A method of assembling a core stiffened structure that includes bonding a composite core to a substructure by utilizing magnetic force to create pressure between a flat surface of the composite core the substructure, and bonding a face sheet onto a surface network of the composite core.
|
1. A method of manufacturing a net edge composite core, the method comprising:
wrapping a plurality of full size mandrels with a composite material to form wrapped full size mandrels;
wrapping a plurality of partial mandrels with the composite material to form wrapped partial mandrels;
assembling the wrapped full size mandrels and the wrapped partial mandrels;
locating a supplemental partial mandrel next to each wrapped partial mandrel;
curing the wrapped full size mandrels and the wrapped partial mandrels in a tool; and
removing full size mandrels and the partial mandrels.
2. The method according to
3. The method according to
4. The method according to
|
1. Technical Field
One method of the present disclosure relates to the splicing together of composite core using magnets to provide the requisite pressure at the bondline.
Another method of the present disclosure relates to the use of magnets to secure composite core during a machining process or an assembly process.
Another method of the present disclosure relates to manufacturing net edge core as well as a method of bonding net edge core to a substructure.
2. Description of Related Art
One conventional method of splicing together composite core includes using mechanical clips that apply pressure at the adhesive bondline; however this method is not very effective at large distances from an open edge because the spring force has to be transferred by lever arms over a distance. Additionally, the mechanical clips can interfere with tooling. Another conventional method includes using an expandable foam adhesive that doesn't require artificial pressure at the bondline; however, expandable foam adhesive can be weight prohibitive.
There is a need for an improved method of splicing together composite core.
In a conventional composite core machining process, the composite core is machined to a desired contour for usage in a composite structure. However, the natural instability of the composite core can create high scrap rates and/or require using a machine feed rate low enough to prevent damage to the unstable composite core. Further, an assembly process for a core stiffened structure can also require the securing of the composite core.
There is a need for an improved method of securing composite core during a core machining process or a core assembly process.
A conventional core stiffened structure will typically require a length and width of composite core that is carved out of a larger bulk composite core. The desired length and width of the composite core can sometimes leave flanges rather than flat edges. The flanges are difficult to bond to adjacent substructure.
There is a need for an improved method for manufacturing a more efficient core as well as a method of bonding the core to substructure.
The novel features believed characteristic of the embodiments of the present disclosure are set forth in the appended claims. However, the embodiments themselves, as well as a preferred mode of use, and further objectives and advantages thereof, will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings, wherein:
Illustrative embodiments of the present disclosure are described below. In the interest of clarity, all features of an actual implementation may not be described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present application, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction.
Referring now to
Referring now also to
It should be appreciated that rotorcraft 101 is merely illustrative of an aircraft for with which one or more methods of the present disclosure can be utilized with regard to. Further, rotor blade 205 is merely illustrative of the wide variety of core stiffened structures that can utilize one or methods disclosed herein. In another embodiment, a horizontal stabilizer 115 is the core stiffened structure, for example.
Referring now also to
Method 401 can include a step 403 of positioning a first core member adjacent to a second core member. Step 403 can be implemented in a variety of environments. For example, tooling can be used for aligning a first core member adjacent to second core member; however, tooling is not necessarily required. A step 405 can include locating and adhesive on certain portions of the first core member and/or the second core member. A step 407 can include positioning magnets to apply a pressure to the adhesive. A step 409 can include curing the adhesive. Method 401 and the associated steps are described further herein.
Referring now also to
Referring now also to
Referring now also to
In another embodiment, the pressure from the magnet attraction is generated by a magnet and a ferrous element. The magnet can be a strip of magnetic material that has a length corresponding with the depth of the composite core. The specific magnet type, geometry, and material can be implementation specific depending in part on the desired pressure at the bondline. The magnet can be a permanent magnet or an electromagnet, for example.
Referring now also to
Referring now also to
The use of magnets to create pressure at an adhesive bondline for splicing or joining composite core has significant advantages. For example, magnets can be inserted deep into the composite core block, whereas mechanical devices have geometric limitations. In one example embodiment, the magnet can be covered with a low friction material, such as Teflon® tape, to allow the magnet to reduce friction as the magnet is slipped into position within the cell of the core. Further, magnets can provide uniform clamping pressure at the bondline along the entire length of the magnet; whereas mechanical devices, such as spring loaded clips can provide unequal pressure. Further, magnets are low profile and can be located so as to not protrude out of the surface network, thus allowing the adhesive to be co-cured with other components of a core stiffened composite structure.
Referring now to
Each tube 1103 of composite core 1101 can include a plurality of reinforcement fibers disposed in a polymeric matrix. For example, tubes 1103 may comprise fibers comprising one or more of carbon, graphite, glass, an aromatic polyamide (i.e., “aramid”) material, a variant of an aromatic polyamide material (e.g., a polyparaphenylene terephthalamide material, such as Kevlar® by E. I. du Pont de Nemours and Company of Richmond, Va.), or the like. The scope of the present disclosure, however, encompasses fibers comprising any suitable material or combination of materials. The polymeric matrix may comprise any suitable resin system, such as a thermoplastic or thermosetting resin for example. Exemplary resins include epoxy, polyimide, polyamide, bismaleimide, polyester, vinyl ester, phenolic, polyetheretherketone (PEEK), polyetherketone (PEK), polyphenylene sulfide (PPS), polyetherimide (PEI), and the like.
The fibers of tubes 1103 may be oriented in one or more directions and can be woven, unwoven, or braided, for example. It should be appreciated that tube 1103 may alternatively only include fibers arranged in a single direction, such as a uniaxial or helical fiber configurations. In yet another embodiment, a first ply comprises fibers and a second ply comprises fibers, such that the second ply is laid-up over the first ply.
Referring now also to
Referring now also to
Referring also to
In another example embodiment, magnets 1305 are actually ferrous metal members while first flange 1303 and second flange 1305 are magnetic members. Further, it should be appreciated that magnets 1305 within composite core 1201 cell members, and components of tool 1301, such as flanges 1303 and 1305, can be any combination of magnetic components and ferrous components that will provide the desired magnetic attraction for securing composite core 1201 within tool 1301. Further, it should be appreciated that carved composite core 1201 and tool 1301 can take on a wide variety of shapes, sizes, contours, etc. For example, a carved composite core 1201 for a rotor blade 205 (shown in
Referring now to
One method of the present disclosure utilizes a magnetic force between either two magnets, or a magnet and a ferrous member, to create pressure at a bondline for bonding a composite core to an adjacent structure. In the example embodiment, a composite core 1505 is bonded to an adjacent structural component 1507 with an adhesive 1503. Structural component 1507 can be any variety of components, such as a web member of a structure, an airfoil spar, a clip joint, to name only a few examples. On most circumstances, structural components 1507 is a non-ferrous material, thus a magnet 1501a is located on an opposite surface from the surface to which the adhesive 1503 is located. Magnet 1501b is located on an interior of an enclosed cell member of composite core 1505. Thus, magnets 1501a and 1501b attract to each other and not only act to locate the side of composite core 1505 to the tooled location of the structural component 1507, but also generate the bondline pressure to adhesive 1503 throughout the curing cycle. Once the adhesive 1503 is cured, the magnets 1501a and 1501b can be removed.
Still referring to
Referring now also to
Referring now to
Referring now also to
Intermediate member 1801 can be a variety of geometric configurations depending in part upon the tessellating geometry of the composite core. In the example embodiment, intermediate member 1801 includes to a first wall 1805a and a second wall 1805b and an insert portion 1807 therebetween. Insert portion 1807 fits at least partially within an exposed cell of composite core 1701, while first all 1805a and second wall 1805b fit against a surface of component 1803. In the example embodiment, the insert portion 1807 fits completely within the exposed cell of composite core 1701 to maximize the available bonding surfaces; however, an embodiment that doesn't require as much bonding surface may only partially attach within the exposed cell of composite core 1701.
In the example embodiment, magnets 1809a and 1809b are utilized to generate the desired pressure at the adhesive 1811 bondline between not only component 1803 and walls 1805a and 1805b, but also between insert portion 1807 and the exposed cell of composite core 1701. As discussed further herein, the adhesive 1811 can be any implementation specific type of adhesive. The adhesive 1811 can be a paste adhesive or a film adhesive, to name a few examples. Further, the pressure from the magnetic attraction can be generated by a magnet and a ferrous element rather than two magnets.
In another method of the present disclosure, rather than the composite core being cut from a bulk composite core to fit within a geometry specific core stiffened structure, the composite core is manufactured with a net edge surface that geometrically coincide with the surfaces of the components to which the composite core is bonded to in the core stiffened structure. The present disclosure contemplates at least two methods of manufacturing net edge composite core. One method involves wrapping mandrels with composite material and stacking the wrapped mandrels together in an assembly tool having a define shape, some mandrels having partial mandrel shapes to create a net edge. The other method involves using mandrels as tools such that layers of composite material are presses between layers of mandrels, at least some mandrels having a partial mandrel shape to create a net edge. These methods are described further herein.
Referring now to
Referring to
Mandrel 2201 may be configured with a hollow portion 2203 extending through the centerline length of mandrel 2201, forming a body portion 2205 between hollow portion 2203 and outer surface 2207. Mandrel 2201 can be configured so that during the curing process of the composite core, the temperature of each mandrel 2201 is increased such that body portion 2205 volumetrically expands uniformly both in an inward direction and an outward direction, until outer surface 2207 is bounded by its nearest neighbor mandrel, at which point the pressure exerted by mandrel 2201 on its nearest neighbor mandrel remains relatively constant, and the thermal expansion of body portion 2205 continues primarily in inward direction. The degree of thermal expansion each mandrel 2201 is dependent upon the CTE of the material of each mandrel 2201. The geometry of mandrel 2201 can be selected to tailor the physical properties of mandrel 2201 and the resultant composite core. Further, the geometry of mandrel 2201 can be selected to tailor the strength/stiffness of the mandrel 2201. Further, the wall thickness of body portion 2205, as well as the geometry of hollow portion 2203, can be selectively controlled to produce a desired thermal expansion profile. For example, a mandrel having a smaller hollow portion 2203 would provide a higher external pressure than mandrel 2201. In the illustrated embodiment, hollow portion 2203 is of a cylindrical shape; however, it should be appreciated that other embodiments may have non-cylindrical shapes.
Each mandrel 2201 can be configured with a hollow portion 2203 to allow hot air to be ducted therethrough during the cure cycle. However, it should be appreciated that an alternative embodiment of mandrel 2201 does not include a hollow portion 2203. It should be appreciated that mandrel 2201 is merely illustrative of a wide variety of mandrel configurations contemplated. Even though the exterior shape of the mandrels are illustrated as hexagonal, the present disclosure includes mandrels having other exterior shapes, such as square, rectangular, triangular, to name a few examples. Further, it should be appreciated that the hollow portion within the mandrels can be any variety of shape, or shapes. The exact shape of the hollow portion is implementation specific. Further, for the manufacturing of net edge core, the mandrel 2201 can be a partial mandrel shape. For example, the mandrel 2201 can be a half mandrel 2301, as illustrated in
In one example embodiment, a Teflon® material, or other bond resistant material or coating, can be used to prevent the composite material from bonding to the exterior surface of mandrel 2201 during the cure cycle. As such, each mandrel 2201 can include a layer of the bond resistant material adjacent to the outer surface 2207 of each mandrel 2201.
Referring now also to
Winding jig 2005 is configured to operably secure mandrel 2201 between couplings 2015a and 2015b. Couplings 2015a and 2015b have similar geometry to that of mandrel 2201. Further, winding jig 2005 is configured such that the geometry of couplings 2015a and 2015b are aligned with mandrel 2201 during the composite material winding process. In the illustrated embodiment, driver 2009 is configured to drive the rotation of adapters 2013a and 2013b, couplings 2015a and 2015b, and mandrel 2201, while support member 2011 is configured to provide freewheeling support. In an alternative embodiment, mandrel 2201 and couplings 2015a and 2015b are held stationary while a device operates to place the composite material about the mandrel and couplings 2015a and 2015b, as discussed further herein. It should be appreciated that winding jig 2005 is merely illustrative of a fixture that can be used to facilitate the depositing of composite material onto mandrel 2201.
Winding jig 2005 is mounted to a platform 2017 that can be translated along a prescribed path. A first end portion of a slit 2019 of uncured composite material can be secured to a mount 2021 that is secured to platform 2017. Slit 2019 is positioned through an opening 2023 in coupling 2015b. A second end portion of slit 2019 can remain part of a roll 2027 of composite material. Platform 2017 is biased in direction 2025 by a constant tension member such that slit 2019 is held in tension. Mount 2021 and roll 2017 are positioned so that slit 2019 is oriented at a desired angle relative to mandrel 2201. In the illustrated embodiment, the desired angle of slit 2019 is 45 degrees; however, slit 2019 can be oriented at any desired angle.
During operation, driver 2009 is operated so as to cause mandrel 2201 to rotate, which causes slit 2019 to wrap around mandrel 2201. As slit 2019 wraps around mandrel 2201, platform 2017 is pulled toward roll 2017 in direction 2029 while the wrap angle is maintained.
It should be appreciated that the winding jig 2005 can be configured in any variety of implementation specific configurations. For example, mandrel 2201 can rotate in a first rotational direction while a material placement head rotates around mandrel 2201 in an opposite direction to that of the first rotational direction. Further, either mandrel 2201 can translate along its axis or the material placement head can translate in a direction corresponding to the mandrel axis, or any combination thereof.
Referring now also to
Curing tool 2303 can also be utilized to manufacturing a net edge core, such as net edge core 2401, by the process of sequentially laying up layers of composite material between the mandrels rather than wrapping the mandrels.
Referring now also to
Referring now also to
At each bonding location, a magnet 2511a is located on an opposite surface from the surface to which the adhesive 2509 is located. Magnet 2511b is located on an interior of the flat outer surface of net edge core 2401. Thus, magnets 2511a and 2511 b attract to each other and not only act to locate the side of composite core 2401 to the tooled location of the structural components 2501, 2503, 2505, and 2507, but also generate the bondline pressure to adhesive 2509 throughout the curing cycle. Once the adhesive 2509 is cured, the magnets 2511a and 2511b can be removed.
Manufacturing net edge core, as well as using magnets to generate bond line pressure when bonding net edge core to components within an assembly, have significant advantages over conventional methods and structures. For example, utilizing net edge core allows the core to be bonded on all surfaces and to be controlled more precisely at the location of the edges and contours. Further, utilizing net edge core increases the bonding surface area and provides more consistent pressure at the bonding locations. Further, utilizing net edge core eliminates loose edges and flanges that are difficult to machine and set up for machining. Further, utilizing net edge core eliminates a need to machine exposed flanges and reduces waste during fabrication. Further, manufacturing net edge core allows multiple net edge cores to be bonded together to form a larger net edge core by greatly simplifying the splicing of two or more net edge cores together.
Further, utilizing magnets to generate bondline pressure when bonding net edge core to substructure also has significant advantages. For example, magnets can be inserted deep into the net edge core, whereas mechanical devices have geometric limitations. Further, magnets can provide uniform clamping pressure at the bondline along the entire length of the magnet; whereas mechanical devices, such as spring loaded clips can provide unequal pressure. Further, magnets are low profile and can be located so as to not protrude out of the surface network, thus allowing the adhesive to be co-cured with other components of a core stiffened composite structure.
The particular embodiments disclosed above are illustrative only, as the apparatus may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Modifications, additions, or omissions may be made to the apparatuses described herein without departing from the scope of the invention. The components of the apparatus may be integrated or separated. Moreover, the operations of the apparatus may be performed by more, fewer, or other components.
Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the application. Accordingly, the protection sought herein is as set forth in the claims below.
To aid the Patent Office, and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims to invoke paragraph 6 of 35 U.S.C. §112 as it exists on the date of filing hereof unless the words “means for” or “step for” are explicitly used in the particular claim.
Burns, Daniel, Oldroyd, Paul K., Hethcock, James D., Freeman, Jonathan A., Pierce, Robert G.
Patent | Priority | Assignee | Title |
10195836, | Jan 18 2017 | The Boeing Company | Splices comprising honeycomb cores supported by tie clips and methods of forming thereof |
10532549, | Jan 18 2017 | The Boeing Company | Splices comprising honeycomb cores supported by tie clips and methods of forming thereof |
11167836, | Jun 21 2018 | Sierra Nevada Corporation | Devices and methods to attach composite core to a surrounding structure |
Patent | Priority | Assignee | Title |
3366530, | |||
4907920, | Jan 18 1989 | The Boeing Company; Boeing Company, the | Milling cutter for honeycomb core material |
5108810, | Apr 16 1986 | Courtaulds, PLC | Composite element |
5139596, | May 31 1990 | Hexcel Corporation | Continuous process for the preparation of thermoplastic honeycomb |
5549773, | Feb 05 1990 | Northrop Grumman Corporation | Woven preform/magnetic press process for thermoplastic honeycomb cores |
6928715, | Dec 06 2001 | Kazak Composites, Incorporated | Method for producing lattice fin for missiles or other fluid-born bodies |
6986827, | Aug 23 2000 | Honda Patents & Technologies North America, LLC | Method for bonding non-magnetic members |
7063763, | Jan 21 2000 | Tubular members integrated to form a structure | |
20060251847, | |||
20100071192, | |||
20100124659, | |||
20120021165, | |||
20120321835, | |||
20130224410, | |||
WO2011097433, | |||
WO2012072149, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 18 2013 | OLDROYD, PAUL K | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031890 | /0041 | |
Dec 18 2013 | HETHCOCK, JAMES D | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031890 | /0041 | |
Dec 19 2013 | FREEMAN, JONATHAN A | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031890 | /0041 | |
Dec 19 2013 | PIERCE, ROBERT G | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031890 | /0041 | |
Dec 19 2013 | BURNS, DANIEL | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031890 | /0041 | |
Dec 20 2013 | Bell Helicopter Textron Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 15 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 13 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 13 2018 | 4 years fee payment window open |
Apr 13 2019 | 6 months grace period start (w surcharge) |
Oct 13 2019 | patent expiry (for year 4) |
Oct 13 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 13 2022 | 8 years fee payment window open |
Apr 13 2023 | 6 months grace period start (w surcharge) |
Oct 13 2023 | patent expiry (for year 8) |
Oct 13 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 13 2026 | 12 years fee payment window open |
Apr 13 2027 | 6 months grace period start (w surcharge) |
Oct 13 2027 | patent expiry (for year 12) |
Oct 13 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |