A surgical suction device is disclosed that includes a suction tube having a first longitudinal axis, a proximal opening, and a distal opening; a guide tube that is substantially coextensive with and parallel to the suction tube, and has a second longitudinal axis, a proximal opening, and a distal opening; a stylet having a proximal end and a distal end; and a junction conduit having a proximal opening and a distal opening; wherein the stylet is disposed along the second longitudinal axis and encircled by the guide tube, and the proximal opening of the junction conduit is in contact with the distal opening of the suction tube and the distal opening of the guide tube such that the distal opening of the junction conduit is in fluid communication with the suction tube, and urging the stylet through the guide tube along the second longitudinal axis through the junction conduit translates the distal end of the stylet to the distal opening of the junction conduit.
|
14. A suction device comprising:
(a) a substantially inflexible suction tube having a first longitudinal axis, a proximal opening, a distal opening, and an entry port disposed proximate to the distal opening;
(b) a guide structure having a second longitudinal axis that is substantially parallel to the first longitudinal axis, a proximal opening, and a distal opening;
(c) a stylet having a proximal end and a distal end;
(d) a lip disposed about the distal end of the entry port; wherein the stylet is disposed along the second longitudinal axis and encircled by the guide structure, and as the stylet is moved through the guide structure along the second longitudinal axis the distal end of the stylet moves along an interior slope or curvature of the lip and is translated through the entry port to the distal opening of the substantially inflexible suction tube; and
a tubular base member having a proximal vacuum connector, an intermediate region, a distal attachment region, and a vent disposed on the intermediate region in fluid communication with the vacuum connector that are each in fluid communication with one another, wherein the distal attachment region is irremovably fixed to the proximal opening of the substantially inflexible suction tube such that the proximal vacuum connector is in fluid communication with the substantially inflexible suction tube, and wherein the tubular base member further comprises a vent-surrounding member disposed on the intermediate region.
10. A suction device comprising:
(a) a substantially inflexible suction tube having a first longitudinal axis, a proximal opening, a distal opening, and an entry port disposed proximate to the distal opening;
(b) a guide structure having a second longitudinal axis, a proximal opening, and a distal opening;
(c) a stylet having a proximal end and a distal end; wherein the stylet is disposed substantially along the second longitudinal axis and encircled by the guide tube, and the distal opening of the guide structure is in contact with the entry port of the substantially inflexible suction tube and in fluid communication with the distal opening such that axial movement of the stylet through the guide structure substantially along the second longitudinal axis translates the distal end of the stylet through the entry port of the substantially inflexible suction tube to the distal opening of the substantially inflexible suction tube; and a tubular base member having a proximal vacuum connector, an intermediate region, a distal attachment region, and a vent disposed on the intermediate region in fluid communication with the vacuum connector that are each in fluid communication with one another, wherein the distal attachment region is irremovably fixed to the proximal opening of the substantially inflexible suction tube such that the proximal vacuum connector is in fluid communication with the substantially inflexible suction tube, and wherein the tubular base member further comprises a vent-surrounding member disposed on the intermediate region.
1. A suction device comprising:
a substantially inflexible suction tube having a first longitudinal axis, a proximal opening, and a distal opening;
a guide structure having a second longitudinal axis that is substantially parallel to the first longitudinal axis, a proximal opening, and a distal opening;
a stylet having a proximal end and a distal end;
a junction conduit having a proximal opening and a distal opening, wherein the stylet is disposed along the second longitudinal axis and encircled by the guide structure, and the proximal opening of the junction conduit is in contact with at least the distal opening of the substantially inflexible suction tube such that the distal opening of the junction conduit is in fluid communication with the substantially inflexible suction tube, and axial movement of the stylet through the guide structure along the second longitudinal axis through the junction conduit translates the distal end of the stylet into the distal opening of the junction conduit; and
a tubular base member having a proximal vacuum connector, an intermediate region,
a distal attachment region, and a vent disposed on the intermediate region in fluid communication with the vacuum connector that are each in fluid communication with one another, wherein the distal attachment region is irremovably fixed to the proximal opening of the substantially inflexible suction tube such that the proximal vacuum connector is in fluid communication with the substantially inflexible suction tube, and wherein the tubular base member further comprises a vent-surrounding member disposed on the intermediate region.
6. A suction device comprising:
(a) a substantially inflexible suction tube having a first longitudinal axis, a proximal opening, a distal opening, and an entry port disposed proximate to the distal opening;
(b) a guide structure having a second longitudinal axis that is substantially parallel to the first longitudinal axis, a proximal opening, and a distal opening;
(c) a hooked stylet having a proximal end and a hooked distal end;
wherein:
3) the stylet is disposed substantially along the second longitudinal axis and encircled by the guide structure such that the hooked distal end is disposed in or proximate to the entry port, and as the hooked stylet is urged in the distal direction substantially along the second longitudinal axis and through the guide structure, the curvature of the hooked distal end meeting resistance from the distal edge of the entry port translates the hooked stylet into the substantially inflexible suction tube and to the distal opening of the substantially inflexible suction tube; and
a tubular base member having a proximal vacuum connector, an intermediate region, a distal attachment region, and a vent disposed on the intermediate region in fluid communication with the vacuum connector that are each in fluid communication with one another, wherein the distal attachment region is irremovably fixed to the proximal opening of the substantially inflexible suction tube such that the proximal vacuum connector is in fluid communication with the substantially inflexible suction tube, and wherein the tubular base member further comprises a vent-surrounding member disposed on the intermediate region.
2. The device of
3. The device of
4. The device of
7. The device of
8. The device of
9. The device of
11. The device of
12. The device of
13. The device of
15. The device of
16. The device of
17. The device of
|
This application is a continuation-in-part claiming benefit of U.S. patent application Ser. No. 13/420,542, filed Mar. 14, 2012, which claims priority to U.S. Provisional Application Ser. No. 61/464,922, filed Mar. 14, 2011, both of which are hereby incorporated by reference in their respective entireties.
The present invention relates to the field of surgical instruments employed for removing debris from within a surgical operative field. In particular, the present invention is a tubular suction device for surgical, dental, or veterinary use that includes a means for self-clearing debris from its intake portion.
A common requirement for any surgical procedure on a patient is that the operative field opened in the patient must be continually cleared of fluids and particulates that obscure the surgeon's vision of the field. These fluids and particulates can include blood, irrigating solution, bone chips or dust, hemostatic agents, among others. Irrespective of the region of the body where the surgery occurs, but especially with respect to neurological or orthopedic procedures, significant amounts of these fluids and particulates present challenges to the surgeon's clear viewing of the surgical field. In addition to the fluids and particulates derived from the patient, foreign materials usefully employed as hemostatic agents can also obscure the operative field and require removal. Such hemostatic agents include absorbable gelatin sponges (e.g., Gelfoam from Baxter Healthcare Corporation), a kneadable mixture of beeswax and mineral wax (e.g., Ethicon Bone Wax from Johnson & Johnson), or an oxidized cellulose polymer (e.g., a polymer of polyanhydroglucuronic acid sold under the trade name Surgicel by Johnson & Johnson).
Removing these materials is typically accomplished using a surgical suction device, inserting the distal tip of the surgical suction device in and about the operative field whereupon the field-obscuring materials are sucked away to a location outside of the field; until, that is, the distal tip becomes fouled by particulate matter or coagulated blood or combinations of such, which is inevitable.
The distal tip is commonly referred to as a surgical suction tip and is an integral part of any surgical procedure. More particularly to the general view of the problem presented above, the suction tip is connected to a wall suction unit in the surgical suite via a plastic tubing. The suction (referred to below as negative pressure) created at the tip clears the field of the materials mentioned above that may be obstructing the surgeon's field of view.
The practical approach taken in a surgery to clear the clogged suction tips is to interrupt the surgery so the tip can be cleaned. Literally, the surgeon stops clearing the operative field, hands the clogged suction to the scrub nurse so s/he can clear it with saline flushes or a stylet (i.e., an implement employed to poke at and remove obstructing matter from a vacuum path). This process may have to be repeated multiple times in a surgery, prolonging the surgical time and contributing a significant source of inefficiency to the surgical procedure.
Despite the development of various shapes of the suction tip inspired by the desire to eliminate the clogged distal tip problem, clogging of the suction tip remains a problem in all operating rooms. Accordingly, the surgeon uses the surgical suction device until its distal tip becomes clogged, hands it to an assistant who, under sterile conditions, manually replaces or unclogs the tip and hands the surgical suction device back to the surgeon. Obviously, critical time is lost by the need to hand the surgical suction device to an assistant for clearance, and then get it back, and then place it where it can do its intended task until, alas, the cycle is repeated with the distal tip yet again clogged, lost time, and a patient in surgery longer than necessary.
It would be desirable to have a surgical suction device designed that allowed the surgeon to clear the distal tip directly without need to pass it off to another or otherwise lose time completing the work of addressing the patient's issues that caused the opening of the operative field in the first place.
To address these problems arising from frequently clogged surgical suction devices, the invention claimed herein enables the surgeon alone to remove obstructions at the distal tip of the surgical suction device. This invention thus bypasses the need for an assistant who, under sterile conditions, is handed a clogged surgical suction device, then manually replaces or unclogs the tip, and hands the surgical suction device back to the surgeon. The invention described herein also functions seamlessly with suction tips of various shapes, thus providing a surgeon with a choice of tip shapes suitable to the application.
In a first embodiment, the invention described herein includes: (a) a suction tube having a first longitudinal axis, a proximal opening, and a distal opening; (b) a guide structure having a second longitudinal axis that is substantially parallel to the first longitudinal axis, a proximal opening, and a distal opening; (c) a stylet having a proximal end and a distal end; and (d) a junction conduit having a proximal opening and a distal opening; wherein, the stylet is disposed along the second longitudinal axis and encircled by the guide structure, and the proximal opening of the junction conduit is in contact with at least the distal opening of the suction tube such that the distal opening of the junction conduit is in fluid communication with the suction tube. Urging the stylet through the guide structure along the second longitudinal axis through the junction conduit translates the distal end of the stylet to the distal opening of the junction conduit.
In a second embodiment, the invention further includes a knob that is fixed at or about the proximal end of the stylet; and/or a tubular base member having a proximal vacuum connector, an intermediate region, and a distal attachment region that are each in fluid communication with one another, wherein the distal attachment region is in contact with the proximal opening of the suction tube such that the proximal vacuum connector is in fluid communication with the suction tube. The tubular base member can include a vent feature disposed on the intermediate region of the tubular base member that is in fluid communication with a vacuum source connected to the vacuum connector at the proximal end of the tubular base member. The vent can control the negative pressure exhibited at the site of the surgical field by the degree to which it is obstructed. To facilitate the degree of obstruction to the vent, the tubular base member includes a vent-surrounding member disposed on the intermediate region. The vent also acts as a muffler to reduce sound created by the flow of air.
In a third embodiment, a receiving member disposed at the distal attachment region encircles the stylet and is coaxial with the guide structure along the second longitudinal axis.
A fourth embodiment includes a handle member that is operably attached to and surrounds the intermediate region and distal attachment region and includes a track element extending substantially parallel to the second longitudinal axis that is proximate to the distal attachment region. A vent-access opening can also be included and disposed such that the vent and vent-surrounding member are accessible through the vent-access opening.
A fifth embodiment includes a tubular tip that contacts and is in fluid communication with the junction conduit.
For convenience of use, in some embodiments the suction tube is bent between the proximal end and distal end. When the suction tube is employed in a bent configuration, the guide structure may also be bent between the proximal end and distal end.
To stabilize the position of the guide structure, the receiving member is in contact with the proximal opening of the guide structure, and a bracket may be disposed proximate to the distal end of the suction tube and proximate to the distal end of the guide structure to conjoin the suction tube and guide structure.
The invention may have a guide structure that is a guide tube that is substantially parallel to and coextensive with the suction tube.
In some cases the guide structure is a shortened guide tube that is substantially parallel to the suction tube, and yet in other cases the guide structure is at least one annulus disposed on the suction tube.
In a sixth embodiment the suction device includes: (a) a suction tube having a first longitudinal axis, a proximal opening, a distal opening, and an entry port disposed proximate to the distal opening; (b) a guide structure having a second longitudinal axis that is substantially parallel to the first longitudinal axis, a proximal opening, and a distal opening; and (c) a hooked stylet having a proximal end and a hooked distal end; wherein, the stylet is disposed substantially along the second longitudinal axis and encircled by the guide structure such that the hooked distal end is disposed in or proximate to the entry port. As the hooked stylet is urged in the distal direction substantially along the second longitudinal axis and through the guide structure, the curvature of the hooked distal end meeting resistance from the distal edge of the entry port translates the hooked stylet into the suction tube and to the distal opening of the suction tube.
In a seventh embodiment, the invention further includes a knob that is fixed at or about the proximal end of the stylet; and/or a tubular base member having a proximal vacuum connector, an intermediate region, and a distal attachment region that are each in fluid communication with one another, wherein the distal attachment region is in contact with the proximal opening of the suction tube such that the proximal vacuum connector is in fluid communication with the suction tube. The tubular base member can include a vent feature disposed on the intermediate region of the tubular base member that is in fluid communication with a vacuum source connected to the vacuum connector at the proximal end of the tubular base member. The vent can control the negative pressure exhibited at the site of the surgical field by the degree to which it is obstructed. To facilitate the degree of obstruction to the vent, the tubular base member includes a vent-surrounding member disposed on the intermediate region. The vent also acts as a muffler to reduce sound created by the flow of air.
In an eighth embodiment, a receiving member disposed at the distal attachment region encircles the stylet and is coaxial with the guide structure along the second longitudinal axis.
A ninth embodiment includes a handle member that is operably attached to and surrounds the intermediate region and distal attachment region and includes a track element extending substantially parallel to the second longitudinal axis that is proximate to the distal attachment region. A vent-access opening can also be included and disposed such that the vent and vent-surrounding member are accessible through the vent-access opening.
For convenience of use, in some embodiments the suction tube is bent between the proximal end and distal end. When the suction tube is employed in a bent configuration, the guide structure may also be bent between the proximal end and distal end.
To stabilize the position of the guide structure, the receiving member is in contact with the proximal opening of the guide structure, and a bracket may be disposed proximate to the distal end of the suction tube and proximate to the distal end of the guide structure to conjoin the suction tube and guide structure.
The invention may have a guide structure that is a shortened guide tube that is substantially parallel to the suction tube, and yet in other cases the guide structure is at least one annulus disposed on the suction tube.
A tenth embodiment of the suction device includes: (a) a suction tube having a first longitudinal axis, a proximal opening, a distal opening, and an entry port disposed proximate to the distal opening; (b) a guide structure having a second longitudinal axis, a proximal opening, and a distal opening; and (c) a stylet having a proximal end and a distal end; wherein, the stylet is disposed substantially along the second longitudinal axis and encircled by the guide structure, and the distal opening of the guide structure is in contact with the entry port of the suction tube and in fluid communication with the distal opening. Urging the stylet through the guide structure substantially along the second longitudinal axis translates the distal end of the stylet through the entry port of the suction tube to the distal opening of the suction tube.
In an eleventh embodiment, the invention further includes a knob that is fixed at or about the proximal end of the stylet; and/or a tubular base member having a proximal vacuum connector, an intermediate region, and a distal attachment region that are each in fluid communication with one another, wherein the distal attachment region is in contact with the proximal opening of the suction tube such that the proximal vacuum connector is in fluid communication with the suction tube. The tubular base member can include a vent feature disposed on the intermediate region of the tubular base member that is in fluid communication with a vacuum source connected to the vacuum connector at the proximal end of the tubular base member. The vent can control the negative pressure exhibited at the site of the surgical field by the degree to which it is obstructed. To facilitate the degree of obstruction to the vent, the tubular base member includes a vent-surrounding member disposed on the intermediate region. The vent also acts as a muffler to reduce sound created by the flow of air.
In a twelfth embodiment, a receiving member disposed at the distal attachment region encircles the stylet and is coaxial with the guide structure along the second longitudinal axis.
A thirteenth embodiment includes a handle member that is operably attached to and surrounds the intermediate region and distal attachment region and includes a track element extending substantially parallel to the second longitudinal axis that is proximate to the distal attachment region. A vent-access opening can also be included and disposed such that the vent and vent-surrounding member are accessible through the vent-access opening.
In a fourteenth embodiment, the guide structure is an alternative guide tube wherein the suction tube and alternative guide tube are bent between their respective proximal and distal ends such that the suction tube and guide structure are substantially parallel until the distal opening of the alternative guide tube connects with the entry port on the suction tube.
In a fifteenth embodiment, the suction device includes: (a) a suction tube having a first longitudinal axis, a proximal opening, a distal opening, and an entry port disposed proximate to the distal opening; (b) a guide structure having a second longitudinal axis that is substantially parallel to the first longitudinal axis, a proximal opening, and a distal opening; (c) a stylet having a proximal end and a distal end; and (d) a lip disposed about the distal end of the entry port; wherein, the stylet is disposed along the second longitudinal axis and encircled by the guide structure, and as the stylet is urged through the guide structure along the second longitudinal axis the distal end of the stylet moves along the curvature or slope of the lip and is translated through the entry port to the distal opening of the suction tube.
In a sixteenth embodiment, the invention further includes a knob that is fixed at or about the proximal end of the stylet; and/or a tubular base member having a proximal vacuum connector, an intermediate region, and a distal attachment region that are each in fluid communication with one another, wherein the distal attachment region is in contact with the proximal opening of the suction tube such that the proximal vacuum connector is in fluid communication with the suction tube. The tubular base member can include a vent feature disposed on the intermediate region of the tubular base member that is in fluid communication with a vacuum source connected to the vacuum connector at the proximal end of the tubular base member. The vent can control the negative pressure exhibited at the site of the surgical field by the degree to which it is obstructed. To facilitate the degree of obstruction to the vent, the tubular base member includes a vent-surrounding member disposed on the intermediate region. The vent also acts as a muffler to reduce sound created by the flow of air.
In a seventeenth embodiment, a receiving member disposed at the distal attachment region encircles the stylet and is coaxial with the guide structure along the second longitudinal axis.
An eighteenth embodiment includes a handle member that is operably attached to and surrounds the intermediate region and distal attachment region and includes a track element extending substantially parallel to the second longitudinal axis that is proximate to the distal attachment region. A vent-access opening can also be included and disposed such that the vent and vent-surrounding member are accessible through the vent-access opening.
For convenience of use, in some embodiments the suction tube is bent between the proximal end and distal end. When the suction tube is employed in a bent configuration, the guide structure may also be bent between the proximal end and distal end.
To stabilize the position of the guide structure, the receiving member is in contact with the proximal opening of the guide structure, and a bracket may be disposed proximate to the distal end of the suction tube and proximate to the distal end of the guide structure to conjoin the suction tube and guide structure.
The invention may have a guide structure that is a shortened guide tube that is substantially parallel to the suction tube, and yet in other cases the guide structure is at least one annulus disposed on the suction tube.
The foregoing and other features and advantages of the invention are apparent from the following detailed description of embodiments read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting. The scope of the invention is defined by the appended claims and equivalents thereof. It is intended that all changes or modification within the meaning and range of equivalents are embraced by the claims.
As shown in
In one embodiment of the self-cleaning surgical suction device 1, the suction tube 10 and guide tube 20′ are substantially parallel to and coextensive with each other. As shown in
The suction tube 10 and guide tube 20′ may be made from materials such as any of the following, without limitation intended: (a) metals, such as stainless steel, aluminum, and other suitable metals or alloys thereof; (b) polymers, such as polyvinylchloride, nylon, polytetrafluoroethylene, polystyrene, acrylonitrile-butadiene styrene, polypropylene, and other suitable plastics; or (c) ceramics, such as silicon carbide, tungsten carbide, apatite, and other suitable ceramics; wherein the suitable metals, alloys, plastics, or ceramics respectively have a tensile strength sufficient to maintain a tubular structure and are capable of being sterilized for medical use. One of ordinary skill in the art is necessarily familiar with the indicated range of alternative materials that have the identified characteristics associated with their suitability for the identified use.
As shown in
The suction tube 10 and guide tube 20′ may be conjoined by the bracket 30 proximate to the distal opening 16 of the suction tube 10 and the distal opening 26 of the guide tube 20′, as illustrated by the completed assembly in
The distal opening 16 of suction tube 10 extending beyond the distal end of the bracket 30 is in contact with a junction conduit 40 by way of inserting the distal end of the suction tube 10 extending beyond the distal end of the bracket 30 into a proximal opening 42 of the junction conduit 40 and set by a suitable adhesive, e.g., a cyanoacrylate adhesive, such as Loctite 4011™ or 4161™ Prism® manufactured by Henkel, such that a distal opening 44 of the junction conduit 40 is substantially coaxial with the suction tube 10 along first longitudinal axis 12, and in fluid communication with the suction tube 10.
In alternative embodiments, the distal opening 44 of the junction conduit 40 is not coaxial with the suction tube 10 along the first longitudinal axis 12. The proximal opening 42, as shown in
The bracket 30 and junction conduit 40 may be made from materials such as any of the following, without limitation intended: (a) metals, such as stainless steel, aluminum, and other suitable metals or alloys thereof; (b) polymers, such as polyvinylchloride, nylon, polytetrafluoroethylene, polystyrene, acrylonitrile-butadiene styrene, polypropylene, and other suitable plastics; or (c) ceramics, such as silicon carbide, tungsten carbide, apatite, and other suitable ceramics; wherein the suitable metals, alloys, plastics, or ceramics respectively have a tensile strength sufficient to maintain the intended structure and are capable of being sterilized for medical use. One of ordinary skill in the art is necessarily familiar with the indicated range of alternative materials that have the identified characteristics associated with their suitability for the identified use.
As shown in
In the embodiment that is depicted in
As noted above, neither the outer diameter nor the inner diameter of the tubular tip is necessarily constant, i.e., the diameters may or may not be uniform. Moreover, in view of the use of the suction device for removal of debris and/or fluids from a surgical field, the overall size of the device is not critical and it should be understood that the device is described with reference to measuring conventions employed for medical tubing and catheters as a convenience and not because there are necessarily narrow tolerances and requirements for appropriate use of the inventive device. Accordingly, when stating that a tubular tip has an outer diameter of 12 Fr, it is plainly the case that one skilled in the art would fully appreciate that a second device having a tubular tip that is as much as 25% less in diameter or 33% greater in diameter would be capable of serving the equivalent function in the same manner.
As to non-uniform outer diameters of the tubular tip, in one embodiment, for example, as shown in
In one embodiment having funnel-shaped tubular tips 50′ or 50″, the proximal opening 52a or 52b is, for example, about 18 Fr and a series of tubular tips are provided that have distal openings 54a or 54b, respectively, that are about 16 Fr, about 14 Fr, about 12 Fr, about 10 Fr, and/or about 8 Fr, and which are interchangeably employed on the suction device.
In a second embodiment having funnel-shaped tubular tips 50′ or 50″, the proximal opening 52a or 52b is, for example, about 15 Fr and a series of tubular tips are provided that have distal openings 54a or 54b, respectively, that are about 14 Fr, about 12 Fr, about 10 Fr, and/or about 8 Fr, and which are interchangeably employed on the suction device. In a third embodiment having funnel-shaped tubular tips 50′ or 50″, the proximal end 52a or 52b is, for example, about 12 Fr and a series of tubular tips are provided that have distal openings 54a or 54b, respectively, that are about 11 Fr, about 10 Fr, about 9 Fr, and/or about 8 Fr, and which are interchangeably employed on the suction device.
An inverse funnel shape for the tubular tips can be usefully employed in the context of the present invention as well, so that a larger area of the surgical field can be addressed by the suction device at the same time. As shown in
The operator of the suction device elects which suction tip to use, where a larger distal opening is preferably employed, perhaps for its ability to lessen the likelihood of clogging and/or for its ability to be gentler to tissue in the surgical field that is intended to remain there (as compared to the smaller distal opening that can exert a higher degree of negative pressure from the suction device that may distress healthy tissue); and where a smaller distal opening increases the potential negative pressure, thus plausibly better suited for removing larger quantities of fluids at a faster rate but runs a higher risk of becoming clogged by particulates. The decision of area addressed by the distal opening of the tubular tip may also be influenced if useful to the procedure to treat a larger proportion of the surgical field at a time by a constant level of the negative pressure.
Additional variant tubular tips are also contemplated in the context of the present invention that, for example, have varying lengths for reaching deeper into a cavity in which a surgical field may be disposed. The tubular tips can be manufactured to any length desired, and among lengths viewed to be suitable for the purpose of removing fluid and debris from a surgical field, it is contemplated to set the overall lengths of the tubular tips at between about one centimeter to about 30 cm, inclusive of all such approximate lengths corresponding to each integer there between; wherein the shorter such lengths would have particular utility for surgeries on small animals, such as, for example, a mouse, cat, or small dog, the longer such lengths would have particular utility for surgeries on large animals, such as, for example, cows, horses, or (especially zoo- or acquarium-bound) game animals, and the intermediate lengths would have particular utility for surgeries on humans and other such sized surgery candidates.
Other embodiments of alternative tubular tips include those that have bends in the tube, which bends can be set to any degree relative to the longitudinal axis of the tubular tip.
Addressing this aspect of the present invention with practical examples, usefully employable bent tubular tips 60′, 60″, 60′″, 60″″ and 60′″″ depicted in
The suction device of the present invention having a multiplicity of interchangeable tubular tips that can be employed provides a number of advantages over prior art suction devices where the tip could not be removed. If, for example, a tubular tip becomes clogged to an extent that even the unclogging mechanism of the present invention is not fully effective, then the surgeon or other user (such as an operating room nurse) can simply remove the clogged tubular tip and replace it with a new one, resulting in a faster solution than having to replace the entire suction device and likely halt or delay the surgery. Being disposable, the interchangeable tips upon being exchanged out do not suffer the defect of prior art “reusable” suction tips that inevitably accumulate old blood. Moreover, the disposable, interchangeable suction tips are more cost effective in providing multiples of the same-sized suction tips and/or different-sized suction tips in the same package.
In one embodiment, the tubular tip 50 is in contact with the junction conduit 40 by way of inserting the proximal end of the tubular tip 50 through the distal opening 44 of the junction conduit 40 and set by a suitable adhesive, e.g., a cyanoacrylate adhesive, such as Loctite® 4011™ or 4161™ Prism manufactured by Henkel, such that the tubular tip 50 is coaxial with the suction tube 10 along the first longitudinal axis 12, and in fluid communication with the suction tube 10. In alternative embodiments the tubular tip 50 is not coaxial with the suction tube 10 along the first longitudinal axis 12. Suitable adhesives are identified with respect to water-resistant characteristics; if the joining of tubular tip to junction conduit is to be permanent, then the suitable adhesive joins the two components irreversibly, and if the joining is to be reversible, the the suitable adhesive does not so attack the materials of the two components such that one can remove the tubular tip from the junction conduit and the suction device can be used with interchangeable tubular tips.
The tubular tip 50 may alternatively be set by welding, which is another joining mechanism suitable for one-time uses of the suction device.
The tubular tip 50 may also be fitted without welding or adhesives enabling disengagement of the tubular tip 50 from the junction conduit 40. For example, the tubular tip 50 may have an outside diameter that is less than the inner diameter of the distal opening 44 of the junction conduit 40 such that the tubular tip 50 can be pushed and/or twisted into the distal opening 44 and held in place by frictional forces. In another example, the proximal end of the tubular tip 50 may be threaded so that it may be twisted into the junction conduit 40 that, again, has a slightly larger inner diameter relative to the outer diameter of the proximal end 52 or, in yet another embodiment, corresponding threads disposed proximate to the inner diameter of the distal opening 44 of the junction conduit 40 are employed.
Disengageable joining of the tubular tip 50 to the junction conduit 40 as described above involves a “twist-on” or “screw-on” method of attachment there between. Irrespective whether or not threads are employed (i) on the inner surface of the junction conduit 40 without corresponding threads on the opposing outer surface of the tubular tip 50, or (ii) on the outer surface of the tubular tip 50 without corresponding threads on the opposing inner surface of the junction conduit 40, or (iii) with corresponding threads on each of said surfaces, or (iv) without threads on either of said surfaces, as each such possible employment of threads are described in the immediately prior paragraph, one can invoke frictional forces and attach a particular tubular tip 50 to an appropriately sized junction conduit 40 using a twist-on or screw-on movement of one of the identified components relative to the other.
It is also the case, in another embodiment, that the identified components are sized such that the proximal opening 52 of the tubular tip 50 fits over the distal opening 44 of the junction conduit 40, but snugly so. In that case, whether or not threads are employed (i) on the outer surface of the junction conduit 40 without corresponding threads on the opposing inner surface of the tubular tip 50, or (ii) on the inner surface of the tubular tip 50 without corresponding threads on the opposing outer surface of the junction conduit 40, or (iii) with corresponding threads on each of said surfaces, or (iv) without threads on either of said surfaces, one can invoke frictional forces and attach a particular tubular tip 50 to an appropriately sized junction conduit 40, wherein the inner diameter of the tubular tip 50 at its proximal opening is slightly larger than the outer diameter of the distal opening of junction conduit 40, the precision of which can be readily determined by one skilled in the art of joining tubular members, as in, for example, a cap for closing a bottle top or joining one laboratory hose to another.
Such a joining action of the tubular tip 50 to an appropriately sized junction conduit 40, irrespective whether the proximal opening of the tubular tip 50 fits about or into the distal opening of the junction conduit 40, and, as well, irrespective whether all opposing surfaces are manufactured with meshing threads or only one of the opposing surfaces includes threads or neither of the surfaces includes threads, involves a “screw-on” or “twist-on” or “push-on” action of one component relative to the other for the attachment of the indicated components.
In yet another embodiment, using a bayonet fitting, the proximal end of the tubular tip 50 as shown in
In yet another embodiment for a joining mechanism for using the interchangeable tubular tips, the tubular tips can be made with a depression 55 on its outer surface close to the proximal opening thereof, as shown, for example, in
Another embodiment involves one or more pins or a protruding line (as, for example, the circumferential ridge 53 of
As shown in
The proximal end of the suction tube 10 is inserted into the distal attachment region 66 through the distal attachment opening 67 such that the suction tube 10 is in fluid communication with the proximal vacuum connector 62. The suction tube 10 is set within the distal attachment region 66 by welding or adhesives such that the tubular base member 60 is coaxial with the suction tube 10 along the first longitudinal axis 12. In one embodiment, the suction tube 10 is set within the distal attachment region 66 by a suitable adhesive, e.g., a cyanoacrylate adhesive, such as Loctite 4011 or 4161 Prism manufactured by Henkel. Alternative embodiments not shown include a connection such that the distal attachment region 66 is set within the suction tube 10 by welding or adhesives such that the suction tube 10 is coaxial with the tubular base member 60.
As shown in
The proximal opening 24 of the guide tube 20 is in contact with the receiving member 65 by way of inserting the proximal end of the guide tube 20 into the receiving member 65 through the distal receiving member opening 69. The guide tube 20 may be set within the receiving member 65 by welding or adhesives such that the receiving member 65 is coaxial with the guide tube 20 along the second longitudinal axis 22. In one embodiment, the guide tube 20 is set within the receiving member 65 by a suitable adhesive, e.g., a cyanoacrylate adhesive, such as Loctite 4011 or 4161 Prism manufactured by Henkel. Alternative embodiments not shown include a connection such that the receiving member 65 is set within the guide tube 20 by welding or adhesives such that the receiving member 65 is coaxial with the guide tube 20 along the second longitudinal axis 22.
The proximal vacuum connector 62 may or may not have external threads 62a facilitating firm attachment of vacuum tubing (not shown) to the vacuum connector 62.
A vent 61, as shown in
A vent-surrounding member 63 surrounds the vent 61 and facilitates manual control of the degree of obstruction. The vent-surrounding member 63 may be made from materials such as any of the following, without limitation intended: (a) metals, such as stainless steel, aluminum, and other suitable metals or alloys thereof; (b) polymers, such as polyvinylchloride, nylon, polytetrafluoroethylene, polystyrene, acrylonitrile-butadiene styrene, polypropylene, and other suitable plastics; or (c) ceramics, such as silicon carbide, tungsten carbide, apatite, and other suitable ceramics; wherein the suitable metals, alloys, plastics, or ceramics respectively have a tensile strength sufficient to maintain the intended structure and are capable of being sterilized for medical use. One of ordinary skill in the art is necessarily familiar with the indicated range of alternative materials that have the identified characteristics associated with their suitability for the identified use. In one embodiment, the vent-surrounding member 63 is made of acrylonitrile-butadiene styrene.
The vent surrounding member 63 may be welded to the tubular base member 60, glued to the tubular base member 60, or may be part of a monolithic mold or cast of the tubular base member 60. In one embodiment the vent surrounding member 63 is glued on the intermediate region 64 of the tubular base member 60 by a suitable adhesive, e.g., a cyanoacrylate adhesive, such as Loctite 4011 or 4161™ Prism manufactured by Henkel. In one embodiment the vent surrounding member 63 is concave and has an elliptical geometry to further aid in controlling the degree vent 61 is obstructed. Other embodiments may include a rectangular, and/or flat vent surrounding member 63. Another embodiment does not include the vent surrounding member 63.
A stylet 70 having a proximal end 72 and distal end 74, as shown in
As shown in
The flange 78 may take an “L” shape with a curved bend as shown from a frontal view for an embodiment of the invention shown in
The knob 75 may be made from materials such as any of the following, without limitation intended: (a) metals, such as stainless steel, aluminum, and other suitable metals or alloys thereof; (b) polymers, such as polyvinylchloride, nylon, polytetrafluoroethylene, polystyrene, acrylonitrile-butadiene styrene, polypropylene, and other suitable plastics; or (c) ceramics, such as silicon carbide, tungsten carbide, apatite, and other suitable ceramics; wherein the suitable metals, alloys, plastics, or ceramics respectively have a tensile strength sufficient to maintain the intended structure and are capable of being sterilized for medical use. One of ordinary skill in the art is necessarily familiar with the indicated range of alternative materials that have the identified characteristics associated with their suitability for the identified use. In one embodiment, the knob 75 is made of acrylonitrile-butadiene styrene.
As shown in
The ventral handle piece 90, as shown in
As shown in
As shown in
The distal dorsal recess 88 and distal ventral recess 98 encircle the tubular base member 60 proximate to the distal attachment region 66 such that the nearness of the distal dorsal recess 88 and the distal ventral recess 98 to the outer wall of the tubular base member 60 allows for gluing, welding, and/or frictional attachment.
In one embodiment the dorsal hand piece 80 and the ventral hand piece 90 are glued to the outer wall of the tubular base member 60 at the proximal dorsal recess 86, the proximal ventral recess 96, the distal dorsal recess 88, and distal ventral recess 98 by a suitable adhesive, e.g., a cyanoacrylate adhesive, such as Loctite 4011 or 4161 Prism manufactured by Henkel.
The vent-access opening 82 has dimensions known to one having ordinary skill in the art to surround the vent surrounding member 61 allowing for welding, gluing, and/or frictional attachment. In one embodiment, the vent-access opening 82 is glued to the vent surrounding member 62 by a suitable adhesive, e.g., a cyanoacrylate adhesive, such as Loctite® 4011 or 4161 Prism manufactured by Henkel.
In one embodiment shown in
In one embodiment shown in
As shown in
As shown in
The shortened guide tube 20′″ may be substantially parallel to the suction tube 10. The suction tube 10 and shortened guide tube 20′″ may be conjoined by the bracket 30 proximate to the distal opening 16 of the suction tube 10 and the distal opening 26 of the shortened guide tube 20″, as illustrated by the completed assembly in
In the depicted embodiment of
Another alternative embodiment of the self-cleaning surgical suction device 1, as shown in
The hooked stylet 112 may be made from materials such as any of the following without limitation intended: (a) metals such as stainless steel, aluminum, and other suitable metals or alloys thereof, or (b) polymers such as polyvinylchloride, polytetrafluoroethylene, polystyrene, acrylonitrile-butadiene styrene, polypropylene, and other suitable plastics; wherein the suitable metals, alloys, or plastics respectively have the suitable elasticity for non-linear movement, suitable shape memory to retain a hooked disposition at the distal end of the hooked stylet 112, and can be sterilized for medical use. One of ordinary skill in the art is necessarily familiar with the indicated range of alterative materials that have the identified characteristics associated with their suitability for the identified use. The annulus 20″ can be made from materials as described herein.
Another alternative embodiment of the self-cleaning surgical suction device 1, as shown in
An alternative embodiment of the self-cleaning surgical suction device 1, as shown in
The alternative guide tube 116 may be made from materials such as any of the following without limitation intended: (a) metals such as stainless steel, aluminum, and other suitable metals or alloys thereof; (b) polymers such as polyvinylchloride, polytetrafluoroethylene, polystyrene, acrylonitrile-butadiene styrene, polypropylene, and other suitable plastics; or (c) ceramics such as silicon carbide, tungsten carbide, apatite, and other suitable ceramics; wherein the suitable metals, alloys, plastics, or ceramics respectively have a tensile strength sufficient to maintain a tubular structure and are capable of being sterilized for medical use. One of ordinary skill in the art is necessarily familiar with the indicated range of alterative materials that have the identified characteristics associated with their suitability for the identified use.
As shown in
The lip 118 may be made from materials such as any of the following without limitation intended: (a) metals such as stainless steel, aluminum, and other suitable metals or alloys thereof; (b) polymers such as polyvinylchloride, polytetrafluoroethylene, polystyrene, acrylonitrile-butadiene styrene, polypropylene, and other suitable plastics; or (c) ceramics such as silicon carbide, tungsten carbide, apatite, and other suitable ceramics; wherein the suitable metals, alloys, plastics, or ceramics respectively have a tensile strength sufficient to provide suitable resistance to the translation movement of the stylet 70 such that the distal end 74 of the stylet 70 may move along the interior slope or curvature of the lip 118 structure and are capable of being sterilized for medical use. One of ordinary skill in the art is necessarily familiar with the indicated range of alterative materials that have the identified characteristics associated with their suitability for the identified use.
The suction tube 10 and shortened guide tube 20′″ may be conjoined by the bracket 30 proximate to the distal opening 16 of the suction tube 10 and the distal opening 26 of the shortened guide tube 20′″, as illustrated by the completed assembly in
Yet another alternative embodiment of the self-cleaning surgical suction device 1, as shown in
As the stylet 70 is urged through at least one annulus 20″, a lip 118 disposed about the distal end of the entry port 114 guides the distal end 74 along an interior slope or curvature of the lip 118 into the entry port 114 and to the distal opening 16 of the suction tube 10. The lip 118 may be disposed about the distal end of the entry port 114 as a part of the monolithic suction tube 10 structure, it may be glued about the distal end of the entry port 114, or it may be welded about the distal end of the entry port 114. The lip 118 may be made from materials as described herein.
A common feature shared by the various embodiments described herein above is a method comprising the steps of: (a) urging a stylet 70 through a guide structure 20 along a second longitudinal axis 22; (b) translation of the stylet movement from the second longitudinal 22 axis into the suction tube 10 along a first longitudinal axis 12; and (c) retracting the stylet 70 such that the stylet 70 is disposed substantially within the guide structure 20 substantially along the second longitudinal axis 22. This method can be repeated any number of times, as required to clear obstructions from the surgical suction device of the present invention.
While the present invention has been described in its various embodiments with some degree of particularity, it is understood that this description has been provided only by way of example and that numerous changes in the details of construction, fabrication, and use, including changes in the combination and arrangement of parts or materials, may be made without departing from the spirit and scope of the invention.
Salehi, Sean A., Wickham, Jeff
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3375828, | |||
4022218, | Sep 22 1975 | Surgical suction tube | |
4699138, | Jul 25 1986 | Endotracheal intubation suction device | |
4886492, | Mar 24 1987 | Unomedical Limited | Surgical suction tip with filter |
5195952, | Feb 25 1992 | SOLNIT FAMILY TRUST AND ROBERT GOLDSTEIN, PH D , JOINTLY | Noise reducing aspirator |
5320110, | Oct 29 1991 | Pleural biopsy syringe-needles | |
5591141, | Sep 15 1995 | Megadyne Medical Products, Inc. | Suction coagulator bending tool |
5643229, | Jul 22 1994 | Suction tube apparatus | |
5779649, | Dec 17 1996 | Pabban Development, Inc. | Surgical suction wand with filter |
6045516, | Dec 18 1998 | Cleanable medical/surgical suction devices | |
6146136, | Mar 12 1999 | Self-cleaning dental suction device | |
6881060, | Mar 12 2003 | Bladhs Medical AB | Suction tube with a sieve |
6908455, | Mar 14 2000 | MEDECON, INC | Surgical suction probe system with an easily cleaned internal filter |
20070219499, | |||
D571458, | Oct 06 2005 | ASTRA TECH AB | Surgical suction instrument |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 10 2013 | NeuroEnterprises, LLC | (assignment on the face of the patent) | / | |||
Mar 10 2013 | WICKHAM, JEFFREY N | Neuro Enterprises, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030045 | /0477 | |
Mar 13 2013 | SALEHI, SEAN A | Neuro Enterprises, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030045 | /0477 |
Date | Maintenance Fee Events |
Mar 19 2019 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Feb 06 2023 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Date | Maintenance Schedule |
Sep 29 2018 | 4 years fee payment window open |
Mar 29 2019 | 6 months grace period start (w surcharge) |
Sep 29 2019 | patent expiry (for year 4) |
Sep 29 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 29 2022 | 8 years fee payment window open |
Mar 29 2023 | 6 months grace period start (w surcharge) |
Sep 29 2023 | patent expiry (for year 8) |
Sep 29 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 29 2026 | 12 years fee payment window open |
Mar 29 2027 | 6 months grace period start (w surcharge) |
Sep 29 2027 | patent expiry (for year 12) |
Sep 29 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |