A wafer cleaning chamber comprising a plurality of carrier arms each having concentrically-mounted midpoints between opposing ends of the carrier arms with a wafer carrier mounted on each of the opposing ends of the carrier arms. A hub includes a plurality of concentrically mounted drives where each of the plurality of drives is coupled near the midpoint of a respective one of the plurality of carrier arms. Each of the plurality of drives is configured to be controlled independently of the remaining plurality of concentrically-mounted drives. A respective motor is coupled to each of the concentrically mounted drives and is configured to move the coupled carrier arm in a rotary manner under control of a program containing a velocity profile. At least one cleaning chemical-supply head is positioned proximate to a path of the wafer carriers.
|
10. A substrate carrier system, comprising:
a plurality of carrier arms each having a midpoint between opposing ends of the carrier arm, the plurality of carrier arms further having at least one respective substrate carrier mounted on each end of the carrier arm,
a hub including a plurality of concentrically mounted drives, each of the plurality of drives being coupled near the midpoint of a respective one of the plurality of carrier arms, the plurality of drives being configured to move respective ones of the plurality of carrier arms in at least a full 360° arc in either direction simultaneously, each of the plurality of drives further configured to be controlled independently of the remaining plurality of concentrically mounted drives;
a respective drive motor coupled to each of the concentrically mounted drives and configured to move the coupled carrier arm in a rotary manner; and
an inner track section and an outer track section each mounted concentrically with the hub and arranged to respectively support an inner and outer periphery of each of the substrate carriers.
13. A wafer cleaning chamber, comprising:
a plurality of carrier arms having concentrically-mounted midpoints between opposing ends of the carrier arms, the plurality of carrier arms further having a respective wafer carrier mounted on each of the opposing ends of the carrier arms,
a hub including a plurality of concentrically mounted drives, each of the plurality of drives being coupled near the midpoint of a respective one of the plurality of carrier arms, the plurality of drives being configured to move respective ones of the plurality of carrier arms in at least a full 360° arc in either direction simultaneously, each of the plurality of drives further configured to be controlled independently of the remaining plurality of concentrically mounted drives;
a respective motor coupled to each of the concentrically-mounted drives and configured to move the coupled carrier arm in a rotary manner under control of a program containing a velocity profile;
at least one cleaning chemical-supply head positioned proximate to a path of the wafer carriers; and
at least one of an inner track section and an outer track section mounted concentrically with the hub and arranged to support each of the wafer carriers.
1. A substrate carrier system, comprising:
a plurality of carrier arms each having a midpoint between opposing ends of the carrier arm, the plurality of carrier arms further having at least one respective substrate carrier mounted on each end of the carrier arm,
a hub including a plurality of concentrically mounted drives, each of the plurality of drives being coupled near the midpoint of a respective one of the plurality of carrier arms, the plurality of drives being configured to move respective ones of the plurality of carrier arms in at least a full 360° arc in either direction simultaneously, each of the plurality of drives further configured to be controlled independently of the remaining plurality of concentrically mounted drives; and
a respective drive motor coupled to each of the concentrically mounted drives and configured to move the coupled carrier arm in a rotary manner,
wherein each of the drive motors is programmed with a respective velocity profile, and wherein (i) each of the respective velocity profiles includes predetermined variations in velocity and (ii) each of the respective velocity profiles is a same velocity profile that is temporally offset from each of the other respective velocity profiles.
2. The substrate carrier system of
3. The substrate carrier system of
7. The substrate carrier system of
8. The substrate carrier system of
9. The substrate carrier system of
11. The substrate carrier system of
12. The substrate carrier system of
14. The wafer cleaning chamber of
15. The wafer cleaning chamber of
16. The wafer cleaning chamber of
17. The wafer cleaning chamber of
|
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/040,023 entitled “High Throughput Cleaner Chamber,” filed Mar. 27, 2008, which is hereby incorporated by reference in its entirety.
The present invention relates generally to the field of process equipment used in the semiconductor, data storage, flat panel display, as well as in allied or other industries. More particularly, the present invention relates to a rotary-stage wafer handler located within a cleaning chamber.
Semiconductor device geometries (i.e., integrated circuit design rules) have decreased dramatically in size since such devices were first introduced several decades ago. Integrated circuits (ICs) have generally followed “Moore's Law,” meaning that the number of devices which will fit on a single integrated circuit chip doubles every two years. Today's IC fabrication facilities routinely produce 65 nm (0.065 μm) feature size devices, and future fabs will soon be producing devices having even smaller feature sizes.
Not surprisingly, semiconductor integrated circuit fabrication is a complicated process involving a coordinated series of accurate, precise, and repeatable operations. During the fabrication operations, surfaces of a semiconductor substrate (e.g., a semiconductor wafer) become contaminated with layers of residue comprised of particulates, organic materials, metallic impurities (e.g., copper (Cu), aluminum (Al), titanium (Ti), and tungsten (W)), and native oxides (e.g., silicon dioxide).
An increasingly important task in semiconductor processing is the cleaning and preparation of the wafer surface prior to subsequent processing steps. A goal of this cleaning is to remove contaminants and native oxides from wafer surfaces. Wafer cleaning is, in fact, the most frequently repeated operation in integrated circuit fabrication and is one of the most important segments in the semiconductor-equipment business. However, each integrated circuit device generation becomes increasingly difficult to properly clean.
For example, roughly 20% of all process steps in a contemporary fab are cleaning steps. The percentage of cleaning steps continues to increase with each advance in design rules. While the number of cleanings increases, the requirement levels for impurity concentrations, particle size and quantity, water and chemical usage, and the amount of surface microroughness continues to increase as well. Not only is wafer cleaning needed now before each new process sequence, but also additional steps are often required to clean fab process tools after a production run.
Two major types of cleaning processes exist: wet cleaning methods and dry cleaning methods. Liquid chemical cleaning processes, generally referred to as wet cleaning, rely on a combination of solvents, acids, and water to spray, scrub, etch, and dissolve contaminants from the wafer surface. Dry cleaning processes use gas phase chemistry, and rely on chemical reactions required for wafer cleaning, as well as other techniques such as lases, ions, aerosols, and ozonated chemistries. Generally, dry cleaning methods use fewer chemicals and are less hazardous for the environment but usually do not perform as well as wet methods, especially for particle removal.
For wet-chemical cleaning methods, the RCA clean, developed in 1965, still forms the basis for most front-end-of-line (FEOL) wet cleans. A typical RCA-type cleaning sequence starts with the use of a sulfuric acid/hydrogen peroxide (H2SO4/H2O2, commonly called a “piranha etch”) solution followed by a dip in diluted hydrofluoric acid (HF). A standard clean first operation (“SC-1 clean”) uses a solution of ammonium hydroxide/hydrogen peroxide/water (NH4OH/H2O2/H2O, also known as a “base piranha”) to remove particles, while a standard clean second operation (“SC-2 clean”) uses a solution of hydrochloric acid/hydrogen peroxide/water (HCl/H2O2/H2O) to remove metals. Despite increasingly stringent process demands and enhanced improvements in analytical techniques, cleanliness of chemicals, and deionized (DI) water, the basic cleaning recipes have remained generally unchanged since the first introduction of this cleaning technology. Since environmental concerns and cost-effectiveness were not a major issue 40 years ago, the RCA cleaning procedure is far from optimal in these respects and must therefore be applied efficiently and cost-effectively.
Perhaps more importantly, from a yield and cost basis standpoint, the type of equipment used in the clean process is becoming a primary driver. The clean process must be effective, but it must also be fast. Contemporary throughput demands for current generation 300 mm wafers are 360 wafers per hour. Presently, systems use a linear wafer motion requiring a non-productive time period while the wafer carrier is returned to the starting point in a wafer cleaning tool. Thus, wafer handling is slow. Proposed solutions to increase throughput have focused on joining a plurality of cleaning tools in parallel. While such solutions increase substrate throughput, they do so at the expense of tool footprint, increased equipment cost, and reduced reliability.
Currently available semiconductor substrate cleaning equipment suffers from a high cost-per-unit of wafer cleaned, a high cost-of-ownership, a lack of scalability, and an inability to easily adapt to various processing sequences or to increases in semiconductor wafer sizes. Among the many factors that contribute to wafer cleaning costs, the capital cost of wafer handlers which move semiconductor wafers between various locations presents a significant expense. Accordingly, improvements are needed in the field of semiconductor wafer cleaning with a special emphasis on equipment reliability, throughput, and efficiency.
In an exemplary embodiment, a substrate carrier system is disclosed. The substrate carrier system comprises a plurality of carrier arms, each having a midpoint located between opposing ends of the arm. The plurality of carrier arms further has at least one substrate carrier mounted on each of the opposing ends of the carrier arms. A hub includes a plurality of concentrically mounted drives. Each of the plurality of drives is coupled near the midpoint of a respective one of the plurality of carrier arms and is configured to be controlled independently of the remaining plurality of concentrically mounted drives. A drive motor is coupled to each of the concentrically mounted drives and is configured to move the coupled carrier arm in a rotary manner.
Another exemplary embodiment discloses a method of programming a substrate carrier system having n drive motors where each of the n drive motors is coupled to an independent rotary substrate carrier. The method comprises constructing a base velocity profile for programming a first of the n drive motors including the steps of programming a first time period to accelerate the first drive motor, programming a second time period to negatively accelerate the first drive motor, programming a third period to maintain the first drive motor at a constant velocity, programming a fourth time period to accelerate the first drive motor, programming a fifth time period to negatively accelerate the first drive motor, and programming a sixth time period to maintain the first drive motor in a fixed position. The base velocity profile is applied to a program controlling the first of the n drive motors to provide motion to a first of the independent rotary substrate carriers.
Another exemplary embodiment discloses a processor-readable storage medium storing an instruction. When the instruction is executed by a processor, the instruction causes the processor to perform a method of programming a substrate carrier system having n drive motors where each of the n drive motors is coupled to an independent rotary substrate carrier. The method comprises constructing a base velocity profile for programming a first of the n drive motors including the steps of programming a first time period to accelerate the first drive motor, programming a second time period to negatively accelerate the first drive motor, programming a third period to maintain the first drive motor at a constant velocity, programming a fourth time period to accelerate the first drive motor, programming a fifth time period to negatively accelerate the first drive motor, and programming a sixth time period to maintain the first drive motor in a fixed position. The base velocity profile is applied to a program controlling the first of the n drive motors to provide motion to a first of the independent rotary substrate carriers.
In another exemplary embodiment, a wafer cleaning chamber is disclosed. The chamber comprises a plurality of carrier arms each having concentrically-mounted midpoints located between opposing ends of the carrier arms with a wafer carrier mounted on each of the opposing ends of the carrier arms. A hub includes a plurality of concentrically mounted drives where each of the plurality of drives is coupled near the midpoints of a respective one of the plurality of carrier arms. Each of the plurality of drives is configured to be controlled independently of the remaining plurality of concentrically mounted drives. A motor is coupled to each of the concentrically mounted drives and is configured to move the coupled carrier arm in a rotary manner under control of a program containing a velocity profile. At least one cleaning chemical-supply head is positioned proximate to a path of the wafer carriers.
The appended drawings illustrate exemplary embodiments only of the present invention and must not be considered as limiting its scope.
With reference to
Each of the plurality of rotary arms 101A is independently driven and, thus, may be started, stopped, and accelerated independently of the remaining plurality of rotary arms 101A. Although the exemplary clock arm wafer carrier system 100 shows four rotary arms 101A, a skilled artisan will quickly recognize that any number of arms may be utilized and scaled as necessary to adapt to a given wafer size.
Also, each of the wafer carriers 101B may be adapted to accommodate other wafer sizes or substrate types. For example, the wafer carriers 102B may be designed to accommodate 300 mm silicon wafers or 100 mm gallium arsenide (GaAs) wafers. Therefore, as used herein, the term “wafer” is simply chosen as a convenient term referring to any of various substrate types used in the semiconductor and allied industries. Substrate types may therefore include silicon wafers, compound wafers, thin film head assemblies, photomask blanks and reticles, or numerous other types of substrates known in the art. Specific details related to the rotary arm connection to the wafer carriers are discussed with reference to
In a specific exemplary embodiment, the outer track section 105 is physically arranged to accommodate a 30 inch radius from the midpoints of the rotary arms 101A to the center of the wafer carrier 101B. The outer track section 105, of course, can be sized appropriately depending upon the number of rotary arms employed and the size of the substrates handled.
The plurality of wafer lifters 107, 109 may be of any general type commonly known and used in the semiconductor industry. As shown, two load station lifters 109 are spaced approximately 180° apart from one another. Similarly, two unload station lifters 107 are spaced apart approximately 180°. In other embodiments (not shown), there may only a single pair of wafer lifters 107, 109 either with or without a wafer return track though a center portion of the carrier system. Alternatively, in still other embodiments (not shown), a higher number of wafer lifters 107, 109 may be used.
In general operation, once the wafer carrier 101B is positioned over one of the lifters 107, 109, an external robot (not shown) may place a wafer to or from a wafer carrier (e.g., a wafer boat or front opening unified pod (FOUP)) onto one of the lifters 107, 109. The lifter 107, 109 then lowers the wafer onto to the wafer carrier 101B and the lifter 107, 109 continues to lower far enough to avoid any collisions with any of the rotating wafer arms 101A.
With continued reference to
In a specific exemplary embodiment, the upper 111 and lower 113 chemical-release heads are designed in a “pie-section” shape having a wider cross-sectional width at the outer periphery of the carrier system 100 than at its inner periphery. The pie-section shape accommodates the higher angular velocity on the outermost portion of the wafer as compared with the inner portion. Thus, more chemicals may be delivered to the wafer's outer portion through, for example, an increased number of spray nozzles directed at the wafer to insure uniform chemical coverage over the face of the wafer.
Therefore, the exemplary clock arm wafer carrier system 100 provides for continuous flow manufacturing and lends itself to processing without gaps between wafers. As noted above, wet chemical cleaning can involve a number of various steps. Starting and stopping wet chemistry is hard to control, wasteful, and inefficient. The exemplary clock arm wafer carrier system 100 processes wafers in a continuous mode by having the wafer carrier travel in a full 360° arc. Unlike the prior art which runs a linear system requiring a 180° return in which no wafer cleaning or processing occurs, the exemplary clock arm wafer carrier system 100 may run parallel cleaning processes on opposing sides of a the clock system 100 simultaneously. Consequently, chemical control can be shared, thereby reducing control system overhead and redundant circuitry. As such, chemical savings can be as much as 300% (i.e., a four-time reduction in chemical usage) from contemporary linear systems.
Two parallel processes thus occur simultaneously: chemical control and wafer motion. As described in more detail with reference to
With reference to
Drive power is transferred from each of the motors 203 to the respective arm drive gears 201 by, for example, a belt. The belt drive system enhances overall system efficiency over alternative systems such as gear drives. Further, the balanced overall system design (e.g., the symmetrically designed rotary arms 101A) allows for very low power consumption per each of the four drive motors 203. In this exemplary embodiment, typical power consumption is only 4.5 watts per motor. A skilled artisan will recognize that other types of rotary drive schemes may be employed as well.
In a specific exemplary embodiment, each of the motors 203 may be a standard NEMA 23 frame dimensions such as an SM2315D servo motor with an integral encoder (available from Animatics Corporation, 3200 Patrick Henry Drive, Santa Clara, Calif.). The motor 203, in this embodiment, is based on a fully-integrated, closed loop servo technology and may incorporate internal, non-volatile memory allowing velocity profile programs to be downloaded from a host computer and saved independently to each motor 203. Further, in this specific exemplary embodiment, all input, output, and internal status information is accessible through defined variables for program monitoring and control. Gear reduction may be accomplished with a 50:1 planetary reducer and a 4:1 drive belt reduction thus providing 400,000 counts per revolution with a 2000 encoder count per revolution stepper motor. This specific exemplary embodiment allows for a maximum speed of approximately 1 meter/second and a maximum acceleration of 0.1 g or 0.98 meters/second2. Accordingly, the rotary arms 101A (
Referring now to
In a specific exemplary embodiment, the flex spring arm/carrier connector 301 has a load design at 0.3 pound-force with a 3° angle down off the end of the rotary arm 101A allowing for a zero moment at the flex spring arm/carrier connector 301 and 1.2 inch-pounds of applied torque at the rotary arm 101A. The flex spring arm/carrier connector 301 rides beneath the inner track section 103. The wafer carrier 101B continues on at approximately a 0° angle (i.e., substantially horizontally). Two outer trucks are utilized with spring contact of approximately 0.12 pound-force on both the upper and lower sides of the outer track section 105. Followers (not shown specifically in
In alternative exemplary embodiments, the followers are fabricated from bearing-grade Torlon® plastic. Alternatively, the followers may be fabricated from other materials possessing certain mechanical characteristics such as, depending upon a given application, good strength and impact resistance, creep resistance, dimensional stability, radiation resistance, and chemical resistance. Various materials such as polyamides, polyimides, and acetals, may all be suitable. High temperature-specific plastics and other related materials are generally not required in cleaning applications.
In still other exemplary embodiments, the followers may be machined from a variety of materials including Vespel®, Celcon®, Delrin®, Teflon®, Arlon® plastics, or other materials such as fluropolymers, polytetrafluoroethylenes, and polyetheretherketones (PEEK) having a low coefficient of friction and low particle shedding.
With reference to
Each of the velocity profiles further possesses a similar five-period cycle. For example, an entire cycle from the first load to the second load on the same arm is completed after a time period, T, of 80 seconds. During a first time period, T0, the first rotary arm accelerates to a maximum velocity of approximately 50 mm/second and then settles to a constant velocity of 20 mm/second after 12 seconds. The acceleration phase allows the first rotary arm to keep ahead of the subsequent, or second, rotary arm, thus avoiding potential collisions. During a second time period, T1, the first rotary arm continues at a constant velocity of approximately 20 mm/second for roughly 30 seconds. During a latter portion of the second time period, the first rotary arm is moving under a spray head as depicted in
Table 1, below, indicates a positional location of a center point of the wafer on the first rotary arm after each of the time periods described immediately above.
TABLE 1
Distance
Time
Traveled at End
Total Distance
Angular Location
Period
of Period (mm)
Traveled (mm)
(Assumes R = 404 mm)
T0
260
260
39.60°
T1
600
860
115.2°
T2
90
950
129.6°
T3
320
1270
180.0°
T4
0
1270
180.0°
The present invention is described above with reference to specific embodiments thereof. It will, however, be evident to a skilled artisan that various modifications and changes can be made thereto without departing from the broader spirit and scope of the present invention as set forth in the appended claims. For example, particular embodiments describe a number of material types and locations of various elements of the exemplary clock arm wafer carrier system. A skilled artisan will recognize that these materials and particular elements are flexible and are shown herein for exemplary purposes only in order to fully illustrate the novel nature of the system. Additionally, a skilled artisan will further recognize that various loading configurations of the wafer onto the arm are possible such as building the load robot into the rotary arm rather than relying upon an external robot. Additionally, various motor types may be used such as stepper motors. Also, a plurality of substrate carriers may be mounted on each opposing end of the rotary arms as opposed to a single carrier as described above. Further, the system may be used on a variety of, for example, process, metrology, and analytical tools within a fab. Thus, the system has applications that extend beyond cleaning substrates. Moreover, the term semiconductor should be construed throughout to include data storage, flat panel display, as well as allied or other industries. These and various other embodiments are all within a scope of the present invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4851018, | Nov 28 1986 | Commissariat a l'Energie Atomique | Installation for the storage and transfer of objects in a very clean atmosphere |
4890780, | Nov 22 1984 | Hitachi, Ltd. | Manufacturing apparatus |
5096364, | Apr 28 1986 | Varian Semiconductor Equipment Associates, Inc | Wafer arm handler mechanism |
5188136, | Nov 17 1990 | Tokyo Electron Limited | Cleaning device |
5207548, | Jan 19 1991 | International Business Machines Corporation | Wafer transfer apparatus |
5229615, | Mar 05 1992 | Axcelis Technologies, Inc | End station for a parallel beam ion implanter |
5295777, | Dec 23 1992 | Tokyo Electron Limited | Wafer transport module with rotatable and horizontally extendable wafer holder |
5425793, | Feb 13 1992 | Matsushita Electric Industrial Co., Ltd. | Coupling-type clean space apparatus |
5451130, | Nov 29 1993 | BALZERS UND LEYBOLD DEUTSCHLAND HOLDING AKTIENGESELLSCHAFT | Method and apparatus for the step-by-step and automatic loading and unloading of a coating apparatus |
5525106, | Apr 12 1993 | Daifuku Co., Ltd. | Load storing equipment with cleaning device |
5679405, | Jul 16 1990 | National Semiconductor Corp.; Novellus Systems, Inc. | Method for preventing substrate backside deposition during a chemical vapor deposition operation |
5765444, | Jul 10 1995 | Newport Corporation | Dual end effector, multiple link robot arm system with corner reacharound and extended reach capabilities |
5843233, | Jul 16 1990 | Novellus Systems, Inc | Exclusion guard and gas-based substrate protection for chemical vapor deposition apparatus |
5951770, | Jun 04 1997 | Applied Materials, Inc. | Carousel wafer transfer system |
5979475, | Apr 28 1994 | Hitachi, LTD | Specimen holding method and fluid treatment method of specimen surface and systems therefor |
6048162, | Aug 28 1997 | CVC PRODUCTS, INC | Wafer handler for multi-station tool |
6050891, | Feb 06 1998 | Applied Materials, Inc. | Vacuum processing system with turbo-axial fan in clean-air supply system of front end environment |
6082950, | Nov 18 1996 | Applied Materials, Inc. | Front end wafer staging with wafer cassette turntables and on-the-fly wafer center finding |
6097469, | Mar 25 1996 | Tokyo Electron Limited | Method of processing resist onto substrate and resist processing apparatus |
6155768, | Jan 30 1998 | KENSINGTON LABORATORIES, LLC | Multiple link robot arm system implemented with offset end effectors to provide extended reach and enhanced throughput |
6158951, | Jul 10 1998 | ADVANCED SEMICONDUCTOR MATERIALS AMERICA, INC | Wafer carrier and method for handling of wafers with minimal contact |
6186722, | Feb 26 1997 | Fujitsu Limited | Chamber apparatus for processing semiconductor devices |
6328872, | Apr 03 1999 | Novellus Systems, Inc | Method and apparatus for plating and polishing a semiconductor substrate |
6364599, | Mar 22 1996 | RORZE CORPORATION | Robot for handling |
6368183, | Feb 03 1999 | SpeedFam-IPEC Corporation | Wafer cleaning apparatus and associated wafer processing methods |
6409453, | Feb 18 1998 | Applied Materials, Inc. | End effector for wafer handler in processing system |
6429139, | Dec 17 1999 | Axcelis Technologies, Inc | Serial wafer handling mechanism |
6485250, | Dec 30 1998 | BROOKS AUTOMATION HOLDING, LLC; Brooks Automation US, LLC | Substrate transport apparatus with multiple arms on a common axis of rotation |
6561798, | Jun 07 2000 | ASM INTERNATIONAL N V | Apparatus for processing a wafer |
6882416, | Sep 07 1999 | Applied Materials, Inc. | Methods for continuous embedded process monitoring and optical inspection of substrates using specular signature analysis |
7014672, | Jul 01 2002 | Murata Kikai Kabushiki Kaisha | Carrying vehicle, manufacturing apparatus, and carrying system |
7090741, | Aug 31 2001 | Tokyo Electron Limited | Semiconductor processing system |
7255633, | Apr 12 2005 | Rohm and Haas Electronic Materials CMP Holdings, Inc. | Radial-biased polishing pad |
7276097, | Mar 25 2003 | Canon Kabushiki Kaisha | Load-lock system, exposure processing system, and device manufacturing method |
7527664, | Jun 04 2004 | Ecoclean GmbH | Integrated machining module for processing workpieces and a method of assembling the same |
8007218, | Jan 19 2007 | PSK Inc. | Unit and method for transferring substrates and apparatus and method for treating substrates with the unit |
8282698, | Mar 24 2010 | Lam Research Corporation | Reduction of particle contamination produced by moving mechanisms in a process tool |
8562272, | Feb 16 2010 | Lam Research Corporation | Substrate load and unload mechanisms for high throughput |
20020061248, | |||
20020075478, | |||
20020127091, | |||
20030047199, | |||
20030202865, | |||
20040013497, | |||
20040076505, | |||
20040144316, | |||
20051007038, | |||
20060180968, | |||
20070034479, | |||
20070218197, | |||
20070224820, | |||
20070295274, | |||
20080031710, | |||
20080175694, | |||
20090022571, | |||
20090081005, | |||
20090245984, | |||
20110200415, | |||
20110232771, | |||
20110236159, | |||
CN101299415, | |||
CN101461051, | |||
CN102770954, | |||
CN1913098, | |||
JP10242234, | |||
JP200021947, | |||
JP2003068819, | |||
JP200313223, | |||
JP2003229466, | |||
JP2004193418, | |||
JP2004200329, | |||
JP200628577, | |||
JP2013520027, | |||
JP237742, | |||
JP3212951, | |||
JP4290454, | |||
KR100803559, | |||
KR1020020062562, | |||
KR1020070107361, | |||
WO33359, | |||
WO2007126289, | |||
WO2007129838, | |||
WO2008140728, | |||
WO2009120360, | |||
WO2011022870, | |||
WO2011102952, | |||
WO2011119729, | |||
WO2011119733, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 27 2008 | LENZ, ERIC H | Lam Research Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029810 | /0736 | |
Jun 25 2008 | Lam Research Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 25 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 19 2023 | REM: Maintenance Fee Reminder Mailed. |
Oct 02 2023 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 25 2018 | 4 years fee payment window open |
Feb 25 2019 | 6 months grace period start (w surcharge) |
Aug 25 2019 | patent expiry (for year 4) |
Aug 25 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 25 2022 | 8 years fee payment window open |
Feb 25 2023 | 6 months grace period start (w surcharge) |
Aug 25 2023 | patent expiry (for year 8) |
Aug 25 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 25 2026 | 12 years fee payment window open |
Feb 25 2027 | 6 months grace period start (w surcharge) |
Aug 25 2027 | patent expiry (for year 12) |
Aug 25 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |