To defrost one barrel of a two barrel FCB dispenser, a refrigeration system defrosts the one barrel, while neither defrosting nor chilling the other barrel, for either a selected time or until a frozen beverage is drawn from the other barrel, whichever occurs first. Once the selected time or beverage draw occurs, the refrigeration system chills the other barrel until beverage within it is properly frozen, while neither defrosting nor chilling the one barrel. Once beverage in the other barrel is properly frozen, the refrigeration system resumes defrosting the one barrel, whereupon the foregoing cycle is repeated until defrost of the one barrel is complete, at which point the refrigeration system chills the one barrel to refreeze product in it. The arrangement keeps beverage in the other barrel properly frozen during defrosting of the one barrel.
|
3. A method of dispensing food product from a food product dispenser having first and second freeze barrels, the method comprising:
operating a refrigeration system to chill the first freeze barrel to thereby freeze the food product in the first freeze barrel and alternately to defrost the first freeze barrel to thereby unfreeze the good product in the first freeze barrel,
operating the refrigeration system to chill the second freeze barrel to thereby freeze the food product in the second freeze barrel and alternately to defrost the second freeze barrel to thereby unfreeze the food product in the second freeze barrel; and
operating the refrigeration system to (i) defrost the first freeze barrel while neither chilling nor defrosting the second freeze barrel for a time period or until the food product is dispensed from the second freeze barrel, (ii) thereafter chill the second freeze barrel until food product in the second freeze barrel is frozen, and (iii) repeat steps i-ii until the food product in the first freeze barrel is defrosted.
1. A food product dispenser comprising:
first and second freeze barrels that are configured to contain food product;
a refrigeration system that is configured to chill the first freeze barrel to thereby freeze the food product in the first freeze barrel and alternately to defrost the first freeze barrel to thereby unfreeze the food product in the first freeze barrel,
wherein the refrigeration system is further configured to chill the second freeze barrel to thereby freeze the food product in the second freeze barrel and alternately to defrost the second freeze barrel to thereby unfreeze the food product in the second freeze barrel; and
a controller that controls the refrigeration system to
i. defrost the first freeze barrel while neither chilling nor defrosting the second freeze barrel for a time period or until food product is dispense from the second freeze barrel,
ii. thereafter chill the second freeze barrel until good product in the second freeze barrel is frozen, and
iii. repeat steps i-ii until the first freeze barrel is defrosted.
2. Te dispenser according to
|
This application claims benefit of provisional patent application Ser. No. 60/925,964, filed Apr. 24, 2007.
The present invention relates to machines for and methods of making and dispensing frozen products, and in particular to a defrost controller for multi-barrel frozen product dispensers.
Frozen product machines, such as frozen carbonated beverage (FCB) machines, utilize a freeze cylinder or barrel for producing a slush beverage or frozen food product. An evaporator coil of a refrigeration system is heat exchange coupled with the freeze barrel for cooling and freezing liquid product delivered into the barrel. A beater bar and scraper assembly is rotated in the barrel to scrape thin iced or frozen layers of the frozen product from the inner surface of the barrel for dispensing to customers. The freeze barrel is periodically defrosted by operating the refrigeration system in a defrost cycle to heat the evaporator coil and thereby warm and melt product in the barrel. A defrost schedule may be manually programmed into the machine, so that defrost cycles occur automatically according to scheduled time periods. A defrost cycle may also be initiated manually should ice particles be viewed in the dispensed beverage product and defrosting deemed necessary.
Frozen product machines often utilize two or more freeze barrels to accommodate service from a single machine of more than one product, such as more than one flavor of frozen beverage. A frozen product machine with a plurality of freeze barrels usually has a single refrigeration system, with an outlet from a compressor coupled through each of a plurality of adjustable expansion valves to inlets to associated ones of a plurality of evaporator coils, with each evaporator coil being heat exchange coupled to an associated one of the freeze barrels. The outlets from the evaporator coils are normally connected together and coupled to a common return to the compressor suction inlet. During defrost of one barrel, the suction pressure on the return side of the refrigeration system rises. Since the barrel evaporator coils have a common outlet, the other barrel(s) will also see a suction pressure rise. This suction pressure rise in other barrel(s) allows the frozen product in them to warm. Given enough time, warming of product in the other barrel(s) causes the product to become unsatisfactory for service to customers.
A primary object of the present invention is to provide an improved defrost control for a multiple barrel frozen product dispenser, which accommodates defrosting of one barrel of the dispenser while maintaining product in the one or more other barrels sufficiently cold to prevent degradation of the product.
In accordance with the present invention, a frozen product dispenser comprises first and second product freeze barrels; a refrigeration system heat transfer coupled to each freeze barrel and operable to chill each barrel to freeze product therein and to defrost each barrel; and means for operating the refrigeration system to alternately defrost one barrel while neither chilling nor defrosting the other barrel, and to then chill the other barrel while neither chilling nor defrosting the one barrel, to maintain product in the other barrel properly frozen while defrosting of the one barrel is completed.
The frozen product dispenser includes means for delivering product into and for dispensing product from each barrel; means for sensing when product in each barrel is frozen; and means for detecting when each barrel is defrosted. The means for operating the refrigeration system to alternately defrost one barrel while neither chilling nor defrosting the other barrel, and to then chill the other barrel while neither chilling nor defrosting the one barrel, chills the other barrel until it is sensed that product in it is frozen, and the alternate operation of the refrigeration system is continued until it is detected that the one barrel is defrosted.
The invention also contemplates a method of operating a frozen product dispenser having first and second product freeze barrels and a refrigeration system heat transferred coupled to each barrel. The method comprises the steps of alternately operating the refrigeration system to defrost one barrel while neither chilling nor defrosting the other barrel, and to then chill the other barrel while neither chilling nor defrosting the one barrel, to maintain product in the other barrel properly frozen while the one barrel is defrosted.
In a contemplated practice of the method, included are the steps of delivering product into each barrel; dispensing product from each barrel; sensing when product in each barrel is frozen; detecting when each barrel is defrosted; operating the refrigeration system in a first cycle to defrost one barrel while neither chilling nor defrosting the other barrel and then, following operation of the refrigeration system in the first cycle, operating the refrigeration system in a second cycle to chill the other barrel while neither defrosting nor chilling the one barrel, until sensing that product in the other barrel is properly frozen; and repeating performance of the steps of operating the refrigeration system in the first and second cycles until detecting that the one barrel is defrosted.
It is further contemplated that following detecting that the one barrel is defrosted, the step be included of operating the refrigeration system to refreeze product in the one barrel. Also, in operating the refrigeration system in the first and second cycles, the refrigeration system is operated in the first cycle to defrost the one barrel, while neither chilling nor defrosting the other barrel, for either a selected time following commencement of the first cycle or until there is a dispense of product from the other barrel, whichever occurs first, whereupon it is sensed whether product in the other barrel is properly frozen and, if product in the other barrel is not properly frozen, the refrigeration system is operated in the second cycle to chill the other barrel while neither defrosting nor chilling the one barrel until it is sensed that product in the other barrel is properly frozen. Performance of the steps of operating the refrigeration system in the first and second cycles is then repeated until it is detected that the one barrel is defrosted.
The invention provides a novel defrost control for refrigeration systems used to chill freeze barrels of multi-barrel frozen product dispensers, and for convenience will be described in the environment of refrigeration systems for chilling two-barrel frozen product dispensers. Such frozen product dispensers have the ability to dispense either the same or two different types or flavors of frozen product, which frozen product may be of any suitable type, such as frozen beverage. For the purpose of describing the present invention, the product will be considered to be frozen carbonated beverage that is dispensed from two-barrel frozen carbonated beverage dispensers, commonly referred to as FCB dispensers. It is to be understood, however, that the invention can just as readily be used with multi-barrel frozen product dispensers that have more than two product freeze barrels, and that the product can be any suitable product and is not limited to being a frozen carbonated beverage.
Conventionally, an FCB dispenser with more than one freeze barrel, such as with two barrels to permit the service of two different types or flavors of frozen beverage, has a refrigeration system that delivers refrigerant through electronically controlled expansion valves to inlets to evaporators associated with and heat transfer coupled to the barrels in order to chill the barrels and freeze product in the barrels. The evaporators normally have a common outlet on a suction side of the refrigeration system, and during defrost of one of the barrels, the suction pressure on the outlet side of the evaporator associated with the barrel being defrosted will rise. Since the evaporators for the two barrels have a common outlet, the evaporator associated with the alternate barrel, i.e., with the barrel not being defrosted and in which frozen product is contained for service to customers, will also see a suction pressure rise at its outlet. This suction pressure rise at the outlet from the evaporator of the alternate barrel allows frozen product in the barrel to warm. Given enough time, this warming will cause the condition of the product in the barrel to become unsatisfactory and unsuitable for service to customers.
To prevent defrost of one barrel of a two-barrel FCB dispenser from causing excessive warming of the other barrel, the invention contemplates that during defrost of the one barrel, the one barrel be defrosted for either a selected period of time, for example 45 seconds, or until a frozen beverage is drawn from the other barrel, whichever occurs first. Once the time or event occurs, a determination is made whether beverage product in the other barrel requires freezing, and if so the refrigeration system is switched so that defrost of the one barrel ceases and chilling of the other barrel commences until beverage product within it is properly frozen. Once product in the other barrel is properly frozen, the refrigeration system is switched to again defrost the one barrel for the selected time or until a beverage is drawn from the other barrel, whichever occurs first, whereupon a determination is again made whether beverage product in the other barrel requires freezing, and if so the refrigeration system is again switched to terminate defrost of the one barrel and to commence chilling of the other barrel, until product in the other barrel is again properly frozen. This back-and-forth cycling continues until the one barrel achieves a proper termination point and is fully defrosted, which is contemplated to occur when there the evaporator for the one barrel has a sensed outlet temperature on the order of about 50° F., following which the refrigeration system is operated to cool the one barrel and chill product in it to its frozen state. The arrangement provides for refreezing of the barrel not being defrosted on an as needed basis, without allowing frozen product in the barrel not being defrosted to warm and deteriorate in quality.
The invention advantageously increases the up-time of an FCB dispenser by virtue of beverage product in whichever barrel is not being defrosted remaining properly frozen and available for service to customers throughout defrost of the other barrel, resulting in increased sales and customer satisfaction.
Referring to
The refrigeration system 20 has two defrost circuits, a first one of which is for defrosting the freeze barrel 44 and includes a solenoid operated refrigerant valve 60 having an inlet coupled directly to hot refrigerant at the outlet from the compressor 22 through a refrigerant line 62 and an outlet coupled to the inlet to the freeze barrel evaporator 42 through a refrigerant line 64. A second defrost circuit is for defrosting the freeze barrel 48 and includes a solenoid operated refrigerant valve 66 having an inlet coupled directly to hot refrigerant at the outlet from the compressor 22 through a refrigerant line 68 and an outlet coupled to the inlet to the freeze barrel evaporator 46 through a refrigerant line 70. The defrost circuits are operated to heat the evaporators 42 and 46 to defrost the beverage product barrels 44 and 48 in defrost cycles of the refrigeration system. When the refrigeration system is operating to chill the product freeze barrel 44, the refrigerant valve 60 is closed and the expansion valve 36 is open to meter refrigerant to the evaporator 42, and when the refrigeration system is being operated in a defrost mode to defrost product in the freeze barrel 44, the refrigerant valve 60 is open and the expansion valve 36 is closed. Similarly, when the refrigeration system is operating to chill the product freeze barrel 48, the refrigerant valve 66 is closed and the expansion valve 38 is open to meter refrigerant to the evaporator 46, and when the refrigeration system is being operated in a defrost mode to defrost product in the freeze barrel 48, the refrigerant valve 66 is open and the expansion valve 38 is closed.
The refrigeration system 20 is adapted for use with an FCB dispenser that has a pre-chiller 52. To provide chilling for an FCB dispenser that does not have a pre-chiller, a refrigeration system of a type shown in
While each refrigeration system 20 and 72 is shown as being structured to provide chilling for a two-barrel frozen product dispenser, which enables two different flavors of frozen beverage product to be prepared by a single frozen beverage product machine, the teachings of the invention may also be used with a frozen product machine that has more than two product freeze barrels. Also, while not specifically shown but understood, each freeze barrel has its own beater bar and scraper assembly, and a separate drive motor is provided for each beater bar and scraper assembly.
One arrangement of FCB dispenser that may utilize the refrigeration system 20 and with which the freeze barrel defrost control of the invention may advantageously be used is shown in
To carbonate water in the carbonator tank 100, an externally regulated supply of CO2 is coupled through a temperature compensated pressure regulator 110 and a check valve 112 to the carbonator, with temperature compensation being provided by a capillary sensor 114 that detects the temperature of incoming water. A sensor 116 detects a CO2-out condition, and the supply of CO2 is coupled to inlets to each of two CO2 pressure regulators of a manifold 118. An outlet from a first one of the manifold pressure regulators is coupled through a solenoid shut-off valve 119, a CO2 flow control valve 123 and a CO2 check valve 121 to an inlet to the freeze barrel 44. In addition, CO2 at an outlet from a second one of the manifold pressure regulators is coupled to an upper opening to an expansion tank 122, a lower opening to which is coupled to an inlet to the freeze barrel. The flow control valve 123 accommodates adjustment of the carbonation level in the barrel 44 by enabling the introduction of CO2 into the barrel for a brief period before a mixture of water and syrup is delivered into the barrel. A pressure transducer 124 monitors the pressure of the water and syrup mixture in the barrel 44 and serves as a pressure cut-in/cut-out sensor to control filling and refilling of the barrel with liquid beverage product to be frozen in the barrel. As is understood by those skilled in the art, when the pressure transducer 124 detects a lower limit cut-in pressure in the barrel, for example 23 psi, the pair of brixing valves 102, 84 is opened for flow of a water and syrup mixture to and into the barrel to refill the barrel, until the pressure transducer detects an upper limit cut-out pressure, for example 29 psi, whereupon the pair of brixing valves is closed. During flow of the water and syrup mixture to the barrel, the mixture is cooled as it flows through an associated circuit in the pre-chiller 52. As the beverage mixture is frozen in the barrel 44, it expands and the expansion chamber 122 accommodates the expansion.
As mentioned, the dispenser 80 includes the freeze barrel 48 and, therefore, to the right of the brixing valves 104, 87, it also includes additional structure (not shown) that is generally duplicative of that to the right of the pair of brixing valves 102, 84, which accommodates delivery of a water and syrup mixture from the brixing valves 104, 87 to the barrel 48, except that the beverage mixture does not flow through a separate pre-chiller, but instead flows through an associated circuit of the pre-chiller 52. In addition, a line 126 delivers CO2 to an upper opening to an expansion chamber, a lower opening from which couples to an inlet to the barrel 48, and to accommodate addition of CO2 to the barrel 48, the outlet from the manifold first CO2 pressure regulator is also coupled through a solenoid shut-off valve 128, a CO2 flow control valve 131 and a CO2 check valve 132 to the inlet to the barrel.
In operation of the FCB machine 80, liquid beverage components are introduced through the pre-chiller and into the freeze barrels 44 and 48 by their respective pairs of brixing valves 84, 102 and 87, 104. The refrigeration system 20 provides chilling for the pre-chiller 52 via the heat transfer coupled evaporator 50, so that the liquid beverage components delivered into the freeze barrels 44 and 48 are chilled. The refrigeration system also provides chilling for the freeze barrels 44 and 48 via the respective heat transfer coupled evaporators 42 and 46, to freeze the liquid beverage components in the barrels while the components are agitated by a beater bar/scraper assembly, all in a manner well understood in the art. Frozen beverage product prepared within the freeze barrels is dispensed for service to customers, such a by the dispense valve 82 coupled to the freeze barrel 44.
Another type of FCB dispenser with which the refrigeration system 20 may be used and operated according to the prescriptive refrigerant flow control scheme of the invention, is shown in
An externally regulated CO2 supply is coupled through a line 136 to inlets to each of four CO2 pressure regulators of a manifold 134, to which line is coupled the sensor 116 for detecting a CO2-out condition. An outlet from a first one of the manifold pressure regulators is coupled through a line 138 to the CO2 driven water pump 96 to operate the pump. An outlet from a second one of the manifold CO2 pressure regulators is coupled through the solenoid shut-off valve 119, the CO2 flow control valve 120 and the CO2 check valve 121 to the chilled water/syrup mixture flowing from the pre-chiller 52 to the inlet to the freeze barrel 44, thereby to selectively carbonate the chilled beverage mixture in accordance with the solenoid shut-off valve 119 being open or closed and the setting of the flow control valve 120, whereby either carbonated or non-carbonated beverages may selectively be frozen in the barrel 44. An outlet from a third one of the manifold CO2 pressure regulators is coupled to the upper opening to the expansion tank 122, the lower opening to which is coupled to the water/syrup mixture line extending between the outlet from the pre-chiller 52 and inlet to the freeze barrel 44. When frozen carbonated beverages are served, the flow control valve 120 accommodates adjustment of the carbonation level in the barrel 44. The pressure transducer 124 monitors the pressure of the beverage mixture introduced into and within the barrel and serves as a cut-in/cut-out pressure sensor control refilling of the barrel. When beverage product is frozen in the barrel it expands and the expansion tank 122 accommodates such expansion by receiving some of the beverage product.
Since the dispenser 140 includes the freeze barrel 48, it also includes further structure (not shown) that is generally duplicative of the structure shown to the right of the brix valves 102, 84, to accommodate delivery of a water and syrup mixture from the brix valves 104, 87 to the barrel 48, except that the beverage mixture does not flow through a separate pre-chiller, but instead flows through an associated beverage circuit of the pre-chiller 52. In addition, the line 126 at the outlet from the manifold third CO2 pressure regulator delivers CO2 to an upper opening to an expansion chamber (not shown), a lower opening from which is coupled to the inlet to the barrel 48, and to accommodate carbonating the beverage mixture delivered to the barrel 48, an outlet from a second CO2 pressure regulator of the manifold 118 is coupled through the solenoid shutoff valve 128, the CO2 flow control valve 130 and the CO2 check valve 132 to the chilled beverage mixture intermediate the pre-chiller 52 and the inlet to the barrel 48.
In operation of the FCB dispensers 80 and 140, or for that matter in operation of any multi-barrel FCB dispenser, it is necessary that the freeze barrels 44 and 48 be periodically defrosted by operating the refrigeration system 20 in a defrost cycle to heat the evaporator coils 42 and 46 and their respective barrels 44 and 48 to warm and melt product in the barrels. A defrost schedule may be manually programmed into the machine, so that defrost cycles occur automatically according to predetermined time periods or, advantageously, defrost cycles can be adaptively initiated in accordance with the teachings of co-pending patent application Ser. No. 12/004,590, filed Dec. 21, 2007, the teachings of which are incorporated herein by reference. A defrost cycle may also be manually initiated as ice particles are observed to occur in the dispensed frozen product, which indicates a need to defrost the freeze barrel from which the product was dispensed.
The freeze barrels 44 and 48 of the FCB dispensers 80 and 140 accommodate service of two different products or flavors of product by each dispenser, such as two different types of beverages or two different flavors of frozen beverage, although the same product or flavor could be prepared in each barrel. As is usually the case for a multi-barrel dispenser, each dispenser 80 and 140 uses a single refrigeration system, such as the refrigeration system 20, that is controlled to selectively either chill or heat the evaporators 42 and 46 and their associated freeze barrels 44 and 48, depending upon whether a particular freeze barrel is to be chilled or defrosted. As is also usually the case, the outlets from the evaporators are connected together at a common outlet and coupled to a common suction return to the compressor inlet. A disadvantage of having a common evaporator outlet is that during defrost of one barrel, such as during defrost of the barrel 44 by heating of the evaporator 42, the suction pressure on the return or outlet side of the evaporator 42 rises. Since the evaporators 42 and 46 have a common outlet, the outlet from the evaporator 46 for the barrel 48, which barrel is not to be defrosted, will also experience a suction pressure rise, which reduces the temperature of the evaporator 46 and allows frozen product in the barrel 48 to begin to warm. Given enough time, warming of product in the barrel 48 will cause the product to deteriorate to a less than satisfactory condition for service to customers.
The invention overcomes this disadvantage of the prior art by operating the refrigeration system of a multi-barrel FCB dispenser in a novel manner, which prevents deterioration of product in one of the freeze barrels due to warming of the product incident to defrosting of the other freeze barrel. To this end, and assuming that the refrigeration system 20 of
Normally, the freeze barrels of a multi-barrel frozen product dispenser are defrosted one at a time, so that frozen product is always available for service from at least one of the barrels. In accordance with the teachings of the invention, and assuming that the barrel 44 is to be defrosted, defrosting is accomplished by operating the refrigeration system 20 to close both expansion valves 36 and 38 and open the refrigerant valve 60, while the refrigerant valve 66 remains closed. With the compressor 22 operating, hot refrigerant at its outlet then bypasses the condenser 26 and flows through the refrigerant line 62, the refrigerant valve 60 and the refrigerant line 64 directly to, into, through and out of the evaporator 42 to heat the evaporator and thereby the barrel 44 to warm and melt product within the barrel. Due to the relatively free flow of hot refrigerant through the refrigerant valve 60 to the inlet to the evaporator 42, the low suction pressure that normally exists on the return side of the refrigeration system and at the outlets from the evaporators 42 and 46, when the refrigeration system is not in a defrost cycle, rises. As a result, the pressure differential that existed between refrigerant contained within the evaporator 46 and its outlet, prior to start of defrost of the barrel 44, decreases, with the result that the refrigerant within the evaporator 46 is less able to evaporate and absorb heat from the barrel 48 that is not being defrosted. This allows the temperature of the barrel 48 and the product in it to warm. Also, since hot refrigerant exiting the evaporator 42 is present at the outlet from the evaporator 46, heat is transferred or conducted from the hot refrigerant to the evaporator 46 and barrel 48, further contributing to warming of the barrel 48 and product in the barrel. Given enough time, continued warming of the barrel 48 will cause product in it to become of unsatisfactory quality for service to customers.
To prevent excessive warming of product in the freeze barrel 48 during defrost of the freeze barrel 44, the invention contemplates that the refrigeration system 20 be switched between defrost of the barrel 44 and chilling of the barrel 48, if and as necessary, in a manner to prevent excessive warming of the barrel 48 during defrost of the barrel 44. In particular, the invention contemplates operating the refrigeration system such that, following initiation of a defrost cycle of the barrel 44, the defrost cycle is continued for either a selected time or until product is drawn from the barrel 48, whichever occurs first, whereupon a determination is made whether product in the barrel 48 requires refreezing and, if so, the refrigeration system is operated to terminate defrost of the barrel 44 and initiate chilling of the barrel 48. The value or duration of the selected time is chosen such that, upon initiation of defrost of the barrel 44 and in the absence of a draw of product from the barrel 48, the selected time will expire before the barrel 48 warms sufficiently to degrade the quality of product in it. The selected time may be, for example, 45 seconds, although it may also be less or more than 45 seconds, depending upon the nature of the refrigeration system and FCB dispenser, and is generally chosen such that the time period expires before the barrel 48 would otherwise warm sufficiently for product in it to begin to degrade in quality. The requirement of terminating defrost of the barrel 44 and determining if chilling of the barrel 48 is required, if product is drawn from the barrel 48 before the selected time lapses, is imposed because upon a draw of product from the barrel 48, relative warm replacement product is flowed into the barrel to refill it, which warms the barrel and can require that the barrel be chilled to freeze the product for service to customers. If freezing of product in the freeze barrel 48 is required, the refrigeration system 20 is operated to chill the freeze barrel 48 until product in it is properly frozen, as may be indicated, for example, by an increase in viscosity of the product to a predetermined viscosity value, as measured by the amperage draw of the scraper motor, which amperage draw is in accordance with the torque output of the motor and, thereby, the viscosity of the product. The amperage draw of the scraper motor may also be used, in the first instance, to determine the frozen state of product in the barrel 48 at the end of the selected time period or following draw of a beverage from the barrel, thereby to determine if chilling of the barrel is required. Upon product in the barrel 48 being brought to its properly frozen state, chilling of the barrel 48 is terminated and defrost of the barrel 44 is initiated once again, until either a lapse of the selected time or a draw of product from the barrel 48, whichever occurs first, whereupon the cycle is repeated until the barrel 44 is fully defrosted, as may be determined by a measurement of refrigerant at the outlet from its evaporator 42, for example when evaporator outlet temperature rises to a selected value, such as 50° F. Upon completion of defrost of the barrel 44, the refrigeration system 20 is operated to chill the barrel 44 to refreeze product in it to its properly frozen state and to maintain product in each of the barrels 44 and 48 properly frozen until the next defrost of one of the barrels. It is understood that a similar description applies to defrost of the freeze barrel 48.
The refrigeration system 200 has two defrost circuits. A first defrost circuit is for defrosting the first freeze barrel associated with the evaporator 222, and includes a solenoid operated refrigerant valve 230 that has an inlet coupled directly to hot refrigerant at the outlet from the compressor 202 through a refrigerant line 232, and an outlet coupled to the inlet to the first freeze barrel evaporator 222 through a refrigerant line 234. A second defrost circuit is for defrosting the second freeze barrel associated with the evaporator 224, and includes a solenoid operated refrigerant valve 236 that has an inlet coupled directly to hot refrigerant at the outlet from the compressor through the refrigerant line 232, and an outlet coupled to the inlet to the second freeze barrel evaporator 224 through a refrigerant line 238. In a defrost cycle of the refrigeration system, one of the defrost circuits is used to heat a selected one of the evaporators 222 and 224 to defrost its associated beverage product freeze barrel. When the refrigeration system is operating to chill the first freeze barrel, the refrigerant valves 230 and 236 are closed and the expansion valve 216 is open, and when the refrigeration system is operating to defrost product in the first freeze barrel, the refrigerant valve 230 is open and the expansion valves 216 and 218 are closed. Similarly, when the refrigeration system is operating to chill the second freeze barrel, the refrigerant valves 236 and 230 are closed and the expansion valve 218 is open, and when the refrigeration system is operating in a defrost mode to defrost the second freeze barrel, the refrigerant valve 236 is open and the expansion valves 218 and 216 are closed.
Since the refrigerant valves 216 and 218 do not significantly restrict the flow of refrigerant to inlets to their respective evaporators 222 and 224, when one of the valves is opened to defrost its associated freeze barrel, the suction pressure on the low side of the refrigeration system, at the outlet from the evaporator 222 or 224 associated with the opened refrigerant valve, rises and, since the evaporators share a common outlet, the suction pressure at the outlet from the other evaporator also rises. The rise in suction pressure at the outlet from the other evaporator causes the temperature of that evaporator and its associated freeze barrel to increase. If this increase in temperature is permitted to continue, by the time the one barrel is defrosted, product in the other barrel can warm sufficiently to become of unsatisfactory quality.
The invention contemplates that the refrigeration system 200 be operated during defrost of one of the freeze barrels, such that there is no degradation of product in the other freeze barrel not then being defrosted. Assume that the first barrel, associated with the evaporator 222, is to be defrosted. To defrost the first barrel, the refrigeration system 200 is operated to close both expansion valves 216 and 218 and to open the refrigerant valve 230 while the refrigerant valve 236 remains closed. With the compressor 202 operating, hot refrigerant at its outlet then flows through the refrigerant valve 230 to, into, through and out of the evaporator 222 to heat the evaporator and the first barrel in order to warm and melt product in the barrel. This causes the suction pressure at the outlets from the evaporators 222 and 224 to increase, with the result that the evaporator 224 and its associated second freeze barrel begin to warm. Further contributing to warming of the second freeze barrel is hot refrigerant that exits the evaporator 222 and is present at the outlet from the second freeze barrel evaporator 224. Given enough time, continued warming of the second barrel will cause product in it to rise in temperature sufficiently to become of unsatisfactory quality.
To prevent degradation of the quality of product in the second barrel during defrost of the first barrel, the invention contemplates that the refrigeration system 200 be switched between defrosting the first barrel and chilling the second barrel, in such manner as to prevent excessive warming of product in the second barrel and until defrosting of the first barrel is finished. This is accomplished, following initiation of defrost of the first barrel, by continuing to defrost the first barrel either for a selected time or until product is drawn from the second barrel, whichever occurs first, whereupon a determination is made as to whether product in the second barrel requires refreezing and, if so, the refrigeration system terminates defrost of the first barrel and initiates chilling of the second barrel. The value of the selected time is chosen such that, in the absence of product dispense from the second barrel, the selected time period will lapse before the second barrel warms sufficiently to degrade product in it. The selected time may be, by way of example only, on the order of about 45 seconds, although it may be considerably less or considerably more than 45 seconds, and is chosen in accordance with the characteristics of the particular refrigeration system and frozen product dispenser involved, the criteria being that the selected time expires before the second barrel can warm sufficiently to adversely affect the quality of product in it. As for determining whether initiation of chilling of the second barrel is required upon product being drawn from that barrel, doing so is necessary because a draw of product from the second barrel results in a flow of relative warm product into the second barrel to refill it, which can require that the barrel be chilled to freeze the product in it for service to customers. If it is determined that product in the second barrel requires refreezing, the refrigeration system 200 terminates defrosting of the first barrel and commences chilling the second barrel until product in it is properly frozen, as may be determined by a sensed increase in viscosity of the product to a predetermined level, for example as indicated by a measure of the current draw of the scraper motor, which has a value in accordance with the viscosity of the product. Upon product in the second barrel being properly frozen, chilling of the second barrel is terminated and defrosting of the first barrel is reinitiated, again until either lapse of the selected time or occurrence of a draw of product from the second barrel whereupon the foregoing cycle is repeated until the first barrel is fully defrosted, as may be determined by a measurement of the temperature of refrigerant at the outlet from its evaporator 222, such for example as when temperature rises to a selected value that may be on the order of about 50° F. Upon completion of defrost of the first barrel, the refrigeration system 200 is operated to chill the first barrel to refreeze product in it to its properly frozen state and to maintain product in each of the barrels properly frozen, until defrost of a barrel is again required. It is understood that a similar description applies to defrost of the second freeze barrel.
The graphs of
The invention thus provides improved operation of a refrigeration system for a multi-freeze barrel frozen product dispenser, so as to provide for defrosting one of the barrels of the dispenser while preventing excessive warming and degradation of product in the other barrel(s). It is understood that while the invention has been described in terms of operation of a refrigeration system used with a two-barrel frozen carbonated beverage dispenser, the dispenser could be for any other suitable type of frozen product. Also, while operation of a refrigeration system according to the invention has been described in connection with chilling and defrosting the freeze barrels of a two-barrel frozen product dispenser, the teachings of the invention also apply to operation of a refrigeration system for a frozen product dispenser having more than two barrels, such as three or four or more barrels. In the case of a dispenser having more than two barrels, while one of the barrels is being defrosted, the other barrels would be chilled, if and as necessary, in the same manner as would be the alternate barrel of a two-barrel dispenser.
While embodiments of the invention have been described in detail, various modifications and other embodiments thereof may be devised by one skilled in the art without departing from the spirit and scope of the invention, as defined in the appended claims.
Leaver, Daniel C., Elsom, Kyle B., Billman, Gregory M., Popov, Nikolay
Patent | Priority | Assignee | Title |
11571006, | Mar 15 2019 | MARMON FOODSERVICE TECHNOLOGIES, INC | Systems and methods for defrosting frozen carbonated beverage systems |
Patent | Priority | Assignee | Title |
2049413, | |||
2608833, | |||
3823571, | |||
4691527, | Dec 11 1984 | SANDEN CORPORATION, A CORP OF JAPAN | Control device for refrigerated display case |
4741171, | Mar 15 1986 | SANDEN CORPORATION, A CORP OF JAPAN | Refrigerated display cabinet |
4869072, | May 09 1988 | ICEE-USA Corporation | Partially frozen beverage dispensing system having a counter top unit |
5205129, | Apr 30 1992 | SHAWMUT CAPITAL CORPORATION | Apparatus for freezing and dispensing semi-frozen food products having dual freezing chambers and method |
5419150, | Dec 01 1993 | TASTE 2000, INC | Freezer with inner core |
5692385, | Jan 26 1996 | General Electric Company | System and method initiating defrost in response to speed or torque of evaporator motor |
5706661, | Sep 29 1995 | FBD Partnership, LP | Apparatus and method for controlling the consistency and quality of a frozen carbonated beverage product |
6220047, | Dec 09 1997 | IMI Cornelius Inc | Semi-frozen food product producing machine |
6637214, | May 21 2002 | V & L TOOL, INC | Frozen custard machine |
6679314, | Jul 20 2000 | Frozen beverage machine control system and method | |
6971245, | Aug 08 2003 | Hoshizaki Denki Kabushiki Kaisha | Auger type ice making machine |
7895845, | Dec 28 2006 | MARMON FOODSERVICE TECHNOLOGIES, INC | Adaptive defrost control for frozen product dispensers |
JP2000055530, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 21 2008 | Cornelius, Inc. | (assignment on the face of the patent) | / | |||
Sep 11 2012 | LEAVER, DANIEL C | IMI Cornelius, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029246 | /0449 | |
Oct 01 2012 | BILLMAN, GREGORY M | IMI Cornelius, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029246 | /0449 | |
Oct 29 2012 | ELSOM, KYLE | IMI Cornelius, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029246 | /0449 | |
Oct 30 2012 | POPOV, NIKOLAY | IMI Cornelius, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029246 | /0449 | |
Jan 28 2014 | IMI Cornelius, Inc | CORNELIUS, INC | ARTICLES OF INCORPORATION | 032661 | /0475 | |
Dec 28 2020 | CORNELIUS, INC | MARMON FOODSERVICE TECHNOLOGIES, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 055053 | /0048 |
Date | Maintenance Fee Events |
Sep 15 2015 | ASPN: Payor Number Assigned. |
Nov 15 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 09 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 23 2018 | 4 years fee payment window open |
Dec 23 2018 | 6 months grace period start (w surcharge) |
Jun 23 2019 | patent expiry (for year 4) |
Jun 23 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2022 | 8 years fee payment window open |
Dec 23 2022 | 6 months grace period start (w surcharge) |
Jun 23 2023 | patent expiry (for year 8) |
Jun 23 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2026 | 12 years fee payment window open |
Dec 23 2026 | 6 months grace period start (w surcharge) |
Jun 23 2027 | patent expiry (for year 12) |
Jun 23 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |