two wheel pairs. The first wheel pair of the vehicle forms steerable front wheels and the second wheel pair forms the rear wheels of the vehicle.
As shown in the rear view of
The drive of the vehicle 1 may be, for example, an electric motor or a combustion engine, or a combination of an electric motor and a combustion engine (a hybrid drive).
As shown in
The pistons 9 and 10 are set up and arranged in such a way that in each case fluid, for example hydraulic oil or air, can be transferred by way of them from the small cylinder 7 of one cylinder unit 6 into the large cylinder 8 of the other cylinder unit 6, and likewise from the large cylinder 8 of one cylinder unit 6 into the small cylinder 7 of the other cylinder unit 6, as will be described in yet more detail in the following text. This applies equally to both transmission directions, that is to say both from one cylinder unit 6, for example the left-hand one, into the other cylinder unit 6, for example the right-hand one, and vice versa. In order for it to be possible to transfer the fluid from a cylinder 7 or 8 of one cylinder unit 6 into the other cylinder 8 or 7 of the other cylinder unit 6, the large piston 10 has a through opening 11 which can be opened and dosed in the exemplary embodiment which is shown in
Moreover, it can be gathered from
As a result of the specific configuration of the cylinder units 6 with two cylinders 7 and 8 having different internal diameters, the inner wheel 2a moves upward by a smaller amount (magnitude A) than the outer wheel 2b moves downward (magnitude B). This leads to the vehicle body 5, which is tilted laterally toward the inner side of the bend, and the centroid 14 of the vehicle 1 being raised by a magnitude C. This feature is illustrated in
In order that blocking states cannot occur in the closed circuit which is formed by the fluid-conducting connection of the two cylinder units 6, the diameter of the piston rod 12 is to be selected in an approximation, that is to say without consideration of existing wall thicknesses, in accordance with the following formula:
Where ds is the diameter of the piston rod 12, dk is the diameter of the small piston 9, and Dk is the diameter of the large piston 10.
A laterally tiltable, multitrack vehicle as described above and in accordance with the present teachings is not restricted to the exemplary embodiment(s) disclosed herein, but rather also encompasses other embodiments which have an identical effect. Thus, for example, other elements, such as equalizing containers, storage vessels, pumps, valves and the like, can also be connected to the circuit which is formed by the fluid-conducting connection of the two cylinder units 6.
In addition, a laterally tiltable, multitrack vehicle in accordance with the present teachings need not be a motor vehicle and instead may be a vehicle powered by other means, including being powered by the occupants of the vehicle themselves (e.g., muscle power). That is to say, although the present teachings are described with respect to a motor vehicle, other vehicles are encompassed within the scope of the present disclosure.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the written description and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to “a sensor” includes two or more different sensors. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
It will be apparent to those skilled in the art that various modifications and variations can be made to the system and method of the present disclosure without departing from the scope its disclosure. Other embodiments of the disclosure will be apparent to those skilled in the art Thorn consideration of the specification and practice of the disclosure disclosed herein. It is intended that the specification and embodiment described herein be considered as exemplary only.
Gerhardt, Torsten, Spahl, Robert, Simon, Marc, Halfmann, Edmund
Patent | Priority | Assignee | Title |
10023019, | Feb 24 2015 | Ford Global Technologies, LLC | Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles |
10076939, | Nov 26 2014 | Ford Global Technologies, LLC | Suspension systems for laterally tiltable multitrack vehicles |
10384739, | Jun 20 2014 | QUADRO VEHICLES S A | Control system of the trim of vehicles with more than two wheels |
10696326, | Aug 30 2016 | Honda Motor Co., Ltd. | Vehicle |
11492062, | May 26 2017 | PIAGGIO & C S P A | Shock absorber assembly of a vehicle with selective kinematic locking, vehicle suspension group and related vehicle |
9278711, | Oct 25 2012 | Yamaha Hatsudoki Kabushiki Kaisha | Vehicle |
9327725, | May 28 2013 | Geometry for improved driveline-suspension coupling of narrow leaning commuter vehicles | |
9821620, | Sep 01 2014 | FORD TECHNOLOGIES CORPORATION | Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle |
9845129, | Aug 29 2014 | Ford Global Technologies, LLC | Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear |
9925843, | Feb 24 2015 | Ford Global Technologies, LLC | Rear suspension systems for laterally tiltable multitrack vehicles |
Patent | Priority | Assignee | Title |
2353503, | |||
2474471, | |||
3417985, | |||
3572456, | |||
5040812, | Jun 27 1986 | Inclinable vehicle | |
5040823, | Aug 23 1989 | TLC Suspension | Anti-roll system with tilt limitation |
5069476, | May 09 1989 | TOYOTA JIDOSHA KABUSHIKI KAISHA,; NIPPONDENSO CO , LTD , | Suspension control system |
5116069, | Mar 11 1991 | Three-wheel vehicle | |
5161425, | Jan 27 1990 | FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION | Adjustable steering column mechanism |
5161822, | Nov 26 1990 | TLC Suspension | Tilt correction system |
5207451, | Jun 04 1990 | Jidosha Denki Kogyo Kabushiki Kaisha | Steering wheel positioner for automatic driving position system |
5337847, | Jan 15 1993 | Caterpillar Inc | Four-way levelling mechanism for off-road vehicle |
5347457, | Sep 18 1990 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Method and apparatus for controlling vehicle suspension such that suspension characteristics are changed at a point in time when a vehicle wheel reaches a road surface irregularity detected in front of the vehicle |
5580089, | Oct 11 1994 | Vehicle stabilization system and method | |
5611555, | Jan 04 1993 | Articulated balancer with an oscillating axle and having locking possibilities | |
5762351, | Jun 26 1995 | Multi-track vehicle with lock and drive lean control system | |
5765115, | Aug 04 1995 | Ford Motor Company | Pneumatic tilt stabilization suspension system |
5765846, | May 15 1996 | DaimlerChrysler AG | Curve-leaning vehicle |
5772224, | May 15 1996 | Common Engineering Company Limited | Vehicle suspension systems |
5791425, | Feb 24 1993 | DEKA Products Limited Partnership | Control loop for transportation vehicles |
5825284, | Dec 10 1996 | Rollover Operations, LLC | System and method for the detection of vehicle rollover conditions |
5839082, | Dec 26 1995 | Unisia Jecs Corporation | Apparatus and method for controlling damping force characteristic of vehicular shock absorber |
5927424, | Jun 14 1994 | Brinks Westmaas B.V. | Self-stabilizing, directionally controllable vehicle with at least three wheels |
6026920, | Jun 02 1998 | LEVELACQ, LLC | Dynamic seat-moving and leveling device |
6116618, | Dec 26 1997 | Toyota Jidosha Kabushiki Kaisha | Vehicular slope determination apparatus and vehicle height adjust control apparatus and vehicle height adjust control apparatus and method using the same |
6149226, | Sep 05 1997 | DaimlerChrysler AG | Floor system for a motor vehicle |
6250649, | Apr 25 1997 | 21ST CENTURY GARAGE LLC | Multi-track curve tilting vehicle |
6311795, | May 02 2000 | CNH America LLC; BLUE LEAF I P , INC | Work vehicle steering and suspension system |
6328125, | Sep 16 1997 | Brinks Westmaas B.V. | Tilting vehicle |
6390505, | Apr 19 2000 | INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, L L C ; International Truck Intellectual Property Company, LLC | Steering column adjustment system using force feedback system |
6425585, | Jun 25 1998 | Robert Bosch GmbH | Process and system for stabilizing vehicles against rolling |
6435522, | Nov 12 1997 | Brinks Westmaas B.V. | Tilting vehicle |
6446980, | Feb 06 1999 | DaimlerChrysler AG | Device for determining the distance between vehicle body and vehicle wheel |
6454035, | Jan 25 2000 | PACCAR Inc | Tilt mechanism and method for pivoting a vehicle body panel relative to a vehicle chassis |
6467783, | Jul 23 1999 | Compagnie Generale des Etablissements Michelin-Michelin & CIE | Motor vehicle equipped with a system for controlling the camber of the wheels of the vehicle on a bend |
6805362, | May 02 2003 | Vehicle lean and alignment control system | |
6817617, | May 21 2001 | Avantec Corporation; K Design Co., Ltd. | Tricycle |
7066474, | Mar 14 2003 | VALID MANUFACTURING LTD | Electronic suspension and level control system for recreational vehicles |
7073806, | Jun 03 2003 | PIAGGIO & CO S P A ; PIAGGIO & C S P A | Three-wheel rolling vehicle with front two-wheel steering |
7097187, | Dec 20 2002 | FCA US LLC | Suspension system for a motor vehicle |
7229086, | Jun 01 2004 | Motor vehicle sway control assembly | |
7389592, | Mar 31 2005 | Honda Motor Co., Ltd. | Lean detector of vehicle |
7487985, | Aug 25 2005 | ARCIMOTO, INC | Tilting wheeled vehicle |
7591337, | Sep 30 2005 | HARLEY-DAVIDSON MOTOR COMPANY, INC | Leaning suspension mechanics |
7640086, | Sep 06 2005 | Toyota Jidosha Kabushiki Kaisha | Running object and method of controlling the same |
7641207, | Feb 11 2008 | Front suspension and steering system for cycles and motorcycles without tilting of the front wheels | |
7648148, | Jul 06 2005 | Bombardier Recreational Products Inc | Leaning vehicle with tilting front wheels and suspension therefor |
7665742, | May 12 2006 | HARLEY-DAVIDSON MOTOR COMPANY, INC | Vehicle hydraulic system |
7673883, | Feb 07 2003 | CNH Baumaschinen GmbH | Method and device for wheel camber adjustment |
7887070, | Feb 13 2006 | MULTI DISPLAY WERBEAGENTUR & WERBEWERKSTATT GUENTHER WAGNER | Vehicle which can tilt in turns, in particular tricycle |
7896360, | Feb 09 2006 | Toyota Jidosha Kabushiki Kaisha | Vehicle stabilizer system |
7946596, | Aug 05 2008 | National Taiwan University of Science and Technology | Motor vehicle and rickshaw and tilting mechanism thereof |
8050820, | Oct 07 2005 | Toyota Jidosha Kabushiki Kaisha | Vehicle |
8260504, | Dec 26 2008 | Yamaha Hatsudoki Kabushiki Kaisha | Saddle riding type vehicle |
8262111, | Oct 26 2010 | Leaning vehicle suspension | |
8345096, | May 07 2008 | STANLEY ELECTRIC CO , LTD | Sensor and apparatus for vehicle height measurement |
20010028154, | |||
20020109310, | |||
20020171216, | |||
20030071430, | |||
20030102176, | |||
20030197337, | |||
20040051262, | |||
20040100059, | |||
20040134302, | |||
20040236486, | |||
20050051976, | |||
20050082771, | |||
20050127656, | |||
20050184476, | |||
20050199087, | |||
20050206101, | |||
20050275181, | |||
20060049599, | |||
20060151982, | |||
20060170171, | |||
20060220331, | |||
20060226611, | |||
20060249919, | |||
20060276944, | |||
20070075517, | |||
20070078581, | |||
20070126199, | |||
20070151780, | |||
20070182120, | |||
20070193803, | |||
20070193815, | |||
20070228675, | |||
20080012262, | |||
20080033612, | |||
20080100018, | |||
20080114509, | |||
20080135320, | |||
20080164085, | |||
20080197597, | |||
20080197599, | |||
20080238005, | |||
20080255726, | |||
20080258416, | |||
20080272562, | |||
20090085311, | |||
20090105906, | |||
20090108555, | |||
20090171530, | |||
20090289437, | |||
20090299565, | |||
20090312908, | |||
20090314566, | |||
20100025944, | |||
20100032914, | |||
20100032915, | |||
20100044977, | |||
20100152987, | |||
20110006498, | |||
20110095494, | |||
20110148052, | |||
20110215544, | |||
20110254238, | |||
20120248717, | |||
20130068550, | |||
20130153311, | |||
20130168934, | |||
20140252730, | |||
20140252731, | |||
20140252732, | |||
20140252733, | |||
DE102004027202, | |||
DE102004058523, | |||
DE102008046588, | |||
DE102009042662, | |||
DE102010000884, | |||
DE102010000886, | |||
DE102010055947, | |||
DE10251946, | |||
DE10349655, | |||
DE112006002581, | |||
DE1937578, | |||
DE19621947, | |||
DE19735912, | |||
DE19831162, | |||
DE19838328, | |||
DE19848294, | |||
DE4035128, | |||
DE4135585, | |||
DE4236328, | |||
DE4315017, | |||
DE679966, | |||
DE6801096, | |||
EP592377, | |||
EP626307, | |||
EP658453, | |||
EP1030790, | |||
EP1142779, | |||
EP1153773, | |||
EP1155950, | |||
EP1180476, | |||
EP1228905, | |||
EP1346907, | |||
EP1348617, | |||
EP1419909, | |||
EP1539563, | |||
EP1630081, | |||
EP1702773, | |||
EP1872981, | |||
EP1944228, | |||
EP2030814, | |||
EP2199122, | |||
EP2213561, | |||
FR2663283, | |||
FR2768203, | |||
FR2872699, | |||
FR2927026, | |||
FR2937000, | |||
FR2946944, | |||
GB2322837, | |||
GB2374327, | |||
GB2382334, | |||
GB2390065, | |||
GB2394701, | |||
GB2444250, | |||
GB2450740, | |||
GB2472180, | |||
GB2492757, | |||
JP2001206036, | |||
JP200381165, | |||
JP2004306850, | |||
JP2005193890, | |||
JP2006168503, | |||
JP2006232197, | |||
JP2006281918, | |||
JP2006341718, | |||
JP200644467, | |||
JP20067865, | |||
JP200710511, | |||
JP2007106332, | |||
JP2007161013, | |||
JP2007186179, | |||
JP2007210456, | |||
JP2007238056, | |||
JP200769688, | |||
JP2008120360, | |||
JP20081236, | |||
JP2008132933, | |||
JP200862854, | |||
JP2009270918, | |||
JP2010155486, | |||
JP2010168000, | |||
JP4108018, | |||
JP469710, | |||
JP471918, | |||
WO2068228, | |||
WO224477, | |||
WO3021190, | |||
WO3057549, | |||
WO2004011319, | |||
WO2004041621, | |||
WO2005039955, | |||
WO2005058620, | |||
WO2006006859, | |||
WO2006129020, | |||
WO2008043870, | |||
WO2008044838, | |||
WO2008053827, | |||
WO2008065436, | |||
WO2009059099, | |||
WO2009074752, | |||
WO2009087595, | |||
WO2010009928, | |||
WO2010015986, | |||
WO2010015987, | |||
WO2010035877, | |||
WO2010106385, | |||
WO2010116641, | |||
WO2011023862, | |||
WO2011053228, | |||
WO2011059456, | |||
WO2011074204, | |||
WO2011083335, | |||
WO2011107674, | |||
WO9406642, | |||
WO9627508, | |||
WO9709223, | |||
WO9727071, | |||
WO9941136, | |||
WO9947372, | |||
WO9954186, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 06 2014 | GERHARDT, TORSTEN | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032383 | /0458 | |
Mar 07 2014 | Ford Global Technologies, LLC | (assignment on the face of the patent) | / | |||
Mar 07 2014 | SPAHL, ROBERT | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032383 | /0458 | |
Mar 07 2014 | HALFMANN, EDMUND | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032383 | /0458 | |
Mar 07 2014 | SIMON, MARC | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032383 | /0458 |
Date | Maintenance Fee Events |
May 08 2015 | ASPN: Payor Number Assigned. |
Nov 15 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 09 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 02 2018 | 4 years fee payment window open |
Dec 02 2018 | 6 months grace period start (w surcharge) |
Jun 02 2019 | patent expiry (for year 4) |
Jun 02 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 02 2022 | 8 years fee payment window open |
Dec 02 2022 | 6 months grace period start (w surcharge) |
Jun 02 2023 | patent expiry (for year 8) |
Jun 02 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 02 2026 | 12 years fee payment window open |
Dec 02 2026 | 6 months grace period start (w surcharge) |
Jun 02 2027 | patent expiry (for year 12) |
Jun 02 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |