A bulk acoustic wave (baw) structure includes a first electrode disposed over a substrate, a piezoelectric layer disposed over the first electrode, and a second electrode disposed over the first piezoelectric layer. A bridge is formed within the piezoelectric layer, where the bridge is surrounded by piezoelectric material of the piezoelectric layer.

Patent
   9048812
Priority
Feb 28 2011
Filed
Aug 12 2011
Issued
Jun 02 2015
Expiry
Nov 24 2032
Extension
635 days
Assg.orig
Entity
Large
12
533
currently ok
1. A bulk acoustic wave (baw) resonator structure, comprising:
a first electrode disposed over a substrate;
a piezoelectric layer disposed over the first electrode;
a second electrode disposed over the piezoelectric layer; and
a bridge buried within the piezoelectric layer, wherein the bridge defines at least a portion of a perimeter along an active region of the baw resonator structure.
8. A bulk acoustic wave (baw) resonator structure, comprising:
a first electrode disposed over a substrate;
a first piezoelectric layer disposed over the first electrode;
a second electrode disposed over the first piezoelectric layer;
a second piezoelectric layer disposed over the second electrode;
a third electrode disposed over the second piezoelectric layer; and
a first bridge buried within one of the first piezoelectric layer and the second piezoelectric layer.
14. A bulk acoustic wave (baw) resonator structure, comprising:
a first baw resonator comprising a first electrode, a first piezoelectric layer disposed over the first electrode, and a second electrode disposed over the first piezoelectric layer;
an acoustic coupling layer disposed over the second electrode of the first baw resonator, wherein the acoustic coupling layer is configured to determine pass-band characteristics of the baw resonator structure;
a second baw resonator comprising a third electrode disposed over the acoustic coupling layer, a second piezoelectric layer disposed over the third electrode, and a fourth electrode disposed over the second piezoelectric layer; and
a first bridge buried within one of the first piezoelectric layer of the first baw resonator and the second piezoelectric layer of the second baw resonator.
2. The baw resonator structure of claim 1, wherein the bridge comprises an unfilled bridge, containing air.
3. The baw resonator structure of claim 1, wherein the bridge comprises a filled bridge, containing a dielectric material.
4. The baw resonator structure of claim 3, wherein the dielectric material comprises one of non-etchable borosilicate glass (NEBSG), carbon doped silicon dioxide (CDO), or silicon carbide (SiC).
5. The baw resonator structure of claim 1, wherein the bridge comprises a filled bridge, containing a metal.
6. The baw resonator structure of claim 5, wherein the metal comprises one of tungsten (W), molybdenum (Mo), copper (Cu) or iridium (Ir).
7. The baw resonator structure of claim 1, wherein the bridge has a trapezoidal cross-sectional shape.
9. The baw resonator structure of claim 8, wherein the first bridge comprises an unfilled bridge, containing air.
10. The baw resonator structure of claim 8, further comprising:
a second bridge buried within the other one of the first piezoelectric layer and the second piezoelectric layer.
11. The baw resonator structure of claim 10, wherein at least one of the first bridge and the second bridge comprises an unfilled bridge, containing air.
12. The baw resonator structure of claim 10, wherein at least one of the first bridge and the second bridge comprises a filled bridge, containing a fill material having an acoustic impedance.
13. The baw resonator structure of claim 12, wherein the fill material comprises one of dielectric material or a metal.
15. The baw resonator structure of claim 14, wherein the first bridge comprises an unfilled bridge, containing air.
16. The baw resonator structure of claim 14, further comprising:
a second bridge buried within the other one of the first piezoelectric layer of the first baw resonator and the second piezoelectric layer of the second baw resonator.
17. The baw resonator structure of claim 16, wherein at least one of the first bridge and the second bridge comprises an unfilled bridge, containing air.
18. The baw resonator structure of claim 17, wherein at least one of the first bridge and the second bridge comprises a filled bridge, containing a fill material having an acoustic impedance.
19. The baw resonator structure of claim 18, wherein the fill material comprises one of dielectric material or a metal.
20. The baw resonator structure of claim 17, wherein the acoustic coupling layer comprises at least one of carbon doped oxide (CDO) and NEBSG.

This application is a continuation-in-part application of commonly owned U.S. patent application Ser. No. 13/151,631 to Dariusz Burak et al., entitled “Film Bulk Acoustic Resonator Comprising a Bridge,” filed on Jun. 2, 2011, which is a continuation-in-part application of commonly owned U.S. patent application Ser. No. 13/074,262 to Dariusz Burak et al., entitled “Stacked Acoustic Resonator Comprising a Bridge,” filed on Mar. 29, 2011, which is a continuation-in-part of commonly owned U.S. patent application Ser. No. 13/036,489 to Dariusz Burak, entitled “Coupled Resonator Filter Comprising Bridge” filed on Feb. 28, 2011. The present application claims priority under 35 U.S.C. §120 to U.S. patent application Ser. Nos. 13/151,631, 13/074,262 and 13/036,489, the disclosures of which are hereby incorporated by reference in their entirety.

Transducers generally convert electrical signals to mechanical signals or vibrations, and/or mechanical signals or vibrations to electrical signals. Acoustic transducers, in particular, convert electrical signals to acoustic waves and acoustic waves to electrical signal using inverse and direct piezo-electric effects. Acoustic transducers generally include acoustic resonators, such as thin film bulk acoustic resonators (FBARs), surface acoustic wave (SAW) resonators or bulk acoustic wave (BAW) resonators, and may be used in a wide variety of electronic applications, such as cellular telephones, personal digital assistants (PDAs), electronic gaming devices, laptop computers and other portable communications devices. For example, FBARs may be used for electrical filters and voltage transformers. Generally, an acoustic resonator has a layer of piezoelectric material between two conductive plates (electrodes), which may be formed on a thin membrane. FBAR devices, in particular, generate acoustic waves that can propagate in all possible lateral directions when stimulated by an applied time-varying electric field, as well as higher order harmonic mixing products. The laterally propagating modes and the higher order harmonic mixing products may have a deleterious impact on functionality.

Filters based on FBAR technology provide a comparatively low in-band insertion loss due to the comparatively high quality factor (Q-factor) of FBAR devices. FBAR-based filters are often employed in cellular or mobile telephones that can operate in multiple frequency bands. In such devices, it is important that a filter intended to pass one particular frequency band (“passband”) should have a high level of attenuation at other nearby frequency bands which contain signals that should be rejected. Specifically, there may be one or more frequencies or frequency bands near the passband which contain signals at relatively high amplitudes that should be rejected by the filter. In such cases, it would be beneficial to be able to increase the filter's rejection characteristics at those particular frequencies or frequency bands, even if the rejection at other frequencies or frequency bands does not receive the same level of rejection.

Other types of filters are based on FBAR technology, including a stacked bulk acoustic resonator (SBAR), also referred to as a double bulk acoustic resonator (DBAR), and a coupled resonator filter (CRF). The DBAR includes two layers of piezoelectric materials between three electrodes in a single stack, forming a single resonant cavity. That is, a first layer of piezoelectric material is formed between a first (bottom) electrode and a second (middle) electrode, and a second layer of piezoelectric material is formed between the second (middle) electrode and a third (top) electrode. Generally, the DBAR device allows reduction of the area of a single bulk acoustic resonator device by about half.

A CRF comprises a coupling structure disposed between two vertically stacked FBARs. The CRF combines the acoustic action of the two FBARs and provides a bandpass filter transfer function. For a given acoustic stack, the CRF has two fundamental resonance modes, a symmetric mode and an anti-symmetric mode, of different frequencies. The degree of difference in the frequencies of the modes depends, inter alia, on the degree or strength of the coupling between the two FBARs of the CRF. When the degree of coupling between the two FBARs is too great (over-coupled), the passband is unacceptably wide, and an unacceptable “swag” or “dip” in the center of the passband results, as does an attendant unacceptably high insertion loss in the center of the passband. When the degree of coupling between the FBARs is too low (under-coupled), the passband of the CRF is too narrow.

All FBARs and filters based on FBARs have an active region. The active region of a CRF, for example, comprises the region of overlap of the top FBAR, the coupling structure, and the bottom FBAR. Generally, it is desirable to confine the acoustic energy of certain desired acoustic modes within the active region. As should be appreciated by one of ordinary skill in the art, at the boundaries of the active region, reflection of desired modes can result in mode conversion into spurious/undesired modes, and loss of acoustic energy over a desired frequency range (e.g., the passband of the CRF).

In FBAR devices, mitigation of acoustic losses at the boundaries and the resultant mode confinement in the active region of the FBAR (the region of overlap of the top electrode, the piezoelectric layer, and the bottom electrode) has been effected through various methods. Notably, frames are provided along one or more sides of the FBARs. The frames create an acoustic impedance mismatch that reduces losses by reflecting desired modes back to the active area of the resonator, thus improving the confinement of desired modes within the active region of the FBAR.

While the incorporation of frames has resulted in improved mode confinement and attendant improvement in the Q-factor of the FBAR, direct application of known frame elements has not resulted in significant improvement in mode confinement and Q-factor of conventional DBARs and CRFs. Better acoustic energy confinement, as well as further improvements in FBAR Q-factor due to the better acoustic energy confinement, are needed for increased efficiency of FBARs, DBARs and CRFs.

The illustrative embodiments are best understood from the following detailed description when read with the accompanying drawing figures. It is emphasized that the various features are not necessarily drawn to scale. In fact, the dimensions may be arbitrarily increased or decreased for clarity of discussion. Wherever applicable and practical, like reference numerals refer to like elements.

FIG. 1A shows a top-view of an FBAR in accordance with a representative embodiment.

FIG. 1B is a cross-sectional view of the FBAR of FIG. 1A, taken along the line 1B-1B, having a bridge disposed within a piezoelectric layer, in accordance with a representative embodiment.

FIG. 1C is a cross-sectional view of an FBAR, having a bridge disposed within a piezoelectric layer, in accordance with another representative embodiment.

FIGS. 2A-2D are cross-sectional views of DBARs, each having bridges disposed within two piezoelectric layers of the DBAR, in accordance with a representative embodiment.

FIGS. 3A-3B are cross-sectional views of DBARs, each having a bridge disposed within a piezoelectric layer of the DBAR, in accordance with a representative embodiment.

FIGS. 4A-4B are cross-sectional views of DBARs, each having a bridge disposed within another piezoelectric layer of the DBAR, in accordance with a representative embodiment.

FIGS. 5A-5D are cross-sectional views of CRFs, each having bridges disposed within two piezoelectric layers of the CRF, in accordance with a representative embodiment.

FIGS. 6A-6B are cross-sectional views of CRFs, each having a bridge disposed within a piezoelectric layer of the CRF, in accordance with a representative embodiment.

FIGS. 7A-7B are cross-sectional views of CRFs, each having a bridge disposed within another piezoelectric layer of the CRF, in accordance with a representative embodiment.

It is to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting. The defined terms are in addition to the technical and scientific meanings of the defined terms as commonly understood and accepted in the technical field of the present teachings.

As used in the specification and appended claims, the terms “a”, “an” and “the” include both singular and plural referents, unless the context clearly dictates otherwise. Thus, for example, “a device” includes one device and plural devices.

As used in the specification and appended claims, and in addition to their ordinary meanings, the terms “substantial” or “substantially” mean to within acceptable limits or degree. For example, “substantially cancelled” means that one skilled in the art would consider the cancellation to be acceptable.

As used in the specification and the appended claims and in addition to its ordinary meaning, the term “approximately” means to within an acceptable limit or amount to one having ordinary skill in the art. For example, “approximately the same” means that one of ordinary skill in the art would consider the items being compared to be the same.

In the following detailed description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of illustrative embodiments according to the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of well-known apparatuses and methods may be omitted so as to not obscure the description of the illustrative embodiments. Such methods and apparatuses are clearly within the scope of the present teachings.

Generally, it is understood that the drawings and the various elements depicted therein are not drawn to scale. Further, relative terms, such as “above,” “below,” “top,” “bottom,” “upper” and “lower” are used to describe the various elements relationships to one another, as illustrated in the accompanying drawings. It is understood that these relative terms are intended to encompass different orientations of the device and/or elements in addition to the orientation depicted in the drawings. For example, if the device were inverted with respect to the view in the drawings, an element described as “above” another element, for example, would now be below that element.

The present teachings relate generally to BAW resonator structures comprising FBARs. In certain applications, the BAW resonator structures provide FBAR-based filters (e.g., ladder filters). Certain details of FBARs and/or BAW resonators and resonator filters, materials thereof and their methods of fabrication may be found in one or more of the following commonly owned U.S. Patents and Patent Applications: U.S. Pat. No. 6,107,721 to Lakin; U.S. Pat. Nos. 5,587,620, 5,873,153, 6,507,983, 6,384,697, 7,275,292 and 7,629,865 to Ruby et al.; U.S. Pat. No. 7,280,007 to Feng, et al.; U.S. Patent App. Pub. No. 2007/0205850 to Jamneala et al.; U.S. Pat. No. 7,388,454 to Ruby et al.; U.S. Patent App. Pub. No. 2010/0327697 to Choy et al.; and U.S. Patent App. Pub. No. 2010/0327994 to Choy et al. The disclosures of these patents and patent applications are hereby incorporated by reference. It is emphasized that the components, materials and method of fabrication described in these patents and patent applications are representative and other methods of fabrication and materials within the purview of one of ordinary skill in the art are contemplated.

Embodiments Comprising FBARs

FIG. 1A shows a top view of FBAR 100 in accordance with a representative embodiment. The FBAR 100 includes a top electrode 101 (referred to below as second electrode 101) having five (5) sides, with a connection side 102 configured to provide an electrical connection to interconnect 103. The interconnect 103 provides electrical signals to the second electrode 101 to excite desired acoustic waves in a piezoelectric layer (not shown in FIG. 1A) of the FBAR 100.

FIG. 1B shows a cross-sectional view of the FBAR 100 taken along line 1B-1B in accordance with a representative embodiment. The FBAR 100 includes multiple layers stacked over substrate 105 having a cavity 106. The inclusion of a cavity 106 for reflection of acoustic waves in the FBAR 100 is merely illustrative. In various alternative configurations, a known acoustic reflector (e.g., a Bragg mirror (not shown)) comprising alternating layers of high and low acoustic impedance may be provided in the substrate 105 to provide acoustic isolation in place of the cavity 106, without departing from the scope of the present teachings.

A first (bottom) electrode 107 is disposed over the substrate 105 and partially over the cavity 106 (or Bragg mirror). A planarization layer 107′ is also provided over the substrate as shown. In a representative embodiment, the planarization layer 107′ includes non-etchable borosilicate glass (NEBSG), for example. In general, planarization layer 107′ does not need to be present in the structure (as it increases overall processing cost), but when present, it may improve quality of growth of subsequent layers and simplify their processing. A piezoelectric layer 108 is disposed over the first electrode 107, and the second (top) electrode 101 is disposed over the piezoelectric layer 108. As should be appreciated by one of ordinary skill in the art, the structure provided by the first electrode 107, the piezoelectric layer 108 and the second electrode 101 is a bulk acoustic wave (BAW) resonator. When the BAW resonator is disposed over a cavity, it is a so-called FBAR (e.g., FBAR 100); and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror), it is a so-called solidly mounted resonator (SMR). The present teachings contemplate the use of either FBARs or SMRs in a variety of applications, including filters (e.g., ladder filters comprising a plurality of BAW resonators).

In the depicted embodiment, a bridge 104 is buried within the piezoelectric layer 108, meaning that the bridge 104 is surrounded by the piezoelectric material of the piezoelectric layer 108. The bridge 104 is disposed along all sides of the FBAR 100 (i.e., along a perimeter of the FBAR 100). For example, in representative embodiments, the bridge 104 (and other bridges described in connection with representative embodiments below) has a trapezoidal cross-sectional shape. It is emphasized that the trapezoidal cross-sectional shape of the bridge of the representative embodiments is merely illustrative and the bridges are not limited to a trapezoidal cross-sectional shape. For example, the cross-sectional shape of the bridges of the representative embodiments could be square or rectangular, or of an irregular shape. The “slanting” walls of bridge 104 (and other bridges described in connection with representative embodiments below) are beneficial to the quality of layers (e.g., the quality of the crystalline piezoelectric layer(s)) grown over the bridge 104 (and other bridges described in connection with representative embodiments below). Typical dimensions of the bridge 104 (and other bridges described in connection with representative embodiments below) are approximately 2.0 μm to approximately 10.0 μm in width (x-dimension in the coordinate system shown in FIG. 1B) and approximately 150 Å to approximately 3000 Å in height (y-dimension in the coordinate system shown in FIG. 1B).

In certain embodiments, the bridge 104 (and other bridges described in connection with representative embodiments below) extends over the cavity 106 (depicted as overlap 113 in FIG. 1B). The overlap 113 (also referred to as the decoupling region) has a width (x-dimension) of approximately 0.0 μm (i.e., no overlap with the cavity 106) to approximately 10.0 μm. Generally, optimum width of the bridge 104 (and other bridges described in connection with representative embodiments below) depends on the reflection of the eigen-modes at the boundary of an active region 114 (also referred to herein as an FBAR region) and a decoupling region (i.e., the overlap 113). Due to the smaller thickness of layers in the decoupling region 113, only complex evanescent modes for the thickness-extensional motion can exist at the operating frequency of the FBAR 100. These complex evanescent modes are characterized by a characteristic decay length and by a specific propagation constant. The bridge 104 needs to be wide enough to ensure suitable decay of complex evanescent waves excited at the boundary of FBAR region 114 and the decoupling region 113. Wide bridges minimize tunneling of energy into a field region 115 where propagating modes exist at the frequency of operation. On the other hand, if the bridge 104 is too wide, reliability issues can arise and can also limit the placement of similar FBARs (not shown) from being placed in proximity (thus unnecessarily increasing the total area of a chip). In practical situations, the propagating component of the complex evanescent wave can be used to find the optimum width of the bridge 104. In general, when the width of bridge 104 is equal to an odd multiple of the quarter-wavelength of the complex evanescent wave, the reflectivity of the eigen-modes can be further increased, which can be manifested by parallel resistance Rp and Q-factor attaining maximum values. Typically, depending on the details of the excitation mechanism, other propagating modes of the decoupling region 113, such as shear modes and flexural modes, can impact Rp and Q-factor. The width of the bridge 104 can be modified in view of these other propogating modes. Such optimum width of the bridge 104 may be determined experimentally.

In addition, the width and position of the bridge 104 (and other bridges described in connection with representative embodiments) and the amount of the overlap 113 with the cavity 106 are selected to improve Q-factor enhancement of the resonant piston mode. In general, the greater the overlap 113 of the bridge 104 with the cavity 106 of the FBAR 100, the greater the improvement in the Q-factor, with the improvement realized being fairly small after an initial increase. The improvement in the Q-factor must be weighed against a decrease in the electromechanical effective coupling coefficient kt2, which decreases with increasing overlap 113 of the bridge 104 with the cavity 106. Degradation of the coupling coefficient kt2 results in a degradation of insertion loss (S21) of a filter comprising FBARs. As such, the overlap 113 of the bridge 104 with the cavity 106 may be optimized experimentally.

The bridge 104 (and other bridges described in connection with representative embodiments below) has a height (y-dimension in the coordinate system of FIG. 1B) of approximately 150 Å to approximately 3000 Å. Notably, the lower limit of the height is determined by the limits of the process of releasing sacrificial material in the forming of the bridge 104 (and other bridges described in connection with representative embodiments below), and the upper limit of the height is determined by the quality of layers grown over the bridge 104 (and other bridges described in connection with representative embodiments) and by the quality of subsequent processing of possibly non-planar structures.

Illustratively, the first electrode 107 and second electrode 101 are formed of tungsten (W) having a thickness of approximately 1000 Å to approximately 20000 Å. Other materials may be used for the first electrode 107 and the second electrode 101, including but not limited to molybdenum (Mo), iridium (Ir), copper (Cu), aluminum (Al) or a bi-metal material. Illustratively, the piezoelectric layer 108 is formed of aluminum nitride (AlN) having a thickness of approximately 5000 Å to approximately 25000 Å. Other materials may be used for the piezoelectric layer 108, including but not limited to zinc oxide (ZnO).

In order to form the bridge 104, growth of the piezoelectric layer 108 on the first electrode 107 is interrupted. In the depicted embodiment, the growth of the piezoelectric layer 108 was interrupted at about half way through the anticipated thickness, resulting in formation the bridge 104 in approximately the middle of the completed piezoelectric layer 108. This location places the bridge 104 at about the point of maximum stress of the piezoelectric layer 108, maximizing the energy decoupling effect of the bridge 104. However, the bridge 104 may be formed in different relative locations within the piezoelectric layer 108 without departing from the scope of the present teachings. Once the growth of the piezoelectric layer 108 is interrupted, the bridge 104 may be formed by patterning a sacrificial material over the grown portion of the piezoelectric layer 108, and then continuing growth of the remaining portion of the piezoelectric layer 108 thereover. After the other layers of the FBAR 100 are formed as desired (e.g., the second electrode 101), the sacrificial material is released leaving the bridge 104 “unfilled” (i.e., containing or filled with air). In a representative embodiment, the sacrificial material used to form the bridge 104 is the same as the sacrificial material used to form the cavity 106, such as phosphosilicate glass (PSG), for example.

In a representative embodiment, the bridge 104 defines a perimeter along the active region 114 of the FBAR 100. The active region 114 thus includes the portions of the acoustic resonator disposed over the cavity 106 and bounded by the perimeter provided by the bridge 104. As should be appreciated by one of ordinary skill in the art, the active region of the FBAR 100 is bordered around its perimeter by an acoustic impedance discontinuity created at least in part by the bridge 104, and above and below (cavity 106) by an acoustic impedance discontinuity due to the presence of air. Thus, a resonant cavity is beneficially provided in the active region of the FBAR 100. In the depicted embodiment, the bridge 104 is unfilled (i.e., contains air), as is the cavity 106. In other embodiments, the bridge 104 is “filled” (i.e., contains a dielectric or metal material having an acoustic impedance to provide the desired acoustic impedance discontinuity) to provide bridge 104′, described more fully below with reference to FIG. 1C. It is noted that the bridge 104 does not necessarily have to extend along all edges of the FBAR 100, and therefore not along the perimeter of the FBAR 100. For example, the bridge 104 may be provided on four “sides” of the five-sided FBAR 100 shown in FIG. 1A.

The acoustic impedance mismatch provided by the bridge 104 causes reflection of acoustic waves at the boundary that may otherwise propagate out of the active region and be lost, resulting in energy loss. The bridge 104 serves to confine the modes of interest within the active region 114 of the FBAR 100 and to reduce energy losses in the FBAR 100. Reducing such losses serves to increase the Q-factor of the FBAR 100. In filter applications of the FBAR 100, as a result of the reduced energy loss, the insertion loss (S21) is beneficially improved.

In an illustrative configuration, it may be assumed for purpose of explanation that the bridge 104 has a width (x-dimension) of approximately 5.0 μm, a height of approximately 1500 Å, and an overlap 113 of approximately 2.0 μm, that the piezoelectric layer 108 has a thickness (y-dimension) of approximately 10000 Å, and that the bottom of the bridge 104 is approximately 5000 Å above the bottom of the piezoelectric layer 108, such that the bridge 104 is in about the middle of the piezoelectric layer 108. Placement of the bridge 104 in about the middle of the piezoelectric layer 108 increases parallel resistance Rp of the FBAR 100 from about 1.1 kΩ to about 3.5 kΩ, which is an increase of over 300 percent, e.g., at a frequency of operation of about 1.88 GHz. Since the bridge 104 is generally placed in a region of maximum stress, the impact of two competing phenomena is maximized: scattering at the leading edge of the bridge 104 (which generally leads to decrease of Q-factor) and decoupling of FBAR modes from the field region modes due to zeroing of normal stress at the upper and lower boundaries of the bridge 104 (which in general leads to increase of Q-factor). A third effect (also generally leading to decrease of Q-factor) is related to poorer quality of piezoelectric material in the region grown immediately above the stop-growth plane. These three factors are weighed appropriately when determining placement of the bridge 104 within the piezoelectric layer 108, and such optimization may be done experimentally, for example.

As mentioned above, in the representative embodiment shown and described in connection with FIGS. 1A and 1B, the bridge 104 is unfilled (i.e., contains air as the acoustic medium). FIG. 1C shows a cross-sectional view of FBAR 100 in which the bridge is “filled” with a material having an acoustic impedance in order to provide significantly large lateral acoustic impedance discontinuity at the boundary between FBAR region 114 and decoupling region 113. The mechanism of reducing losses in the filled bridge 104′ relies on suppression and confinement of the propagating eigen-modes which are electrically excited in the FBAR region 114 as a part of piston mode excitation. Both ends of the filled bridge 104′ provide mechanical discontinuities to control the phase of the reflected mode and to provide overall beneficial suppression of the propagating eigen-modes in the main FBAR region 114. Moreover, in the decoupling region 113, the main part of the piston mode becomes evanescent, that is, its amplitude decreases exponentially as it propagates towards the field region 115. This decay process minimizes conversion of the piston mode into unwanted propagating modes at the impedance discontinuity regions created by the edges of the cavity 106 and the substrate 105, thus leading to further beneficial increase of Q-factor.

In certain embodiments, bridge 104′ is filled with NEBSG, carbon doped oxide (CDO), silicon carbide (SiC) or other suitable dielectric material that will not release when the sacrificial material disposed in the cavity 106 is released. In other embodiments, bridge 104′ is filled with one of tungsten (W), molybdenum (Mo), copper (Cu), iridium (Ir) or other suitable metal materials that will not release when the sacrificial material disposed in the cavity 106 is released. The bridge 104′ is fabricated by interrupting growth of the piezoelectric layer 108 on the first electrode 107, for example, when the piezoelectric layer 108 is about half its desired thickness, resulting in formation the bridge 104′ in approximately the middle of the completed piezoelectric layer 108. Once the growth of the piezoelectric layer 108 is interrupted, the NEBSG or other fill material is formed by a known method. The FBAR 100 is completed by continuing the growth of the remaining portion of the piezoelectric layer 108, and forming the second electrode 101 of the FBAR 100 thereover. When the cavity 106 is formed through the release of the sacrificial, the bridge 104′ remains filled with the selected, non-etchable material.

Forming bridges within piezoelectric layer(s) may be implemented in other types of acoustic resonators, including DBARs and CRFs, resulting in similar improvements in parallel resistance Rp, Q-factors, and the like. For example, FIGS. 2A-4B show cross-sectional views of DBARs 200-400, respectively, and FIGS. 5A-7B show cross-sectional views of CRFs 500-700, respectively, in accordance with representative embodiments.

Embodiments Comprising DBARs

FIGS. 2A-2D show cross-sectional views of DBAR 200 in accordance with representative embodiments. It may be assumed for purposes of explanation that the top view of the DBAR 200 is substantially the same as the top view of the FBAR 100, discussed above with reference to FIG. 1A. That is, the DBAR 200 may include a top electrode 101 (referred to below as third electrode 101), comprising five (5) sides, with a connection side 102 configured to provide the electrical connection to an interconnect 103.

Referring to FIG. 2A, the DBAR 200 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. The inclusion of a cavity 106 for reflection of acoustic waves in the DBAR 200 is merely illustrative. It is emphasized that rather than cavity 106, a known acoustic reflector (e.g., a Bragg mirror (not shown)) comprising alternating layers of high and low acoustic impedance may be provided in the substrate 105 to provide acoustic isolation. The plurality of layers includes first (bottom) electrode 107, first piezoelectric layer 108, second (middle) electrode 111, second piezoelectric layer 112, and third (top) electrode 101, discussed below.

The first electrode 107 is disposed over the substrate 105 and partially over the cavity 106 (or Bragg mirror). A planarization layer 107′ is provided over the substrate as shown. In a representative embodiment, the planarization layer 107′ comprises NEBSG. The first piezoelectric layer 108 is disposed over the first electrode 107, and a first bridge 201 is included within the first piezoelectric layer 108, meaning that the first bridge 201 is surrounded by the piezoelectric material of the first piezoelectric layer 108, as discussed above with reference to bridge 104. The first bridge 201 is disposed along all sides (i.e., along the perimeter) of the DBAR 200. The second electrode 111 and a planarization layer 109 are disposed over the first piezoelectric layer 108, where the planarization layer 109 generally does not overlap the cavity 106. In a representative embodiment, the planarization layer 109 comprises NEBSG. As should be appreciated by one of ordinary skill in the art, the structure provided by the first electrode 107, the first piezoelectric layer 108 and a second electrode 111 is a BAW resonator, which in this illustrative embodiment comprises a first BAW resonator of the DBAR 200. When the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror) it is a so-called SMR.

The second piezoelectric layer 112 is provided over the second electrode 111 and the planarization layer 109, and a second bridge 202 is included within the second piezoelectric layer 112, meaning that the second bridge 202 is surrounded by the piezoelectric material of the second piezoelectric layer 112, as discussed above with reference to bridge 104. The third electrode 101 is provided over the second piezoelectric layer 112. The second bridge 202 is disposed along all sides (i.e., along the perimeter) of the DBAR 200. As should be appreciated by one of ordinary skill in the art, the structure provided by the second electrode 111, the second piezoelectric layer 112 and the third electrode 101 is a BAW resonator, which in this illustrative embodiment comprises a second BAW resonator of the DBAR 200. As mentioned above, when the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror), it is a so-called SMR. The present teachings contemplate the use of either FBARs or SMRs to form DBARs. The DBARs are contemplated for a variety of uses, including filters (e.g., ladder filters comprising a plurality of BAW resonators).

Illustratively, the first electrode 107, the second electrode 111 and the third electrode 101 are formed of W having a thickness of approximately 1000 Å to approximately 20000 Å. Other materials may be used for the first electrode 107, the second electrode 111 and the third electrode 101, including but not limited to Mo or a bi-metal material. Illustratively, the first piezoelectric layer 108 and the second piezoelectric layer 112 are AlN having a thickness of approximately 5000 Å to approximately 15000 Å. Other materials may be used for the first piezoelectric layer 108 and the second piezoelectric layer 112, including but not limited to ZnO.

In representative embodiments, the configuration of the first and second bridges 201, 202 may be substantially the same as the bridge 104 discussed above with reference to FIG. 1B. Notably, the first bridge 201 and the second bridge 202 are not necessarily the same shape (e.g., one could have trapezoidal cross-sectional shape and one could have a rectangular cross-sectional in shape). For example, dimensions of the first and second bridges 201, 202 may be approximately 2.0 μm to approximately 10.0 μm in width (x-dimension in the coordinate system shown in FIG. 2A) and approximately 150 Å to approximately 3000 Å in height (y-dimension in the coordinate system shown in FIG. 2A).

Further, in certain embodiments, the first and second bridges 201, 202 extend over the cavity 106 by overlap 113. The overlap 113 (also referred to as the decoupling region) has a width (x-dimension) of approximately 0.0 μm (i.e., no overlap with the cavity 106) to approximately 10.0 μm. Notably, the first bridge 201 and the second bridge 202 do not need to be the same dimensions or located at the same relative position. For example, the overlap 113 of the first and second bridges 201, 202 with cavity 106 is shown in FIG. 2A to be identical; but this is not essential as different first and second bridges 201, 202 may overlap the cavity 106 to a greater or lesser extent than other bridges 201, 202.

Generally, the same considerations apply when designing bridges 201 and 202 for DBAR 200 as described for bridge 104 for FBAR 100 in connection with FIGS. 1B and 1C. For example, the first and second bridges 201, 202 need to be wide enough to ensure suitable decay of evanescent waves at the boundary of an active region 114 (also referred to herein as a DBAR region) and the decoupling region (i.e., overlap 113) in order to minimize tunneling of modes into a field region 115 where propagating modes exist at the frequency of operation. On the other hand, if the first and second bridges 201, 202 are too wide, reliability issues can arise and can also limit the placement of similar DBARs (not shown) from being placed in proximity (thus unnecessary increasing the total area of a chip). As such, the optimum width of the first and second bridges 201, 202 may be determined experimentally.

In addition, the width and position of the first and second bridges 201, 202 and overlap 113 with the cavity 106 are selected to improve Q-enhancement of the odd resonant mode. In general, the greater the overlap 113 of each of the first and second bridges 201, 202 with the cavity 106 of the DBAR 200, the greater the improvement of Q-factor with the improvement realized being fairly small after an initial increase. The improvement in Q-factor must be weighed against a decrease in the electromechanical effective coupling coefficient kt2, which decreases with increasing the overlap 113 of the first and second bridges 201, 202 with the cavity 106. Degradation of the coupling coefficient kt2 results in a degradation of insertion loss (S21) of a filter comprising DBARs. As such, the overlap 113 of the first and second bridges 201, 202 with the cavity 106 may be optimized experimentally.

In order to form the first bridge 201, growth of the first piezoelectric layer 108 on the first electrode 107 is interrupted. Likewise, in order to form the second bridge 202, growth of the second piezoelectric layer 112 on the second electrode 111 is interrupted. In the depicted embodiment, the growth of the first and second piezoelectric layers 108, 112 were interrupted at about half way through the anticipated thickness, resulting in formation the first and second bridges 201, 202 in approximately the middle of the completed first and second piezoelectric layers 108, 112, respectively, as discussed above. However, the first and second bridges 201, 202 may be formed in different relative locations within the first and second piezoelectric layers 108, 112, without departing from the scope of the present teachings. Once the growth of the first piezoelectric layer 108 is interrupted, the first bridge 201 may be formed by patterning a sacrificial material over the grown portion of the first piezoelectric layer 108, and then continuing growth of the remaining portion of the first piezoelectric layer 108 thereover. Likewise, after formation of the second electrode 111, the growth of the second piezoelectric layer 112 is interrupted, and the second bridge 202 may be formed by patterning a sacrificial material over the grown portion of the second piezoelectric layer 112. Growth of the remaining portion of the second piezoelectric layer 112 is then continued thereover. After the other layers of the DBAR 200 are formed as desired (e.g., the third electrode 101), the sacrificial material is released leaving the first and second bridges 201, 202 “unfilled.” In a representative embodiment, the sacrificial material used to form the first and second bridges 201, 202 is the same as the sacrificial material used to form the cavity 106, such as PSG, for example.

In a representative embodiment, the first bridge 201 and the second bridge 202 define a perimeter along the active region 114 of the DBAR 200. The active region 114 thus includes the portions of the first BAW resonator and the second BAW resonator disposed over the cavity 106 and bounded by the perimeter provided by the first bridge 201 and the second bridge 202. As should be appreciated by one of ordinary skill in the art, the active region of the DBAR 200 is bordered around its perimeter by an acoustic impedance discontinuity created at least in part by the first and second bridges 201, 202, and above and below (cavity 106) by an acoustic impedance discontinuity due to the presence of air. Thus, a resonant cavity is beneficially provided in the active region of the DBAR 200. In certain embodiments, the first bridge 201 and the second bridge 202 are unfilled (i.e., contain air), as is the cavity 106. In other embodiments described more fully below, the first bridge 201, or the second bridge 202, or both, are filled with a material to provide the desired acoustic impedance discontinuity.

It is noted that the first bridge 201, or the second bridge 202, or both, do not necessarily have to extend along all edges of the DBAR 200, and therefore not along the perimeter of the DBAR 200. For example, the first bridge 201 or the second bridge 202, or both, may be provided on four “sides” of a five-sided DBAR 200 (similar to the five-sided FBAR 100 shown in FIG. 1A). In certain embodiments, the first bridge 201 is disposed along the same four sides of the DBAR 200 as the second bridge 202. In other embodiments, the first bridge 201 is disposed along four sides (e.g., all sides but the connection side 102) of the DBAR 200 and the second bridge 202 is disposed along four sides of the DBAR 200, but not the same four sides as the first bridge 201 (e.g., second bridge 202 is disposed along the connection side 102).

The acoustic impedance mismatch provided by the first bridge 201 and the second bridge 202 causes reflection of acoustic waves at the boundary that may otherwise propagate out of the active region and be lost, resulting in energy loss. The first bridge 201 and the second bridge 202 serve to confine the modes of interest within the active region 114 of the DBAR 200 and reduce energy losses in the DBAR 200. Reducing such losses serves to increase the Q-factor of the modes of interest in the DBAR 200. In filter applications of the DBAR 200, as a result of the reduced energy loss, the insertion loss (S21) is beneficially improved.

In the representative embodiment shown and described in connection with FIG. 2A, the first and second bridges 201, 202 are unfilled (i.e., contain air as the acoustic medium). FIG. 2B shows a cross-sectional view of DBAR 200 in which both bridges, indicated as first bridge 201′ and second bridge 202′, are filled with a material to provide the acoustic impedance discontinuity to reduce losses. In certain embodiments, first bridge 201′ and second bridge 202′ are filled with NEBSG, CDO, SiC or other suitable dielectric material that will not release when the sacrificial material disposed in the cavity 106 is released. In other embodiments, the first bridge 201′ and the second bridge 202′ are filled with one of tungsten (W), molybdenum (Mo), copper (Cu), iridium (Ir) or other suitable metal materials that will not release when the sacrificial material disposed in the cavity 106 is released. The first and second bridges 201′, 202′ are fabricated by forming the NEBSG or other fill material within the first piezoelectric layer 108 and the second piezoelectric layer 112, respectively, by interrupting growth of the first and second piezoelectric layers 108, 112, as discussed above, and forming respective layers of the DBAR 200 thereover. When the cavity 106 is formed through the release of the sacrificial, the first bridge 201′ and the second bridge 202′ remain “filled” with the selected, non-etchable material.

FIG. 2C shows a cross-sectional view of DBAR 200 in which the second bridge 202′ is filled with a material to provide the acoustic impedance discontinuity to reduce losses, and the first bridge 201 is filled with air. This modification of the DBAR 200 is fabricated by patterning a material (e.g., NEBSG) within the second piezoelectric layer 112 that will not release before forming the third electrode 101. The first bridge 201 is formed by patterning a sacrificial material within the first piezoelectric layer 108, and releasing the sacrificial material as described above.

FIG. 2D shows a cross-sectional view of DBAR 200 in which the second bridge 202 is filled with air, and the first bridge 201′ is filled with a material to provide the acoustic impedance discontinuity to reduce losses. This modification of the DBAR 200 is fabricated by patterning a material (e.g., NEBSG) within the first piezoelectric layer 108 that will not release before forming the second electrode 111. The second bridge 202 is formed by patterning a sacrificial material within the second piezoelectric layer 112, and releasing the sacrificial material as described above.

In the embodiments described presently, a single bridge is provided in an illustrative DBAR. The single bridge is provided within a single piezoelectric layer in each embodiment, and forms a perimeter that encloses the active region of the DBAR. By placing the bridge within different piezoelectric layers, the various embodiments can be studied to test the degree of coupling of modes in the active region (DBAR region) and the modes in the field region. Generally, the bridge decouples modes with a comparatively large propagation constant (kr) from the modes in the field region. As described below, certain embodiments comprise an “unfilled” bridge and certain embodiments comprise a “filled” bridge. Many details of the present embodiments are common to those described above in connection with the representative embodiments of FIGS. 1A-1C and 2A-2D. Generally, the common details are not repeated in the description of embodiments comprising a single bridge.

FIGS. 3A and 3B show cross-sectional views of a DBAR 300 in accordance with representative embodiments. The DBAR 300 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 300 are common to those of DBAR 200, described above, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.

FIG. 3A shows a bridge 301 provided within the first piezoelectric layer 108. The bridge 301 is unfilled (i.e., contains air). Bridge 301 is disposed around the perimeter of the active region 114 of the DBAR 300, and fosters confinement of modes in the active region 114 of the DBAR 300. For purposes of illustration of the improvement in mode confinement in the active region 114 of the DBAR 300, the bridge 301 having a width (x-dimension) of approximately 5.0 μm, a height of approximately 500 Å, and overlap 113 of the cavity 106 by approximately 2.0 μm was provided. An increase in Q-factor of approximately 100% (depending on frequency of operation, e.g., at parallel resonance frequency) may be expected compared to a known DBAR that does not include a bridge.

FIG. 3B shows a bridge 301′ provided within the first piezoelectric layer 108 of DBAR 300. The bridge 301′ is “filled” with a material (e.g., NEBSG or other material described above) to provide an acoustic impedance discontinuity. Bridge 301′ is disposed around the perimeter of the active region 114 of the DBAR 300, and fosters confinement of modes in the active region 114 of the DBAR 300. Similar improvements in Q-factor expected for bridge 301 are expected with the use of bridge 301′. Beneficially, the use of a filled bridge provides a more rugged structure.

FIGS. 4A and 4B show cross-sectional views of a DBAR 400 in accordance with representative embodiments. The DBAR 400 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 400 are common to those of DBAR 200, described above, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.

FIG. 4A shows a bridge 402 provided within the second piezoelectric layer 112. The bridge 402 is unfilled (i.e., contains air). Bridge 402 is disposed along the perimeter of the active region 114 of the DBAR 400, and fosters confinement of modes in the active region 114 of the DBAR 400. For purposes of illustration of the improvement in mode confinement in the active region 114 of the DBAR 400, bridge 402 having a width (x-dimension) of approximately 5.0 μm, a height of approximately 500 Å, and overlap 113 of the cavity 106 by approximately 2.0 μm was provided. An increase in Q-factor of approximately 100% (depending on frequency of operation, e.g., at parallel resonance frequency) may be expected compared to a known DBAR that does not include a bridge.

FIG. 4B shows a bridge 402′ provided within the second piezoelectric layer 112. The bridge 402′ is “filled” with a material (e.g., NEBSG or other material described above) to provide an acoustic impedance discontinuity. Bridge 402′ is disposed along the perimeter of the active region 114 of the DBAR 400, and fosters confinement of modes in the active region 114 of the DBAR 400. For bridge 402′ having the same width, height and overlap 113 of cavity 106 as bridge 402, similar improvements in Q-factor expected for bridge 402 are expected with the use of bridge 402′. Beneficially, the use of a filled bridge provides a more rugged structure.

Embodiments Comprising CRFs

FIGS. 5A-5D show cross-sectional views of CRF 500 in accordance with representative embodiments. It may be assumed for purposes of explanation that the top view of the CRF 500 is substantially the same as the top view of the FBAR 100, discussed above with reference to FIG. 1A. That is, the CRF 500 may include a top electrode 101 (referred to below as fourth electrode 101), comprising five (5) sides, with a connection side 102 configured to provide the electrical connection to an interconnect 103.

Referring to FIG. 5A, the CRF 500 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. The inclusion of a cavity 106 for reflection of acoustic waves in the CRF 500 is merely illustrative. It is emphasized that rather than cavity 106, a known acoustic reflector (e.g., a Bragg mirror (not shown)) comprising alternating layers of high and low acoustic impedance may be provided in the substrate 105 to provide acoustic isolation. The plurality of layers include first (first bottom) electrode 107, first piezoelectric layer 108, second (first top) electrode 111, coupling layer 116, third (second bottom) electrode 117, second piezoelectric layer 112, and fourth (second top) electrode 101, discussed below.

The first electrode 107 is disposed over the substrate 105 and partially over the cavity 106 (or Bragg mirror). A planarization layer 107′ is provided over the substrate as shown. In a representative embodiment, the planarization layer 107′ comprises NEBSG. The first piezoelectric layer 108 is disposed over the first electrode 107, and a first bridge 501 is included within the first piezoelectric layer 108, meaning that the first bridge 501 is surrounded by the piezoelectric material of the first piezoelectric layer 108, as discussed above with reference to bridge 104. The first bridge 501 is disposed along all sides (i.e., along the perimeter) of the CRF 500. The second electrode 111 and a planarization layer 109 are disposed over the first piezoelectric layer 108, where the planarization layer 109 generally does not overlap the cavity 106. In a representative embodiment, the planarization layer 109 comprises NEBSG. As should be appreciated by one of ordinary skill in the art, the structure provided by the first electrode 107, the first piezoelectric layer 108 and a second electrode 111 is a BAW resonator, which in this illustrative embodiment comprises a first BAW resonator of the CRF 500. When the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror) it is a so-called SMR.

The acoustic coupling layer 116 (“coupling layer 116”) is provided over the second electrode 111. In a representative embodiment, the coupling layer 116 may comprise carbon doped oxide (CDO) or NEBSG, such as described in commonly owned U.S. patent application Ser. No. 12/710,640, entitled “Bulk Acoustic Resonator Structures Comprising a Single Material Acoustic Coupling Layer Comprising Inhomogeneous Acoustic Property” to Elbrecht et al., filed on Feb. 23, 2010. The disclosure of this patent application is hereby incorporated by reference. Notably, CDO is a general class of comparatively low dielectric constant (low-k) dielectric materials, including carbon-doped silicon oxide (SiOCH) films, for example, of which the coupling layer 116 may be formed. Alternatively, the coupling layer 116 may comprise other dielectric materials with suitable acoustic impedance and acoustic attenuation, including, but not limited to porous silicon oxynitride (SiON), porous boron doped silicate glass (BSG), or porous phosphosilicate glass (PSG). Generally, the material used for the coupling layer 116 is selected to provide comparatively low acoustic impedance and loss in order to provide desired pass-band characteristics.

The third electrode 117 is provided over the coupling layer 116, and the second piezoelectric layer 112 is provided over the third electrode 117 and the planarization layer 109. A second bridge 502 is included within the second piezoelectric layer 112, meaning that the second bridge 502 is surrounded by the piezoelectric material of the second piezoelectric layer 112, as discussed above with reference to bridge 104. The fourth electrode 101 is provided over the second piezoelectric layer 112. The second bridge 502 is disposed along all sides (i.e., along the perimeter) of the CRF 500. As should be appreciated by one of ordinary skill in the art, the structure provided by the third electrode 117, the second piezoelectric layer 112 and the fourth electrode 101 is a BAW resonator, which in this illustrative embodiment comprises a second BAW resonator of the CRF 500. As mentioned above, when the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror), it is a so-called SMR. The present teachings contemplate the use of either FBARs or SMRs to form CRFs. The CRFs are contemplated for a variety of uses, including filters.

Illustratively, the first electrode 107 and the fourth electrode 101 are formed of Mo having a thickness of approximately 1000 Å to approximately 20000 Å, and the second electrode 111 and the third electrode 117 are formed of W having a thickness of approximately 1000 Å to approximately 20000 Å. Other materials may be used for the first electrode 107, the second electrode 111, the third electrode 117 and the fourth electrode 101. Illustratively, the first piezoelectric layer 108 and the second piezoelectric layer 112 are formed of AlN having a thickness of approximately 5000 Å to approximately 15000 Å. Other materials may be used for the first piezoelectric layer 108 and the second piezoelectric layer 112, including but not limited to ZnO.

In representative embodiments, the configuration of the first and second bridges 501, 502 may be substantially the same as the bridge 104 discussed above with reference to FIG. 1B. Notably, the first bridge 501 and the second bridge 502 are not necessarily the same shape (e.g., one could have trapezoidal cross-sectional shape and one could have a rectangular cross-sectional in shape). For example, dimensions of the first and second bridges 501, 502 may be approximately 2.0 μm to approximately 10.0 μm in width (x-dimension in the coordinate system shown in FIG. 5A) and approximately 150 Å to approximately 3000 Å in height (y-dimension in the coordinate system shown in FIG. 2A).

Further, in certain embodiments, the first and second bridges 501, 502 extend over the cavity 106 by overlap 113. The overlap 113 (also referred to as the decoupling region) has a width (x-dimension) of approximately 0.0 μm (i.e., no overlap with the cavity 106) to approximately 10.0 μm. Notably, the first bridge 501 and the second bridge 502 do not need to be the same dimensions or located at the same relative position. For example, the overlap 113 of the first and second bridges 501, 502 with cavity 106 is shown in FIG. 5A to be identical; but this is not essential as different first and second bridges 501, 502 may overlap the cavity 106 to a greater or lesser extent than other bridges 501, 502.

Generally, the same considerations apply when designing bridges 501 and 502 for CRF 500 as described for bridge 104 for FBAR 100 in connection with FIGS. 1B and 1C. For example, the first and second bridges 501, 502 need to be wide enough to ensure suitable decay of evanescent waves at the boundary of a CRF region and a decoupling region in order to minimize tunneling of modes into the field region where propagating modes exist at the frequency of operation. On the other hand, if the first and second bridges 501, 502 are too wide, reliability issues can arise and can also limit the placement of similar CRFs (not shown) from being placed in proximity (thus unnecessary increasing the total area of a chip). As such, the optimum width of the first and second bridges 501, 502 may be determined experimentally.

In addition, the width and position of the first and second bridges 501, 502 and overlap 113 with the cavity 106 are selected to improve Q-enhancement of resonant mode. In general, the greater the overlap 113 of each of the first and second bridges 501, 502 with the cavity 106 of the CRF 500, the greater the improvement in odd-mode Q-factor)(Qo) and even mode Q-factor (Qe) with the improvement realized being fairly small after an initial increase. The improvement in Qo and Qe must be weighed against a decrease in the electromechanical effective coupling coefficient kt2, which decreases with increasing overlap 113 of the first and second bridges 501, 502 with the cavity 106. Degradation of the coupling coefficient kt2 results in a degradation of insertion loss (S21). As such, the overlap 113 of the first and second bridges 501, 502 with the cavity 106 may be optimized experimentally.

In order to form the first bridge 501, growth of the first piezoelectric layer 108 on the first electrode 107 is interrupted. Likewise, in order to form the second bridge 502, growth of the second piezoelectric layer 112 on the third electrode 117 is interrupted. In the depicted embodiment, the growth of the first and second piezoelectric layers 108, 112 were interrupted at about half way through the anticipated thickness, resulting in formation the first and second bridges 501, 502 in approximately the middle of the completed first and second piezoelectric layers 108, 112, respectively, as discussed above. However, the first and second bridges 501, 502 may be formed in different relative locations within the first and second piezoelectric layers 108, 112, without departing from the scope of the present teachings. Once the growth of the first piezoelectric layer 108 is interrupted, the first bridge 501 may be formed by patterning a sacrificial material over the grown portion of the first piezoelectric layer 108, and then continuing growth of the remaining portion of the first piezoelectric layer 108 thereover. Likewise, after formation of the third electrode 117 (on the coupling layer 116), the growth of the second piezoelectric layer 112 is interrupted, and the second bridge 502 may be formed by patterning a sacrificial material over the grown portion of the second piezoelectric layer 112. Growth of the remaining portion of the second piezoelectric layer 112 is then continued thereover. After the other layers of the CRF 500 are formed as desired (e.g., the fourth electrode 101), the sacrificial material is released leaving the first and second bridges 501, 502 “unfilled.” In a representative embodiment, the sacrificial material used to form the first and second bridges 501, 502 is the same as the sacrificial material used to form the cavity 106, such as PSG, for example.

In a representative embodiment, the first bridge 501 and the second bridge 502 define a perimeter along the active region 114 of the CRF 500. The active region 114 thus includes the portions of the first BAW resonator and the second BAW resonator disposed over the cavity 106 and bounded by the perimeter provided by the first bridge 501 and the second bridge 502. As should be appreciated by one of ordinary skill in the art, the active region of the CRF 500 is bordered around its perimeter by an acoustic impedance discontinuity created at least in part by the first and second bridges 501, 502, and above and below (cavity 106) by an acoustic impedance discontinuity due to the presence of air. Thus, a resonant cavity is beneficially provided in the active region of the CRF 500. In certain embodiments, the first bridge 501 and the second bridge 502 are unfilled (i.e., contain air), as is the cavity 106. In other embodiments described more fully below, the first bridge 501, or the second bridge 502, or both, are filled with a material to provide the desired acoustic impedance discontinuity.

It is noted that the first bridge 501, or the second bridge 502, or both, do not necessarily have to extend along all edges of the CRF 500, and therefore not along the perimeter of the DBAR 500. For example, the first bridge 501 or the second bridge 502, or both, may be provided on four “sides” of a five-sided CRF 500 (similar to the five-sided FBAR 100 shown in FIG. 1A). In certain embodiments, the first bridge 501 is disposed along the same four sides of the CRF 500 as the second bridge 502. In other embodiments, the first bridge 501 is disposed along four sides (e.g., all sides but the connection side 102) of the CRF 500 and the second bridge 502 is disposed along four sides of the CRF 500, but not the same four sides as the first bridge 501 (e.g., second bridge 502 is disposed along the connection side 102).

The acoustic impedance mismatch provided by the first bridge 501 and the second bridge 502 causes reflection of acoustic waves at the boundary that may otherwise propagate out of the active region and be lost, resulting in energy loss. The first bridge 501 and the second bridge 502 serve to confine the modes of interest within the active region of the CRF 500 and reduce energy losses in the CRF 500. Reducing such losses serves to increase the Q-factor of the modes (Qo and Qe) of interest in the CRF 500, and to improve insertion loss (S21) over the passband of the CRF 500.

In the representative embodiment shown and described in connection with FIG. 5A, the first and second bridges 501, 502 are unfilled (i.e., contain air as the acoustic medium). FIG. 5B shows a cross-sectional view of CRF 500 in which both bridges, indicated as first bridge 501′ and second bridge 502′, are filled with a material to provide the acoustic impedance discontinuity to reduce losses. In certain embodiments, first bridge 501′ and second bridge 502′ are filled with NEBSG, CDO, SiC or other suitable dielectric material that will not release when the sacrificial material disposed in the cavity 106 is released. In other embodiments, the first bridge 501′ and the second bridge 502′ are filled with one of tungsten (W), molybdenum (Mo), copper (Cu), iridium (Ir) or other suitable metal materials that will not release when the sacrificial material disposed in the cavity 106 is released. The first and second bridges 501′, 502′ are fabricated by forming the NEBSG or other fill material within the first piezoelectric layer 108 and the second piezoelectric layer 112, respectively, by interrupting growth of the first and second piezoelectric layers 108, 112, as discussed above, and forming respective layers of the CRF 500 thereover. When the cavity 106 is formed through the release of the sacrificial, the first bridge 501′ and the second bridge 502′ remain “filled” with the selected, non-etchable material.

FIG. 5C shows a cross-sectional view of CRF 500 in which the second bridge 502′ is filled with a material to provide the acoustic impedance discontinuity to reduce losses, and the first bridge 501 is filled with air. This modification of the CRF 500 is fabricated by patterning a material (e.g., NEBSG) within the second piezoelectric layer 112 that will not release before forming the fourth electrode 101. The first bridge 501 is formed by patterning a sacrificial material within the first piezoelectric layer 108, and releasing the sacrificial material as described above.

FIG. 5D shows a cross-sectional view of CRF 500 in which the second bridge 502 is filled with air, and the first bridge 501′ is filled with a material to provide the acoustic impedance discontinuity to reduce losses. This modification of the CRF 500 is fabricated by patterning a material (e.g., NEBSG) within the first piezoelectric layer 108 that will not release before forming the second electrode 111. The second bridge 502 is formed by patterning a sacrificial material within the second piezoelectric layer 112, and releasing the sacrificial material as described above.

In the embodiments described presently, a single bridge is provided in an illustrative CRF. The single bridge is provided within a single piezoelectric layer in each embodiment, and is disposed about a perimeter that encloses the active region of the CRF. By placing the bridge within different piezoelectric layers, the various embodiments can be studied to test the degree of coupling of modes in the active (CRF) region and the modes in the field plate region. Generally, the bridge decouples modes with a comparatively large propagation constant (kr) from the modes in the field plate region. As described below, certain embodiments comprise an “unfilled” bridge and certain embodiments comprise a “filled” bridge. Many details of the present embodiments are common to those described above in connection with the representative embodiments of FIGS. 1A-1C and 5A-5D.

FIGS. 6A and 6B show cross-sectional views of a CRF 600 in accordance with representative embodiments. The CRF 600 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the CRF 600 are common to those of CRF 500, described above, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.

FIG. 6A shows a bridge 601 provided within the first piezoelectric layer 108. The bridge 601 is unfilled (i.e., contains air). The bridge 601 is disposed around the perimeter of the active region 114 of the CRF 600, and fosters confinement of modes in the active region 114 of the CRF 600. Similarly to FBAR 100 discussed above, such increased mode confinement in CRF 600 is expected to improve insertion loss and even and odd mode quality factors as compared to a known CRF (without a bridge).

FIG. 6B shows a bridge 601′ provided within the first piezoelectric layer 108 of CRF 600. The bridge 601′ is “filled” with a material (e.g., NEBSG or other material described above) to provide an acoustic impedance discontinuity. Bridge 601′ is disposed around the perimeter of the active region 114 of the CRF 600. Beneficially, the use of a filled bridge provides a more rugged structure.

FIGS. 7A and 7B show cross-sectional views of a CRF 700 in accordance with representative embodiments. The CRF 700 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the CRF 700 are common to those of CRF 500, described above, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.

FIG. 7A shows a bridge 702 provided within the second piezoelectric layer 112. The bridge 702 is unfilled (i.e., contains air). The bridge 702 is disposed along the perimeter of the active region 114 of the DBAR 400, and fosters confinement of modes in the active region 114 of the CRF 700. Similarly to FBAR 100 discussed above, such increased mode confinement in CRF 700 is expected to improve insertion loss and even and odd mode quality factors as compared to a known CRF (without a bridge).

FIG. 7B shows a bridge 702′ provided within the second piezoelectric layer 112. The bridge 702′ is “filled” with a material (e.g., NEBSG or other material described above) to provide an acoustic impedance discontinuity. The bridge 702′ is disposed along the perimeter of the active region 114 of the CRF 700, and fosters confinement of modes in the active region 114 of the CRF 700. Beneficially, the use of a filled bridge provides a more rugged structure.

Notably, each of the FBARs 100, DBARs 200-400 and CRFs 500-700 may include various additional features without departing from the scope of the present teachings. For example, an inner raised region and/or an outer raised region may be included on a top surface of the top electrode (e.g., second electrode 101 in FIGS. 1A-1C; third electrode 101 in FIGS. 2A-4B; fourth electrode 101 in FIGS. 5A-7B) in the active region 114. The inner raised region may be separated from the edges of the active region or from an inner edge of the outer raised region by a gap. Details of such inner and outer raised regions, including illustrative thickness and width dimensions of the inner and outer raised regions, as well as widths of corresponding gaps, are described in commonly owned U.S. patent application Ser. No. 13/074,094, to Shirakawa et al., entitled “Stacked Bulk Acoustic Resonator and Method of Fabricating Same,” filed on Mar. 29, 2011, the disclosure of which is hereby incorporated by reference. The combination of the bridges, the inner raised region and/or the outer raised regions further improves mode confinement in the active region (e.g., active region 114) of the representative FBARs 100, DBARs 200-400 and CRFs 500-700.

In accordance with illustrative embodiments, BAW resonator structures comprising bridges and their methods of fabrication are described. One of ordinary skill in the art would appreciate that many variations that are in accordance with the present teachings are possible and remain within the scope of the appended claims. These and other variations would become clear to one of ordinary skill in the art after inspection of the specification, drawings and claims herein. The invention therefore is not to be restricted except within the spirit and scope of the appended claims.

Larson, III, John D., Burak, Dariusz, Nikkel, Phil, Kaitila, Jyrki, Shirakawa, Alexandre

Patent Priority Assignee Title
10177732, Jul 29 2015 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
10205432, Dec 14 2015 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
10432166, Jun 16 2016 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and multiplexer
10469049, Jan 14 2016 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
10680576, Feb 05 2016 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
10790799, Apr 07 2017 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and multiplexer
11228299, Feb 02 2017 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator with insertion film, filter, and multiplexer
9344059, Jan 28 2013 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer including a film inserted into the piezoelectric film
9356573, Nov 11 2013 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter and duplexer including a film inserted in the piezoelectric film
9755611, Nov 11 2013 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter and duplexer
9787282, Nov 11 2013 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter and duplexer
9991871, Feb 28 2011 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Bulk acoustic wave resonator comprising a ring
Patent Priority Assignee Title
3174122,
3189851,
3321648,
3422371,
3568108,
3582839,
3590287,
3610969,
3826931,
3845402,
4084217, Apr 19 1977 BBC Brown, Boveri & Company, Limited Alternating-current fed power supply
4172277, Feb 14 1977 Compagnie Internationale pour l'Informatique Cii-Honeywell Bull (Societe Chopping control system for a converter in a DC electrical power supply
4272742, Sep 22 1978 The Secretary of State for Defence in Her Britannic Majesty's Government Acoustic wave devices with temperature stabilization
4281299, Nov 23 1979 Honeywell Inc. Signal isolator
4320365, Nov 03 1980 United Technologies Corporation Fundamental, longitudinal, thickness mode bulk wave resonator
4344004, Sep 22 1980 OKUBO, SHIGEO Dual function transducer utilizing displacement currents
4355408, Feb 13 1980 International Computers Limited System for extracting timing information from a digital waveform
4456850, Feb 09 1982 Nippon Electric Co., Ltd. Piezoelectric composite thin film resonator
4529904, Mar 16 1983 STC PLC, 10 MALTRAVERS STREET, LONDON, WC2R 3HA, ENGLAND A BRITISH COMPANY Piezo-electric terminal station for communications system
4608541, Aug 10 1984 Analog Devices, KK Isolation amplifier
4625138, Oct 24 1984 The United States of America as represented by the Secretary of the Army; UNITED STATES of AMERICA, AS REPRESENTED BY THE SECRETARY OF THE ARMY Piezoelectric microwave resonator using lateral excitation
4640756, Oct 25 1983 IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC Method of making a piezoelectric shear wave resonator
4719383, May 20 1985 IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC Piezoelectric shear wave resonator and method of making same
4769272, Mar 17 1987 NATIONAL SEMICONDUCTOR CORPORATION, A CORP OF DE Ceramic lid hermetic seal package structure
4798990, Sep 11 1986 Device for transmitting electric energy to computers and data nets
4819215, Jan 31 1986 Showa Electric Wire & Cable Co., Ltd. Electric signal transfer element
4836882, Sep 12 1988 The United States of America as represented by the Secretary of the Army Method of making an acceleration hardened resonator
4841429, Mar 24 1988 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Capacitive coupled power supplies
4906840, Jan 27 1988 TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY,BOARD OF THE, A CORP OF CA Integrated scanning tunneling microscope
4975892, Aug 05 1988 Thomson-CSF Piezoelectric transducer to generate bulk waves
5048036, Sep 18 1989 JDS Uniphase Corporation Heterostructure laser with lattice mismatch
5048038, Jan 25 1990 The United States of America as represented by the United States Ion-implanted planar-buried-heterostructure diode laser
5066925, Dec 10 1990 Micron Technology, Inc Multi push-pull MMIC power amplifier
5075641, Dec 04 1990 IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC , A CORP OF IOWA High frequency oscillator comprising cointegrated thin film resonator and active device
5111157, May 01 1991 Lockheed Martin Corporation Power amplifier for broad band operation at frequencies above one ghz and at decade watt power levels
5118982, May 31 1989 NEC Corporation Thickness mode vibration piezoelectric transformer
5129132, Jan 27 1988 Board of Trustees of the Leland Stanford Jr., University Method of making an integrated scanning tunneling microscope
5162691, Jan 22 1991 The United States of America as represented by the Secretary of the Army Cantilevered air-gap type thin film piezoelectric resonator
5166646, Feb 07 1992 MOTOROLA SOLUTIONS, INC Integrated tunable resonators for use in oscillators and filters
5185589, May 17 1991 Northrop Grumman Corporation Microwave film bulk acoustic resonator and manifolded filter bank
5214392, Nov 08 1988 Murata Mfg. Co., Ltd. Multilayered ceramic type electromagnetic coupler apparatus
5233259, Feb 19 1991 Round Rock Research, LLC Lateral field FBAR
5241209, Jul 24 1990 Sharp Kabushiki Kaisha Semi-conductor device having circuits on both sides of insulation layer and ultrasonic signal path between the circuits
5241456, Jul 02 1990 Lockheed Martin Corporation Compact high density interconnect structure
5262347, Aug 14 1991 STANFORD UNIVERSITY OTL, LLC Palladium welding of a semiconductor body
5270492, Aug 26 1991 Rohm Co., Ltd. Structure of lead terminal of electronic device
5294898, Jan 29 1992 Motorola, Inc. Wide bandwidth bandpass filter comprising parallel connected piezoelectric resonators
5361077, May 29 1992 IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC Acoustically coupled antenna utilizing an overmoded configuration
5382930, Dec 21 1992 Northrop Grumman Systems Corporation Monolithic multipole filters made of thin film stacked crystal filters
5384808, Dec 31 1992 Apple Inc Method and apparatus for transmitting NRZ data signals across an isolation barrier disposed in an interface between adjacent devices on a bus
5448014, Jan 27 1993 Northrop Grumman Systems Corporation Mass simultaneous sealing and electrical connection of electronic devices
5465725, Jun 15 1993 Hewlett Packard Company; Hewlett-Packard Company Ultrasonic probe
5475351, Sep 24 1993 Nippon Steel Corporation; Systems Uniques Corporation Non-contact rotating coupler
5548189, Mar 26 1992 Analog Devices International Unlimited Company Fluorescent-lamp excitation circuit using a piezoelectric acoustic transformer and methods for using same
5567334, Feb 27 1995 Texas Instruments Incorporated Method for creating a digital micromirror device using an aluminum hard mask
5587620, Dec 21 1993 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Tunable thin film acoustic resonators and method for making the same
5589858, May 22 1990 Canon Kabushiki Kaisha Information recording apparatus
5594705, Feb 04 1994 Dynamotive Canada Corporation Acoustic transformer with non-piezoelectric core
5603324, May 19 1994 Siemens Aktiengesellschaft Duplexer including a field-effect transistor for use in an ultrasound imaging system
5633574, Jan 18 1994 VOLTAIC LLC Pulse-charge battery charger
5671242, Sep 02 1994 Mitsubishi Denki Kabushiki Kaisha Strained quantum well structure
5692279, Aug 17 1995 Freescale Semiconductor, Inc Method of making a monolithic thin film resonator lattice filter
5704037, Mar 20 1996 Cursor positioning device for computer system
5705877, Oct 12 1995 NEC Corporation Piezoelectric transformer driving circuit
5714917, Oct 02 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Device incorporating a tunable thin film bulk acoustic resonator for performing amplitude and phase modulation
5729008, Jan 25 1996 Hewlett-Packard Company; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P ; Agilent Technologies, Inc Method and device for tracking relative movement by correlating signals from an array of photoelements
5789845, Nov 24 1994 Mitsubishi Denki Kabushiki Kaisha Film bulk acoustic wave device
5835142, Feb 04 1992 Matsushita Electric Industrial Co., Ltd. Direct contact type image sensor and its production method
5853601, Apr 03 1997 Northrop Grumman Systems Corporation Top-via etch technique for forming dielectric membranes
5864261, May 23 1994 Iowa State University Research Foundation Multiple layer acoustical structures for thin-film resonator based circuits and systems
5866969, Oct 24 1996 NEC Corporation Actuating circuit of piezoelectric transformer and actuating method thereof
5872493, Mar 13 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Bulk acoustic wave (BAW) filter having a top portion that includes a protective acoustic mirror
5873153, Dec 21 1993 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method of making tunable thin film acoustic resonators
5873154, Oct 17 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method for fabricating a resonator having an acoustic mirror
5894184, Aug 01 1996 NEC Corporation Drive circuit for driving a piezoelectric transformer capable of decreasing heat developed from electronic parts composing an inverter circuit
5894647, Jun 30 1997 Qorvo US, Inc Method for fabricating piezoelectric resonators and product
5903087, Jun 05 1997 CTS Corporation Electrode edge wave patterns for piezoelectric resonator
5910756, May 21 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Filters and duplexers utilizing thin film stacked crystal filter structures and thin film bulk acoustic wave resonators
5932953, Jun 30 1997 IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC Method and system for detecting material using piezoelectric resonators
5936150, Apr 13 1998 TELEDYNE SCIENTIFIC & IMAGING, LLC Thin film resonant chemical sensor with resonant acoustic isolator
5953479, May 07 1998 The United States of America as represented by the Secretary of the Army Tilted valance-band quantum well double heterostructures for single step active and passive optical waveguide device monolithic integration
5955926, Oct 04 1996 Sanyo Electric Co., Ltd. Power amplifier and chip carrier
5962787, Oct 24 1995 Wacoh Corporation Acceleration sensor
5969463, Jul 10 1996 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Energy trapping piezoelectric device and producing method thereof
5982297, Oct 08 1997 The Aerospace Corporation Ultrasonic data communication system
6001664, Feb 01 1996 OPTICAL COMMUNICATION PRODUCTS, INC Method for making closely-spaced VCSEL and photodetector on a substrate
6016052, Apr 03 1998 CTS Corporation Pulse frequency modulation drive circuit for piezoelectric transformer
6040962, May 14 1997 TDK Corporation Magnetoresistive element with conductive films and magnetic domain films overlapping a central active area
6051907, Oct 10 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method for performing on-wafer tuning of thin film bulk acoustic wave resonators (FBARS)
6060818, Jun 02 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED SBAR structures and method of fabrication of SBAR.FBAR film processing techniques for the manufacturing of SBAR/BAR filters
6087198, Feb 28 1997 Texas Instruments Incorporated Low cost packaging for thin-film resonators and thin-film resonator-based filters
6090687, Jul 29 1998 Agilent Technologies Inc System and method for bonding and sealing microfabricated wafers to form a single structure having a vacuum chamber therein
6107721, Jul 27 1999 Qorvo US, Inc Piezoelectric resonators on a differentially offset reflector
6111341, Feb 26 1997 TOYO COMMUNICATION EQUIPMENT CO , LTD Piezoelectric vibrator and method for manufacturing the same
6111480, Jul 07 1997 MURATA MANUFACTURING CO , LTD Piezoelectric resonator and method of adjusting resonant frequency thereof
6118181, Jul 29 1998 Agilent Technologies Inc System and method for bonding wafers
6124678, Oct 08 1998 Face International Corp.; Face International Corporation Fluorescent lamp excitation circuit having a multi-layer piezoelectric acoustic transformer and methods for using the same
6124756, Apr 08 1996 Texas Instruments Incorporated Method and apparatus for galvanically isolating two integrated circuits from each other
6131256, Jun 29 1995 CDC PROPRIETE INTELLECTUELLE Temperature compensated resonator and method
6150703, Jun 29 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Lateral mode suppression in semiconductor bulk acoustic resonator (SBAR) devices using tapered electrodes, and electrodes edge damping materials
6187513, May 29 1998 Sony Corporation Process for forming mask pattern and process for producing thin film magnetic head
6198208, May 20 1999 SNAPTRACK, INC Thin film piezoelectric device
6215375, Mar 30 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Bulk acoustic wave resonator with improved lateral mode suppression
6219032, Dec 01 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface
6219263, May 19 1995 SGS-Thomson Microelectronics S.A. Electronic power supply device
6228675, Jul 23 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Microcap wafer-level package with vias
6229247, Nov 09 1998 Face International Corp. Multi-layer piezoelectric electrical energy transfer device
6252229, Jul 10 1998 DRS Network & Imaging Systems, LLC Sealed-cavity microstructure and microbolometer and associated fabrication methods
6262600, Feb 14 2000 Analog Devices, Inc. Isolator for transmitting logic signals across an isolation barrier
6262637, Jun 02 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Duplexer incorporating thin-film bulk acoustic resonators (FBARs)
6263735, Sep 10 1997 Matsushita Electric Industrial Co., Ltd. Acceleration sensor
6265246, Jul 23 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Microcap wafer-level package
6278342, Dec 30 1998 Nokia Technologies Oy Balanced filter structure utilizing bulk acoustic wave resonators having different areas
6292336, Sep 30 1999 Headway Technologies, Inc. Giant magnetoresistive (GMR) sensor element with enhanced magnetoresistive (MR) coefficient
6307447, Nov 01 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Tuning mechanical resonators for electrical filter
6307761, Mar 23 1998 Fidelix Y.K. Single stage high power-factor converter
6335548, Mar 15 1999 EVERLIGHT ELECTRONICS CO , LTD Semiconductor radiation emitter package
6355498, Aug 11 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Thin film resonators fabricated on membranes created by front side releasing
6366006, Dec 15 2000 Face International Corporation Composite piezoelectric transformer
6376280, Jul 23 1999 AVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD Microcap wafer-level package
6377137, Sep 11 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Acoustic resonator filter with reduced electromagnetic influence due to die substrate thickness
6384697, May 08 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Cavity spanning bottom electrode of a substrate-mounted bulk wave acoustic resonator
6396200, Jan 16 1998 Mitsubishi Denki Kabushiki Kaisha Thin film piezoelectric element
6407649, Jan 05 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Monolithic FBAR duplexer and method of making the same
6414569, Nov 01 1999 Murata Manufacturing Co., Ltd. Method of adjusting frequency of piezoelectric resonance element by removing material from a thicker electrode or adding, material to a thinner electrode
6420820, Aug 31 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Acoustic wave resonator and method of operating the same to maintain resonance when subjected to temperature variations
6424237, Dec 21 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Bulk acoustic resonator perimeter reflection system
6429511, Jul 23 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Microcap wafer-level package
6434030, Jun 07 1999 Deutsche Thomson-Brandt GmbH Arrangement having a switched-mode power supply and a microprocessor
6437482, Apr 19 1999 Murata Manufacturing Co., Ltd. Piezoelectric resonator
6441539, Nov 11 1999 Murata Manufacturing Co., Ltd. Piezoelectric resonator
6441702, Apr 27 2001 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method and system for wafer-level tuning of bulk acoustic wave resonators and filters
6462631, Feb 14 2001 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Passband filter having an asymmetrical filter response
6466105, Jul 07 1999 Qorvo US, Inc Bulk acoustic wave filter
6466418, Feb 11 2000 Headway Technologies, Inc. Bottom spin valves with continuous spacer exchange (or hard) bias
6469597, Mar 05 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method of mass loading of thin film bulk acoustic resonators (FBAR) for creating resonators of different frequencies and apparatus embodying the method
6469909, Jan 09 2001 3M Innovative Properties Company MEMS package with flexible circuit interconnect
6472954, Apr 23 2001 CHEMTRON RESEARCH LLC Controlled effective coupling coefficients for film bulk acoustic resonators
6476536, Apr 27 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method of tuning BAW resonators
6479320, Feb 02 2000 L-3 Communications Corporation Vacuum package fabrication of microelectromechanical system devices with integrated circuit components
6483229, Mar 05 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method of providing differential frequency adjusts in a thin film bulk acoustic resonator (FBAR) filter and apparatus embodying the method
6486751, Sep 26 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Increased bandwidth thin film resonator having a columnar structure
6489688, May 02 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Area efficient bond pad placement
6492883, Nov 03 2000 NXP USA, INC Method of channel frequency allocation for RF and microwave duplexers
6496085, Jan 02 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Solidly mounted multi-resonator bulk acoustic wave filter with a patterned acoustic mirror
6498604, Feb 12 1997 Kanitech A/S Input device for a computer
6507983, Dec 21 1993 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method of making tunable thin film acoustic resonators
6515558, Nov 06 2000 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Thin-film bulk acoustic resonator with enhanced power handling capacity
6518860, Jan 05 2001 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD BAW filters having different center frequencies on a single substrate and a method for providing same
6525996, Dec 22 1998 Seiko Epson Corporation Power feeding apparatus, power receiving apparatus, power transfer system, power transfer method, portable apparatus, and timepiece
6528344, Jun 22 2000 SAMSUNG ELECTRONICS CO , LTD Chip scale surface-mountable packaging method for electronic and MEMS devices
6530515, Sep 26 2000 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Micromachine stacked flip chip package fabrication method
6534900, Feb 18 2000 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Piezoresonator
6542055, Oct 31 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Integrated filter balun
6548942, Feb 28 1997 Texas Instruments Incorporated Encapsulated packaging for thin-film resonators and thin-film resonator-based filters having a piezoelectric resonator between two acoustic reflectors
6548943, Apr 12 2001 CHEMTRON RESEARCH LLC Method of producing thin-film bulk acoustic wave devices
6549394, Mar 22 2002 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD Micromachined parallel-plate variable capacitor with plate suspension
6550664, Dec 09 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Mounting film bulk acoustic resonators in microwave packages using flip chip bonding technology
6559487, Nov 01 1999 Samsung Electronics Co., Ltd. High-vacuum packaged microgyroscope and method for manufacturing the same
6559530, Sep 19 2001 Raytheon Company Method of integrating MEMS device with low-resistivity silicon substrates
6564448, May 08 1998 NEC Electronics Corporation Resin structure in which manufacturing cost is cheap and sufficient adhesive strength can be obtained and method of manufacturing it
6566956, Jul 14 2000 Renesas Electronics Corporation High frequency power amplifier
6566979, Mar 05 2001 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method of providing differential frequency adjusts in a thin film bulk acoustic resonator (FBAR) filter and apparatus embodying the method
6580159, Nov 05 1999 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Integrated circuit device packages and substrates for making the packages
6583374, Feb 20 2001 Longitude Licensing Limited Microelectromechanical system (MEMS) digital electrical isolator
6583688, Apr 06 2000 Qorvo US, Inc Tunable filter arrangement comprising resonators with reflection layers
6593870, Oct 18 2001 Longitude Licensing Limited MEMS-based electrically isolated analog-to-digital converter
6594165, Apr 12 2001 KONINKLIJKE PHILIPS ELECTRONIC N V Circuit for converting AC voltage into DC voltage
6600390, Dec 13 2001 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Differential filters with common mode rejection and broadband rejection
6601276, May 11 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method for self alignment of patterned layers in thin film acoustic devices
6603182, Mar 12 2002 Lucent Technologies Inc. Packaging micromechanical devices
6617249, Mar 05 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method for making thin film bulk acoustic resonators (FBARS) with different frequencies on a single substrate and apparatus embodying the method
6617750, Sep 21 1999 Longitude Licensing Limited Microelectricalmechanical system (MEMS) electrical isolator with reduced sensitivity to inertial noise
6617751, Dec 05 2000 Samsung Electro-Mechanics Co., Ltd. Film bulk acoustic resonator and method for fabrication thereof
6621137, Oct 12 2000 Intel Corporation MEMS device integrated chip package, and method of making same
6630753, Oct 29 2001 GOOGLE LLC Low cost redundant AC to DC power supply
6635509, Apr 12 2002 TELEDYNE DIGITAL IMAGING, INC Wafer-level MEMS packaging
6639872, Dec 08 1997 Remote energy supply process and system for an electronic information carrier
6651488, Apr 23 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Systems and methods of monitoring thin film deposition
6657363, May 08 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Thin film piezoelectric resonator
6668618, Apr 23 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Systems and methods of monitoring thin film deposition
6670866, Jan 09 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Bulk acoustic wave resonator with two piezoelectric layers as balun in filters and duplexers
6677929, Mar 21 2001 Elan Microelectronics Corporation Optical pseudo trackball controls the operation of an appliance or machine
6693500, Jun 25 2001 Samsung Electro-Mechanics Co., Ltd. Film bulk acoustic resonator with improved lateral mode suppression
6710508, Nov 27 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method for adjusting and stabilizing the frequency of an acoustic resonator
6710681, Jul 13 2001 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Thin film bulk acoustic resonator (FBAR) and inductor on a monolithic substrate and method of fabricating the same
6713314, Aug 14 2002 Intel Corporation Hermetically packaging a microelectromechanical switch and a film bulk acoustic resonator
6714102, Mar 01 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method of fabricating thin film bulk acoustic resonator (FBAR) and FBAR structure embodying the method
6720844, Nov 16 2001 Qorvo US, Inc Coupled resonator bulk acoustic wave filter
6720846, Mar 21 2001 Seiko Epson Corporation Surface acoustic wave device with KNb03 piezoelectric thin film, frequency filter, oscillator, electronic circuit, and electronic apparatus
6724266, Jan 10 2000 ETA SA Fabriques d'Ebauches Device for producing a signal having a substantially temperature-independent frequency
6738267, Oct 19 1999 Alcatel Switched power supply converter with a piezoelectric transformer
6774746, May 24 2000 SNAPTRACK, INC Thin film bulk acoustic resonator filters with a piezoelectric layer of lead scandium tantalum oxide
6777263, Aug 21 2003 AVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD Film deposition to enhance sealing yield of microcap wafer-level package with vias
6787048, Mar 05 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method for producing thin bulk acoustic resonators (FBARs) with different frequencies on the same substrate by subtracting method and apparatus embodying the method
6788170, Jul 19 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Resonator structure having a dampening material and a filter having such a resonator structure
6803835, Aug 30 2001 AVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD Integrated filter balun
6812619, Jul 19 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Resonator structure and a filter comprising such a resonator structure
6820469, May 12 2003 National Technology & Engineering Solutions of Sandia, LLC Microfabricated teeter-totter resonator
6828713, Jul 30 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Resonator with seed layer
6842088, May 11 2001 MEMS SOLUTION CO , LTD Thin film acoustic resonator and method of producing the same
6842089, May 21 2002 Samsung Electro-Mechanics Co., Ltd. Film bulk acoustic resonator (FBAR) device
6849475, Nov 13 2000 Mems Solution Inc. Thin film resonator and method for manufacturing the same
6853534, Jun 09 2003 Agilent Technologies, Inc. Tunable capacitor
6861920, Jul 27 1999 Murata Manufacturing Co., Ltd. COMPLEX CIRCUIT BOARD, NONRECIPROCAL CIRCUIT DEVICE, RESONATOR, FILTER, DUPLEXER COMMUNICATIONS DEVICE, CIRCUIT MODULE, COMPLEX CIRCUIT BOARD MANUFACTURING METHOD, AND NONRECIPROCAL CIRCUIT DEVICE MANUFACTURING METHOD
6872931, Nov 06 2000 Koninklijke Philips Electronics N V Optical input device for measuring finger movement
6873065, Oct 23 1997 Analog Devices, Inc Non-optical signal isolator
6873529, Feb 26 2002 Kyocera Corporation High frequency module
6874211, Mar 05 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method for producing thin film bulk acoustic resonators (FBARs) with different frequencies on the same substrate by subtracting method and apparatus embodying the method
6874212, Aug 31 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method of making an acoustic wave resonator
6888424, Jul 03 2001 Murata Manufacturing Co., Ltd. Piezoelectric resonator, filter, and electronic communication device
6900705, Mar 15 2002 SKYWORKS FILTER SOLUTIONS JAPAN CO , LTD Balanced high-frequency device and balance-characteristics improving method and balanced high-frequency circuit using the same
6903452, Apr 03 2002 Intel Corporation Packaging microelectromechanical structures
6906451, Jan 08 2002 Murata Manufacturing Co., Ltd. Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and method for manufacturing piezoelectric resonator
6911708, Feb 21 2003 LG Electronics Inc. Duplexer filter having film bulk acoustic resonator and semiconductor package thereof
6917261, Dec 05 2002 SNAPTRACK, INC Component operating with bulk acoustic waves, and having asymmetric/symmetrical circuitry
6924583, May 03 2002 Asia Pacific Microsystems, Inc. Film bulk acoustic device with integrated tunable and trimmable device
6924717, Jun 30 2003 Intel Corporation Tapered electrode in an acoustic resonator
6927651, May 12 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Acoustic resonator devices having multiple resonant frequencies and methods of making the same
6936837, May 11 2001 MEMS SOLUTION CO , LTD Film bulk acoustic resonator
6936928, Mar 23 2000 Polaris Innovations Limited Semiconductor component and method for its production
6936954, Aug 29 2001 Honeywell International Inc.; Honeywell International Inc Bulk resonator
6941036, Dec 21 2000 Microstructure relay switches
6943647, Nov 06 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Bulk acoustic wave filter with a roughened substrate bottom surface and method of fabricating same
6943648, May 01 2003 Intel Corporation Methods for forming a frequency bulk acoustic resonator with uniform frequency utilizing multiple trimming layers and structures formed thereby
6946928, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Thin-film acoustically-coupled transformer
6954121, Jun 09 2003 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method for controlling piezoelectric coupling coefficient in film bulk acoustic resonators and apparatus embodying the method
6963257, Mar 19 2004 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Coupled BAW resonator based duplexers
6970365, Dec 12 2001 DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT Controlled frequency power factor correction circuit and method
6975183, Oct 08 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED BAW resonator having piezoelectric layers oriented in opposed directions
6977563, Sep 27 2002 SNAPTRACK, INC Thin-film piezoelectric resonator and method for fabricating the same
6985051, Dec 17 2002 The Regents of the University of Michigan Micromechanical resonator device and method of making a micromechanical device
6985052, Dec 13 2002 SNAPTRACK, INC Component operating with bulk acoustic waves, and having coupled resonators
6987433, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Film acoustically-coupled transformer with reverse C-axis piezoelectric material
6989723, Dec 11 2002 SNAPTRACK, INC Piezoelectric resonant filter and duplexer
6998940, Jan 15 2003 SNAPTRACK, INC Component operating with bulk acoustic waves and a method for producing the component
7002437, Jun 11 2002 Murata Manufacturing Co., Ltd. Piezoelectric thin-film resonator, piezoelectric filter, and electronic component including the piezoelectric filter
7019604, Jul 23 2002 Murata Manufacturing Co., Ltd. Piezoelectric filter, duplexer, composite piezoelectric resonator, communication device and method for adjusting frequency of piezoelectric filter
7019605, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Stacked bulk acoustic resonator band-pass filter with controllable pass bandwidth
7026876, Feb 21 2003 CALLAHAN CELLULAR L L C High linearity smart HBT power amplifiers for CDMA/WCDMA application
7053456, Mar 31 2004 Kioxia Corporation Electronic component having micro-electrical mechanical system
7057476, Dec 30 2003 Industrial Technology Research Institute Noise suppression method for wave filter
7057478, Apr 30 2003 SNAPTRACK, INC Component functioning with bulk acoustic waves having coupled resonators
7064606, Mar 28 2003 CommScope Technologies LLC High efficiency amplifier and method of designing same
7084553, Mar 04 2004 Vibrating debris remover
7091649, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Film acoustically-coupled transformers with two reverse c-axis piezoelectric elements
7098758, Nov 03 2004 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Acoustically coupled thin-film resonators having an electrode with a tapered edge
7102460, Apr 17 2003 SNAPTRACK, INC Duplexer with extended functionality
7109826, Jun 30 2003 Intel Corporation Tapered electrode in an acoustic resonator
7128941, May 21 2002 Samsung Electro-Mechanics Co., Ltd Method for fabricating film bulk acoustic resonator (FBAR) device
7129806, Feb 18 2004 Sony Corporation Thin film bulk acoustic wave resonator and production method of the same
7138889, Mar 22 2005 Qorvo US, Inc Single-port multi-resonator acoustic resonator device
7148466, Dec 23 2002 Idemia Identity & Security USA LLC Apparatus and method for illumination of an optical platen
7158659, Apr 18 2003 PIXART IMAGING INC System and method for multiplexing illumination in combined finger recognition and finger navigation module
7161448, Jun 14 2004 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Acoustic resonator performance enhancements using recessed region
7170215, Jun 18 2003 Matsushita Electric Industrial Co., Ltd. Electronic component and method for manufacturing the same
7173504, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Impedance transformation ratio control in film acoustically-coupled transformers
7179392, Mar 06 2003 STMICROELECTRONICS FRANCE Method for forming a tunable piezoelectric microresonator
7187254, Nov 29 2000 SNAPTRACK, INC Film bulk acoustic resonator filters with a coplanar waveguide
7199683, Jan 31 2005 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD BAW resonator
7209374, Dec 27 2002 Yamaha Corporation Capacitor-input positive and negative power supply circuit
7212083, Aug 04 2003 SNAPTRACK, INC Filter device utilizing stacked resonators and acoustic coupling and branching filter using same
7212085, Dec 30 2004 Delta Electronics, Inc. Filter assembly with unbalanced to balanced conversion and reduced noise
7230509, Dec 11 2001 SNAPTRACK, INC Acoustic mirror
7230511, Sep 12 2003 Matsushita Electric Industrial Co., Ltd. Thin film bulk acoustic resonator, method for producing the same, filter, composite electronic component device, and communication device
7233218, Apr 18 2003 Samsung Electronics Co., Ltd. Air-gap type FBAR, and duplexer using the FBAR
7242270, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Decoupled stacked bulk acoustic resonator-based band-pass filter
7259498, Sep 17 2003 Panasonic Corporation Piezoelectric resonator, filter, and duplexer
7268647, Apr 20 2004 Kabushiki Kaisha Toshiba Film bulk acoustic-wave resonator and method for manufacturing the same
7275292, Mar 07 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method for fabricating an acoustical resonator on a substrate
7276994, May 23 2002 MURATA MANUFACTURING CO , LTD Piezoelectric thin-film resonator, piezoelectric filter, and electronic component including the piezoelectric filter
7280007, Nov 15 2004 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Thin film bulk acoustic resonator with a mass loaded perimeter
7281304, Apr 22 2003 SAMSUNG ELECTRONICS CO , LTD Method for fabricating a film bulk acoustic resonator
7294919, Nov 26 2003 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD Device having a complaint element pressed between substrates
7301258, Feb 05 2004 Seiko Epson Corporation Piezoelectric resonator element, piezoelectric resonator, and piezoelectric oscillator
7310861, Sep 25 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method of producing a piezoelectric component
7313255, May 19 2003 PIXART IMAGING INC System and method for optically detecting a click event
7332985, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Cavity-less film bulk acoustic resonator (FBAR) devices
7345410, Mar 22 2006 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Temperature compensation of film bulk acoustic resonator devices
7358831, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Film bulk acoustic resonator (FBAR) devices with simplified packaging
7367095, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method of making an acoustically coupled transformer
7368857, Mar 02 2004 Seiko Epson Corporation Piezoelectric resonator element, piezoelectric, resonator, and piezoelectric oscillator
7369013, Apr 06 2005 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Acoustic resonator performance enhancement using filled recessed region
7388318, Jun 20 2002 MEMS SOLUTION CO , LTD Thin film piezoelectric resonator, thin film piezoelectric device, and manufacturing method thereof
7388454, Oct 01 2004 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Acoustic resonator performance enhancement using alternating frame structure
7388455, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Film acoustically-coupled transformer with increased common mode rejection
7391286, Oct 06 2005 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD ; AVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD Impedance matching and parasitic capacitor resonance of FBAR resonators and coupled filters
7400217, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Decoupled stacked bulk acoustic resonator band-pass filter with controllable pass bandwith
7408428, Oct 30 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Temperature-compensated film bulk acoustic resonator (FBAR) devices
7414349, Oct 28 2002 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Piezoelectric vibrator, filter using the same and its adjusting method
7414495, Jun 17 2005 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Coupled FBAR filter
7423503, Oct 18 2005 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Acoustic galvanic isolator incorporating film acoustically-coupled transformer
7425787, Oct 18 2005 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Acoustic galvanic isolator incorporating single insulated decoupled stacked bulk acoustic resonator with acoustically-resonant electrical insulator
7439824, Mar 09 2004 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Bulk acoustic wave filter and method for eliminating unwanted side passbands
7463118, Jun 09 2006 Texas Instruments Incorporated Piezoelectric resonator with an efficient all-dielectric Bragg reflector
7466213, Oct 06 2003 Qorvo US, Inc Resonator structure and method of producing it
7468608, Jul 19 2002 BIOMENSIO LTD Device and method for detecting a substance of a liquid
7482737, Oct 12 2005 MEMS SOLUTION CO , LTD Aluminum nitride thin film, composite film containing the same and piezoelectric thin film resonator using the same
7508286, Sep 28 2006 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED HBAR oscillator and method of manufacture
7535154, Feb 09 2006 Murata Manufacturing Co., Ltd. Piezoelectric thin-film resonator
7535324, Jun 15 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Piezoelectric resonator structure and method for manufacturing a coupled resonator device
7545532, Jun 07 2001 FUJIFILM Corporation Image processing apparatus and image processing program storage medium
7561009, Nov 30 2005 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Film bulk acoustic resonator (FBAR) devices with temperature compensation
7576471, Sep 28 2007 Qorvo US, Inc SAW filter operable in a piston mode
7602101, Oct 25 2006 TAIYO YUDEN CO , LTD ; TAIYO YUDEN MOBILE TECHNOLOGY CO , LTD Piezoelectric thin-film resonator and filter using the same
7616079, Oct 08 2002 SNAPTRACK, INC Bulk acoustic wave resonator and circuit comprising same
7619493, Nov 02 2005 Panasonic Corporation Bulk acoustic resonator and filter element
7629865, May 31 2006 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Piezoelectric resonator structures and electrical filters
7649304, Apr 05 2006 Murata Manufacturing Co., Ltd. Piezoelectric resonator and piezoelectric filter
7684109, Feb 28 2007 Qorvo US, Inc Bragg mirror optimized for shear waves
7758979, May 31 2007 National Institute of Advanced Industrial Science and Technology; Denso Corporation Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film
7768364, Jun 09 2008 Qorvo US, Inc Bulk acoustic resonators with multi-layer electrodes
7795781, Apr 24 2008 CHEMTRON RESEARCH LLC Bulk acoustic wave resonator with reduced energy loss
7869187, Sep 04 2007 NXP USA, INC Acoustic bandgap structures adapted to suppress parasitic resonances in tunable ferroelectric capacitors and method of operation and fabrication therefore
7889024, Aug 29 2008 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Single cavity acoustic resonators and electrical filters comprising single cavity acoustic resonators
7966722, Jul 11 2008 Qorvo US, Inc Planarization method in the fabrication of a circuit
7978025, Feb 15 2008 TAIYO YUDEN CO , LTD Film bulk acoustic resonator, filter, communication module and communication device
8384497, Dec 18 2009 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Piezoelectric resonator structure having an interference structure
8456257, Nov 12 2009 Qorvo US, Inc Bulk acoustic wave devices and method for spurious mode suppression
8575820, Mar 29 2011 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Stacked bulk acoustic resonator
20010045793,
20020000646,
20020030424,
20020063497,
20020070463,
20020121944,
20020121945,
20020126517,
20020140520,
20020152803,
20020190814,
20030001251,
20030006502,
20030011285,
20030011446,
20030051550,
20030087469,
20030102776,
20030111439,
20030128081,
20030132493,
20030132809,
20030141946,
20030179053,
20030205948,
20030227357,
20040016995,
20040017130,
20040027216,
20040056735,
20040092234,
20040099898,
20040124952,
20040129079,
20040150293,
20040150296,
20040166603,
20040195937,
20040212458,
20040257171,
20040257172,
20040263287,
20050012570,
20050012716,
20050023931,
20050030126,
20050036604,
20050057117,
20050057324,
20050068124,
20050093396,
20050093397,
20050093653,
20050093654,
20050093655,
20050093657,
20050093658,
20050093659,
20050104690,
20050110598,
20050128030,
20050140466,
20050167795,
20050193507,
20050206271,
20050206479,
20050206483,
20050218488,
20050248232,
20050269904,
20050275486,
20060017352,
20060071736,
20060081048,
20060087199,
20060103492,
20060114541,
20060119453,
20060125489,
20060132262,
20060164183,
20060176126,
20060185139,
20060197411,
20060238070,
20060284706,
20060284707,
20060290446,
20070035364,
20070037311,
20070080759,
20070085447,
20070085631,
20070085632,
20070086080,
20070086274,
20070090892,
20070170815,
20070171002,
20070176710,
20070205850,
20070279153,
20070291164,
20080055020,
20080129414,
20080143215,
20080258842,
20080297278,
20080297279,
20080297280,
20090001848,
20090079302,
20090096550,
20090102319,
20090127978,
20090153268,
20090201594,
20090267457,
20100033063,
20100039000,
20100052815,
20100091370,
20100107389,
20100148637,
20100176899,
20100187948,
20100260453,
20100327697,
20100327994,
20110084779,
20110121916,
20110148547,
20120161902,
20120194297,
20120218055,
20120218058,
20120218059,
20120280767,
20130038408,
DE10160617,
EP637875,
EP865157,
EP973256,
EP1047189,
EP1096259,
EP1100196,
EP1180494,
EP1249932,
EP1258989,
EP1258990,
EP1517443,
EP1517444,
EP1528674,
EP1528675,
EP1528676,
EP1528677,
EP1542362,
EP1557945,
EP1575165,
EP2299593,
EP231892,
EP689254,
EP880227,
GB1207974,
GB2013343,
GB2411239,
GB2418791,
GB2427773,
JP1032456,
JP1295512,
JP2000232334,
JP200031552,
JP2001102901,
JP2001508630,
JP2002217676,
JP2003017964,
JP2003124779,
JP2006109472,
JP2006295924,
JP2007006501,
JP2007028669,
JP2007208845,
JP2007295306,
JP2008131194,
JP2008211394,
JP210907,
JP59023612,
JP6005944,
JP61054686,
JP6165507,
JP62109419,
JP62200813,
JP8330878,
JP9027729,
JP983029,
WO106646,
WO106647,
WO199276,
WO2103900,
WO3030358,
WO3043188,
WO3050950,
WO3058809,
WO2004034579,
WO2004051744,
WO2004102688,
WO2005043752,
WO2005043753,
WO2005043756,
WO2006018788,
WO9816957,
WO9856049,
WO9937023,
/////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 04 2011LARSON, JOHN D , IIIAVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0267450909 pdf
Aug 04 2011NIKKEL, PHILAVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0267450909 pdf
Aug 04 2011BURAK, DARIUSZAVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0267450909 pdf
Aug 04 2011SHIRAKAWA, ALEXANDREAVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0267450909 pdf
Aug 09 2011KAITILA, JYRKIAVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0267450909 pdf
Aug 12 2011Avago Technologies General IP (Singapore) Pte. Ltd.(assignment on the face of the patent)
Oct 30 2012AVAGO TECHNOLOGIES WIRELESS IP SINGAPORE PTE LTD AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD MERGER SEE DOCUMENT FOR DETAILS 0303690471 pdf
May 06 2014AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0328510001 pdf
Feb 01 2016AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD BANK OF AMERICA, N A , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0378080001 pdf
Feb 01 2016DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTAVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032851-0001 0376890001 pdf
Jan 19 2017BANK OF AMERICA, N A , AS COLLATERAL AGENTAVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS0417100001 pdf
May 09 2018AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITEDMERGER SEE DOCUMENT FOR DETAILS 0474220464 pdf
Sep 05 2018AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITEDCORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE PREVIOUSLY RECORDED AT REEL: 047422 FRAME: 0464 ASSIGNOR S HEREBY CONFIRMS THE MERGER 0488830702 pdf
Date Maintenance Fee Events
Nov 21 2018M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 29 2022M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Jun 02 20184 years fee payment window open
Dec 02 20186 months grace period start (w surcharge)
Jun 02 2019patent expiry (for year 4)
Jun 02 20212 years to revive unintentionally abandoned end. (for year 4)
Jun 02 20228 years fee payment window open
Dec 02 20226 months grace period start (w surcharge)
Jun 02 2023patent expiry (for year 8)
Jun 02 20252 years to revive unintentionally abandoned end. (for year 8)
Jun 02 202612 years fee payment window open
Dec 02 20266 months grace period start (w surcharge)
Jun 02 2027patent expiry (for year 12)
Jun 02 20292 years to revive unintentionally abandoned end. (for year 12)