A method and apparatus may be used for supporting multiple hybrid automatic repeat request (H-ARQ) processes per transmission time interval (TTI). A transmitter and a receiver may include a plurality of H-ARQ processes. Each H-ARQ process may transmit and receive one TB per TTI. The transmitter may generate a plurality of tbs and assign each TB to a H-ARQ process. The transmitter may send control information for each TB, which may include H-ARQ information associated tbs with the tbs. The transmitter may send the tbs using the associated H-ARQ processes simultaneously per TTI. After receiving the tbs, the receiver may send feedback for each of the H-ARQ processes and associated tbs indicating successful or unsuccessful receipt of each of the tbs to the transmitter. The feedback for multiple tbs may be combined for the simultaneously transmitted H-ARQ processes, (i.e., tbs).

Patent
   9166760
Priority
Feb 03 2006
Filed
Aug 25 2014
Issued
Oct 20 2015
Expiry
Feb 01 2027

TERM.DISCL.
Assg.orig
Entity
unknown
0
52
EXPIRED
18. A base station comprising:
a transmitter configured to transmit a long term evolution (LTE) physical layer subframe over an orthogonal frequency division multiplexing (ofdm) signal that includes a plurality of ofdm symbols, each ofdm symbol comprising a plurality of frequency sub-carriers, wherein the LTE physical layer subframe includes a data part and an associated control part, and reference signals interspersed on sub-carriers among the control part and the data part;
wherein the control part includes at least a first ofdm symbol of the plurality of ofdm symbols and carries control information for each transport block (TB) of a plurality of tbs;
wherein the control information includes for each TB a modulation and coding scheme (MCS) and HARQ information; wherein the HARQ information for each TB includes a redundancy version;
wherein the data part includes other ofdm symbols of the plurality of ofdm symbols and carries the plurality of tbs and a cyclic redundancy check (CRC) for each TB;
wherein each TB of the plurality of tbs is formatted according to the control information.
51. A method performed in a network node, the method comprising:
transmitting a long term evolution (LTE) physical layer subframe over an orthogonal frequency division multiplexing (ofdm) signal that includes a plurality of ofdm symbols, each ofdm symbol comprising a plurality of frequency sub-carriers, wherein the LTE physical layer subframe includes a data part and an associated control part, and reference signals interspersed on sub-carriers among the control part and the data part;
wherein the control part includes at least a first ofdm symbol of the plurality of ofdm symbols and carries control information for each transport block (TB) of a plurality of tbs;
wherein the control information includes for each TB a modulation and coding scheme (MCS) and HARQ information; wherein the HARQ information for each TB includes a redundancy version;
wherein the data part includes other ofdm symbols of the plurality of ofdm symbols and carries the plurality of tbs and a cyclic redundancy check (CRC) for each TB;
wherein each TB of the plurality of tbs is formatted according to the control information.
34. A method performed by a wireless transmit/receive unit (WTRU), the method comprising:
receiving a long term evolution (LTE) physical layer subframe over an orthogonal frequency division multiplexing (ofdm) signal that includes a plurality of ofdm symbols, each ofdm symbol comprising a plurality of frequency sub-carriers, wherein the LTE physical layer subframe includes a data part and an associated control part, and reference signals interspersed on sub-carriers among the control part and the data part;
wherein the control part includes at least a first ofdm symbol of the plurality of ofdm symbols and carries control information for each transport block (TB) of a plurality of tbs;
wherein the control information includes for each TB a modulation and coding scheme (MCS) and HARQ information; wherein the HARQ information for each TB includes a redundancy version;
wherein the data part includes other ofdm symbols of the plurality of ofdm symbols and carries the plurality of tbs and a cyclic redundancy check (CRC) for each TB; and
utilizing the control information to process the plurality of tbs.
1. A wireless transmit/receive unit (WTRU) comprising:
circuitry configured to receive a long term evolution (LTE) physical layer subframe over an orthogonal frequency division multiplexing (ofdm) signal that includes a plurality of ofdm symbols, each ofdm symbol comprising a plurality of frequency sub-carriers, wherein the LTE physical layer subframe includes a data part and an associated control part, and reference signals interspersed on sub-carriers among the control part and the data part;
wherein the control part includes at least a first ofdm symbol of the plurality of ofdm symbols and carries control information for each transport block (TB) of a plurality of tbs;
wherein the control information includes for each TB a modulation and coding scheme (MCS) and HARQ information; wherein the HARQ information for each TB includes a redundancy version;
wherein the data part includes other ofdm symbols of the plurality of ofdm symbols and carries the plurality of tbs and a cyclic redundancy check (CRC) for each TB; and
circuitry configured to utilize the control information to process the plurality of tbs.
2. The WTRU of claim 1, wherein the LTE physical layer subframe is received in one transmission time interval (TTI).
3. The WTRU of claim 2, wherein the TTI is a variable length TTI.
4. The WTRU of claim 1 wherein the data part does not include the first ofdm symbol.
5. The WTRU of claim 1 wherein the control part includes control information associated with at least one other WTRU, and the data part includes data that is associated with the control information associated with the at least one other WTRU.
6. The WTRU of claim 1 wherein the control information is associated with at least one other WTRU.
7. The WTRU of claim 1, wherein the plurality of ofdm symbols is 7 ofdm symbols.
8. The WTRU of claim 1, wherein the LTE physical layer subframe is 0.5 ms long.
9. The WTRU of claim 1, wherein the control part includes an allocation for each TB of the plurality of tbs to a different spatial stream.
10. The WTRU of claim 1 further comprising: circuitry configured to transmit an uplink message including HARQ feedback information for each of the plurality of tbs.
11. The WTRU of claim 10, wherein the uplink message further includes channel quality indicator information.
12. The WTRU of claim 10 further comprising circuitry configured to, based on the amount of feedback, select a coding scheme and determine whether to include a CRC with the uplink message.
13. The WTRU of claim 1 further comprising: circuitry configured to produce an acknowledgement feedback for each received TB and on a condition that the WTRU is assigned at least one resource block to transmit control and data in a subframe, to transmit the acknowledgement feedback for both transport blocks in the assigned at least one resource block, wherein on a condition that the WTRU is not assigned at least one resource block to transmit control and data in the subframe, to transmit the acknowledgement feedback for both tbs in a resource block for use in transmitting control information for a plurality of WTRUs.
14. The WTRU of claim 13, wherein the acknowledgement feedback for each received TB is concatenated.
15. The WTRU of claim 13, wherein the acknowledgement feedback is transmitted with channel quality indicator feedback.
16. The WTRU of claim 1, wherein the first ofdm symbol is the first ofdm symbol in time in the LTE physical layer subframe.
17. The WTRU of claim 1, wherein the control information for each TB is concatenated.
19. The base station of claim 18, wherein the LTE physical layer subframe is transmitted in one transmission time interval (TTI).
20. The base station of claim 19, wherein the TTI is a variable length TTI.
21. The base station of claim 18, wherein the data part does not include the first ofdm symbol.
22. The base station of claim 18, wherein the control part includes control information for each of at least two wireless transmit receive units (WTRUs), and the data part includes data that is associated with the control information for each of the at least two WTRUs.
23. The base station of claim 18, wherein the control part includes control information for at least two WTRUs.
24. The base station of claim 18, wherein the plurality of ofdm symbols is 7 ofdm symbols.
25. The base station of claim 18, wherein the LTE physical layer subframe is 0.5 ms long.
26. The base station of claim 18, wherein the control part includes an allocation for each TB of the plurality of tbs to a different spatial stream.
27. The base station of claim 18, further comprising: a receiver configured to receive an uplink message including HARQ feedback information for each of the plurality of tbs.
28. The base station of claim 27, wherein the uplink message further includes channel quality indicator information.
29. The base station of claim 18 further comprising: a receiver configured to receive acknowledgement feedback for both transport blocks in an assigned at least one resource block, on a condition that a wireless transmit receive unit (WTRU) is assigned at least one resource block to transmit control and data in a subframe, and to receive the acknowledgement feedback for both tbs in a resource block for use in receiving control information for a plurality of WTRUs, on a condition that the WTRU is not assigned at least one resource block to transmit control and data in the LTE physical layer subframe.
30. The base station of claim 29, wherein the acknowledgement feedback for each TB is concatenated.
31. The base station of claim 29, wherein the acknowledgement feedback is received with channel quality indicator feedback.
32. The base station of claim 18, wherein the first ofdm symbol is the first ofdm symbol in time in the LTE physical layer subframe.
33. The base station of claim 18, wherein the control information for each TB is concatenated.
35. The method of claim 34, wherein the LTE physical layer subframe is received in one transmission time interval (TTI).
36. The method of claim 34 wherein the data part does not include the first ofdm symbol.
37. The method of claim 34, wherein the control part includes control information associated with at least one other WTRU, and the data part includes data that is associated with the control information associated with the at least one other WTRU.
38. The method of claim 34, wherein the control information is associated with at least one other WTRU.
39. The method of claim 35, wherein the TTI is a variable length TTI.
40. The method of claim 34, wherein the plurality of ofdm symbols is 7 ofdm symbols.
41. The method of claim 34, wherein the LTE physical layer subframe is 0.5 ms long.
42. The method of claim 34, wherein the control part includes an allocation for each TB of the plurality of tbs to a different spatial stream.
43. The method of claim 34 further comprising: transmitting an uplink message including HARQ feedback information for each of the plurality of tbs.
44. The method of claim 43, wherein the uplink message further includes channel quality indicator information.
45. The method of claim 43 further comprising, based on the amount of feedback, select a coding scheme and determine whether to include a CRC with the uplink message.
46. The method of claim 34, further comprising: producing an acknowledgement feedback for each received TB and on a condition that the WTRU is assigned at least one resource block to transmit control and data in a subframe, transmitting the acknowledgement feedback for both transport blocks in the assigned at least one resource block, wherein on a condition that the WTRU is not assigned at least one resource block to transmit control and data in the subframe, transmitting the acknowledgement feedback for both tbs in a resource block for use in transmitting control information for a plurality of WTRUs.
47. The method of claim 46, wherein the acknowledgement feedback for each received TB is concatenated.
48. The method of claim 46, wherein the acknowledgement feedback is transmitted with channel quality indicator feedback.
49. The method of claim 34, wherein the first ofdm symbol is the first ofdm symbol in time in the LTE physical layer subframe.
50. The method of claim 34, wherein the control information for each TB is concatenated.
52. The method of claim 51, wherein the LTE physical layer subframe is received in one transmission time interval (TTI).
53. The method of claim 52, wherein the TTI is a variable length TTI.
54. The method of claim 51, wherein the data part does not include the first ofdm symbol.
55. The method of claim 51, wherein the control part includes control information for each of at least two wireless transmit receive units (WTRUs), and the data part includes data that is associated with the control information for each of the at least two WTRUs.
56. The method of claim 51, wherein the control part includes control information for at least two WTRUs.
57. The method of claim 51, wherein the plurality of ofdm symbols is 7 ofdm symbols.
58. The method of claim 51, wherein the LTE physical layer subframe is 0.5 ms long.
59. The method of claim 51, wherein the control part includes an allocation for each TB of the plurality of tbs to a different spatial stream.
60. The method of claim 51, further comprising: receiving an uplink message including HARQ feedback information for each of the plurality of tbs.
61. The method of claim 58, wherein the uplink message further includes channel quality indicator information.
62. The method of claim 51, further comprising: on a condition that a wireless transmit receive unit (WTRU) is assigned at least one resource block to transmit control and data in a subframe, receiving an acknowledgement feedback for each transport block in the assigned at least one resource block, and on a condition that the WTRU is not assigned at least one resource block to transmit control and data in the LTE physical layer subframe, receiving an acknowledgement feedback for each of the tbs in a resource block for use in receiving control information for a plurality of WTRUs.
63. The method of claim 62, wherein the acknowledgement feedback for each TB is concatenated.
64. The method of claim 62, wherein the acknowledgement feedback is received with channel quality indicator feedback.
65. The method of claim 51, wherein the first ofdm symbol is the first ofdm symbol in time in the LTE physical layer subframe.
66. The method of claim 51, wherein the control information for each TB is concatenated.

This application is a continuation of U.S. patent application Ser. No. 14/082,986, filed Nov. 18, 2013, which issued on Aug. 26, 2014 as U.S. Pat. No. 8,819,514, which is a continuation of U.S. patent application Ser. No. 13/735,515, filed Jan. 7, 2013, which issued on Nov. 19, 2013 as U.S. Pat. No. 8,589,753, which is a continuation of U.S. patent application Ser. No. 13/309,713, filed Dec. 2, 2011, which issued on Jan. 8, 2013 as U.S. Pat. No. 8,352,824, which is a continuation of U.S. patent application Ser. No. 11/670,202, filed Feb. 1, 2007, which issued on Dec. 6, 2011 as U.S. Pat. No. 8,074,137, which claims the benefit of U.S. Provisional Application Nos. 60/839,462 filed Aug. 23, 2006 and 60/765,076 filed Feb. 3, 2006, the contents of which are hereby incorporated by reference.

The present invention is related to wireless communication systems. More particularly, the present invention is related to a method and system for supporting multiple hybrid automatic repeat request (H-ARQ) processes per transmission time interval (TTI).

The third generation partnership project (3GPP) is currently considering a long term evolution (LTE) of the 3GPP to provide a new radio access network for a high-data-rate, low-latency, packet-optimized, improved system with high capacity and better coverage. The LTE is an evolution of the radio interface, (i.e., evolved universal terrestrial radio access (UTRA)), and the radio network architecture, (i.e., evolved universal terrestrial radio access network (UTRAN)). Currently, orthogonal frequency division multiple access (OFDMA) and single carrier frequency division multiple access (SC-FDMA) are proposed as air interface technologies to be used in the downlink and uplink transmissions respectively.

Meanwhile, 3GPP high speed packet access evolution (HSPA+) is also being proposed to improve the 3GPP radio access network capacity and coverage. In HSPA+, an evolution of the radio interface and the radio network architecture is being considered. In HSPA+, the air interface technology will still be based on code division multiple access (CDMA), but with a more efficient physical layer architecture including independent channelization codes, (distinguished with respect to channel quality), and multiple-input multiple-output (MIMO).

H-ARQ has been adopted by several wireless communication standards including 3GPP and 3GPP2. Besides the radio link control (RLC) layer's automatic repeat request (ARQ) function, H-ARQ provides improved throughput and performance with respect to link adaptation errors and rate control. Asynchronous H-ARQ is used in high speed downlink packet access (HSDPA) and synchronous H-ARQ is used in high speed uplink packet access (HSUPA).

The conventional H-ARQ scheme is a single H-ARQ scheme in which a transmitter transmits only one transport block (TB) per TTI via one H-ARQ process. With the introduction of physical resource dependent link adaptation mechanism in LTE or HSPA+, the conventional H-ARQ signaling mechanism, (i.e., signaling mechanism for single H-ARQ), is not sufficient for transmitting multiple TBs per TTI via multiple H-ARQ processes.

Therefore, it would be desirable to provide a method and system for supporting multiple H-ARQ processes for transmitting multiple TBs simultaneously per TTI.

A method and apparatus may be used for supporting multiple H-ARQ processes per TTI. A transmitter and a receiver may include a plurality of H-ARQ processes. Each H-ARQ process may transmit and receive one TB per TTI. The transmitter may generate a plurality of TBs and assign each TB to a H-ARQ process. The transmitter may send control information for each TB, which may include H-ARQ information associated TBs with the TBs. The transmitter may send the TBs using the associated H-ARQ processes simultaneously per TTI. After receiving the TBs, the receiver may send feedback for each of the H-ARQ processes and associated TBs indicating successful or unsuccessful receipt of each of the TBs to the transmitter. The feedback for multiple TBs may be combined for the simultaneously transmitted H-ARQ processes, (i.e., TBs). The control information and the feedback may be sent via a layer 1 control part or layer 2 or layer 3 signaling. When MIMO is implemented, one H-ARQ process may be associated with one MIMO stream, or codeword. The feedback may include a channel quality indicator (CQI) per MIMO stream or codeword.

A more detailed understanding of the invention may be had from the following description, given by way of example and to be understood in conjunction with the accompanying drawings wherein:

FIG. 1 is a block diagram of a system supporting multiple H-ARQ processes per TTI in accordance with the present invention;

FIG. 2 shows transmission of associated control information for supporting simultaneous multiple H-ARQ processes and transmission of multiple TBs per TTI in accordance with the present invention;

FIG. 3 shows an LTE downlink physical layer frame structure of data and associated control information; and

FIG. 4 shows an LTE uplink physical layer frame structure for data and associated control information.

The present invention is applicable to any wireless communication system including, but not limited to, LTE and HSPA+ of the 3GPP standard.

FIG. 1 is a block diagram of a system 100 in accordance with the present invention. The system 100 includes a transmitter 110 and a receiver 120. The transmitter 110 and the receiver 120 may be a wireless transmit/receive unit (WTRU) and a Node-B, or vice versa. The terminology “WTRU” includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment. The terminology “base station” includes but is not limited to a Node-B, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment.

The transmitter 110 includes a plurality of TB processors 112, a plurality of H-ARQ processes 114 and a control information processor 116. Each TB processor 112 receives at least one data flow, (for example, at least one flow of medium access control (MAC) or RLC packet data units (PDUs)), and generates at least one TB. Multiple MAC or RLC PDUs may be multiplexed into one TB. In accordance with the present invention, multiple TBs may be transmitted simultaneously per TTI using multiple H-ARQ processes. The TB processor 112 selects a proper transport format combination (TFC), (i.e., TB size, TB set size, TTI, modulation and coding scheme (MCS), subcarriers, antenna beams, precoding matrix indication (PMI), cyclic redundancy check (CRC) size, redundancy version (RV), data block to radio resource mapping, or the like), for each of the TBs based on the link condition between the transmitter 110 and the receiver 120. Preferably, a separate CRC is attached to each TB. Multiple TBs are then transmitted simultaneously via multiple H-ARQ processes 114 per TTI.

The transmitter 110 assigns each of the TBs to a particular H-ARQ process and transmits multiple TBs via the assigned H-ARQ processes simultaneously per TTI. For example, when several independent spatial data streams, (i.e., several TBs), are transmitted simultaneously using MIMO, one H-ARQ process may be assigned to each spatial data stream, (i.e., one TB), and the multiple spatial data streams may be transmitted simultaneously via multiple H-ARQ processes.

The control information processor 116 is configured to send control information regarding the TBs and the H-ARQ processes associated with the TBs to the receiver 120 for each TTI. The control information includes, but is not limited to, a transport format and resource indicators (TFRIs) and H-ARQ-related information. The TFRI includes, but is not limited to, information about the dynamic part of the TFC, (including TB set size and modulation and coding scheme) and physical channel information, (i.e., channelization codes, subcarriers and antenna beams onto which the TBs are mapped in the corresponding TTI). The H-ARQ information includes, but is not limited to, an H-ARQ process ID, an H-ARQ function ID and a redundancy version. The control information may include rate matching parameters for each TB. Rate matching parameters for each TB may be derived from the TFRI.

The receiver 120 includes a plurality of TB processors 122, a plurality of H-ARQ processes 124 and a control information processor 126. The control information processor 126 processes control information received from the transmitter 110. Each H-ARQ process 124 processes one TB per TTI so that multiple TBs may be processed simultaneously per TTI based on the control information received from the transmitter 110. The H-ARQ process 124, (or the control information processor 126), sends feedback to the transmitter 110 indicating successful or unsuccessful receipt of each of the TBs, so that the transmitter 110 may retransmit failed TBs based on the feedback. The TB processors 122 process successfully received TBs based on the control information.

The feedback for multiple TBs may be combined for the simultaneous transmission of H-ARQ processes, (i.e., TBs). The control information and the feedback may be sent via a layer 1 control part or layer 2 or layer 3 signaling. When MIMO is implemented, the feedback may include a CQI per MIMO stream, or codeword.

FIG. 2 shows transmission of associated control information for supporting simultaneous multiple H-ARQ processes and transmission of multiple TBs per TTI in accordance with the present invention. The transmitter 110 sends a set of control information 202a-202n for the set of TBs transmitted in a common TTI to the receiver 120. The control information 202a-202n for the simultaneous H-ARQ transmissions may be concatenated into a single packet.

The control information 202a-202n includes information associating each control information 202a-202n with a corresponding TB. In a conventional wireless communication system, (i.e., HSDPA and HSUPA), control information for only one TB is transmitted through a separate control channel per TTI, (i.e., a high speed shared control channel (HS-SCCH) in HSDPA and an enhanced dedicated physical control channel (E-DPCCH) in HSUPA), and since only one TB is transmitted per TTI, there is an implicit association between the transmitted TB and the related control information. However, in accordance with the present invention, since multiple TBs are transmitted simultaneously in one TTI through multiple H-ARQ processes, the control information 202a-202n should include association information relating each control information 202a-202n to its associated TB. With the association information, the receiver 220 unambiguously knows which control information 202a-202n is for which TB so that the receiver 220 can use the right control information 202a-202n for processing of each TB.

The control information may be transmitted via a layer 1 control part of one TTI or layer 2 or layer 3 signaling. FIG. 3 shows an LTE downlink physical layer subframe 300 for data and associated control information. The subframe 300 includes a data part, (denoted as “D”), and a control part, (denoted as “C”). The control information may be included in the control part of the subframe 300. The downlink layer 1 frame structure for HSPA+ will be based on CDMA technology which may include independent channelization-codes (distinguished with regard to channel quality) and MIMO. With variable TTI, the control part may contain control information for data block mapped onto several subframes. When MIMO is used, the control information may also contain the allocation of spatial streams or codewords of different data blocks mapped to different H-ARQ functions per TTI.

Upon reception of the TBs, the receiver 120 sends separate feedback, (i.e., a positive acknowledgement (ACK) or a negative acknowledgement (NACK)), for each of the TBs. FIG. 2 also shows transmission of feedback 204a-204n for supporting multiple H-ARQ processes per TTI in accordance with the present invention. Since multiple feedback transmission 204a-204n is done for different H-ARQ processes from the receiver 120 to the transmitter 110, the transmitter 110 will know which feedback is for which H-ARQ process, (i.e., TB). For this association, an H-ARQ process ID, (or any other association information), may be included in each feedback 204a-204n to indicate the corresponding H-ARQ process.

Alternatively, if a pre-defined pattern or sequence of TBs associated with H-ARQ processes can be maintained and guaranteed by the transmitter 110 and the receiver 120, the feedback 204a-204n may be sent according to the pre-defined pattern or sequence so that the transmitter 110 knows which feedback corresponds to which H-ARQ process. For example, the feedback may be arranged in either ascending or descending order with respect to H-ARQ IDs associated with the feedback. This may be determined during the call setup. Alternatively, if a TB is successfully received by the receiver 120, the position for that TB's feedback may be filled with a dummy packet with a known pattern so that the transmitter 110 may recognize the successful receipt of the TB when the transmitter 110 decodes the feedback packet.

The feedback 204a-204n may be concatenated into a single packet for multiple H-ARQ processes, (i.e., multiple TBs). The number of feedback, (i.e., the number of ACKs and NACKs), concatenated into a single feedback packet is dependent on the number of H-ARQ processes used for transmission of the TBs. When the number of feedback increases, a more robust MCS, subcarriers, antenna beams, codewords, or higher transmission power may be used for transmission of the concatenated feedback packet. Due to the importance of this feedback packet, a CRC may be attached to the concatenated feedback packet to improve the error detection at the transmitter 110.

The feedback may be included in the control part of the physical layer frame. FIG. 4 shows an LTE uplink physical layer subframe 400 structure. The subframe 400 includes a pilot part 402 and a control and data part 404. The feedback may be included in the control and data part 404 of the subframe 400.

Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the preferred embodiments or in various combinations with or without other features and elements of the present invention. The methods or flow charts provided in the present invention may be implemented in a computer program, software, or firmware tangibly embodied in a computer-readable storage medium for execution by a general purpose computer or a processor. Examples of computer-readable storage mediums include a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).

Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.

A processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) module.

Wang, Jin, Chandra, Arty, Terry, Stephen E., Olesen, Robert L.

Patent Priority Assignee Title
Patent Priority Assignee Title
6021124, Aug 19 1997 BlackBerry Limited Multi-channel automatic retransmission query (ARQ) method
6421803, Jun 25 1999 Telefonaktiebolaget L M Ericsson (publ) System and method for implementing hybrid automatic repeat request using parity check combining
6658005, May 17 2000 Panasonic Intellectual Property Corporation of America Hybrid ARQ method for packet data transmission
6977888, Sep 14 2000 TELEFONAKIEBOLAGET LM ERICSSON PUBL Hybrid ARQ for packet data transmission
7075917, Oct 11 2000 UNILOC 2017 LLC Wireless network with a data exchange according to the ARQ method
7287206, Feb 13 2002 Intel Corporation Transport block set transmission using hybrid automatic repeat request
7379746, Nov 16 2001 LG Electronics Inc Method for transmitting power control information for HS-SCCH in mobile communication system
7392460, May 15 2003 AEGIS 11 S A Mobile communication system and signal processing method thereof
7447968, Apr 24 2002 Samsung Electronics, Co., Ltd. Apparatus and method for supporting automatic repeat request in a high-speed wireless packet data communication system
7508804, Apr 05 2002 WSOU Investments, LLC Shared signaling for multiple user equipment
7590181, Jul 31 2003 Fujitsu Limited Adaptive modulation and coding
7640486, Feb 15 2002 Siemens Aktiengesellschaft Method for rate matching
7924785, Mar 12 2004 InterDigital Technology Corporation Method and system for switching a radio access technology between wireless communication systems with a multi-mode wireless transmit/receive unit
8270345, Nov 28 2005 TELECOM ITALIA S P A Method and system for transmitting content to a plurality of users of a mobile communication network
8819514, Feb 03 2006 InterDigital Technology Corporation Method and system for supporting multiple hybrid automatic repeat request processes per transmission time interval
20020159431,
20030074476,
20030086391,
20030147371,
20030152062,
20030153276,
20040037224,
20040152458,
20040185785,
20040190523,
20040199846,
20050063345,
20050063347,
20050105494,
20050128993,
20050152310,
20050219999,
20050276266,
20060013161,
20060034240,
20060092972,
20060128309,
20060209813,
20070255993,
20080052591,
CN1464677,
CN1731771,
EP1389848,
JP9247132,
WO3036844,
WO3069818,
WO3094554,
WO2004015906,
WO2004102863,
WO2005109729,
WO2005112327,
WO2005112331,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 25 2014InterDigital Technology Corporation(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Oct 20 20184 years fee payment window open
Apr 20 20196 months grace period start (w surcharge)
Oct 20 2019patent expiry (for year 4)
Oct 20 20212 years to revive unintentionally abandoned end. (for year 4)
Oct 20 20228 years fee payment window open
Apr 20 20236 months grace period start (w surcharge)
Oct 20 2023patent expiry (for year 8)
Oct 20 20252 years to revive unintentionally abandoned end. (for year 8)
Oct 20 202612 years fee payment window open
Apr 20 20276 months grace period start (w surcharge)
Oct 20 2027patent expiry (for year 12)
Oct 20 20292 years to revive unintentionally abandoned end. (for year 12)