An illumination optical apparatus illuminates a pattern on a mask with illumination light. The illumination optical apparatus includes an optical integrator arranged in an optical path of the illumination light, and a polarization member made of optical material with optical rotatory power, which is arranged in the optical path on an incidence side of the optical integrator, and which changes a polarization state of the illumination light. The illumination light from the polarization member is irradiated onto the pattern through a pupil plane of the illumination optical apparatus.

Patent
   9170357
Priority
Nov 20 2003
Filed
May 08 2013
Issued
Oct 27 2015
Expiry
Nov 02 2024

TERM.DISCL.
Assg.orig
Entity
unknown
0
1154
EXPIRED
23. An exposure apparatus which exposes a substrate with light from a pattern on a mask, the exposure apparatus comprising:
a stage which holds the substrate;
the illumination optical apparatus as defined in Claim 1 which illuminates the pattern; and
a projection optical system which projects an image of the pattern, illuminated by the illumination optical apparatus, onto the substrate.
1. An illumination optical apparatus which illuminates a pattern on a mask with illumination light, the illumination optical apparatus comprising:
an optical integrator arranged in an optical path of the illumination light; and
a polarization member made of optical material with optical rotatory power, which is arranged in the optical path on an incidence side of the optical integrator, and which rotates a polarization direction of the illumination light in a state of substantially a linear polarization,
wherein a pupil plane of the illumination optical apparatus is substantially located at a rear focal plane of the optical integrator,
wherein the illumination light from the polarization member is irradiated onto the pattern through the pupil plane of the illumination optical apparatus, and
wherein a direction of an optic axis of the optical material is arranged substantially coincident with a direction of an optical axis of the illumination optical apparatus at a location where the optical material is arranged so that the polarization member rotates the polarization direction of the illumination light on the basis of the optical rotatory power.
2. The illumination optical apparatus according to claim 1, wherein the illumination light from the pupil plane is irradiated onto the pattern in a polarization state in which a principal component is S-polarized light.
3. The illumination optical apparatus according to claim 1, wherein the polarization member changes a polarization state of the illumination light, distributed in a region on the pupil plane away from the optical axis, so that a polarization direction of the illumination light in the region is substantially coincident with a circumferential direction about the optical axis.
4. The illumination optical apparatus according to claim 3, wherein a first thickness of the polarization member in an optical path of a first light of the illumination light is different from a second thickness of the polarization member in an optical path of a second light of the illumination light, and
the first light passes through a first position in the region on the pupil plane, and the second light passes through a second position in the region different from the first position on the pupil plane.
5. The illumination optical apparatus according to claim 4, further comprising a polarization changing member which is arranged in the optical path on an incidence side of the polarization member, and which changes a polarization state of the illumination light from a first polarization state, in which a principal component is a substantially single polarization light, into a second polarization state different from the first polarization state.
6. The illumination optical apparatus according to claim 5, wherein a principal component of the second polarization state is linearly polarized light polarized in a substantially single direction.
7. The illumination optical apparatus according to claim 5, wherein the substantially single polarization light is linearly polarized light or elliptically polarized light.
8. The illumination optical apparatus according to claim 5, wherein the polarization changing member comprises at least one of a half wavelength plate and a quarter wavelength plate.
9. The illumination optical apparatus according to claim 4, wherein the region on the pupil plane is an annular region about the optical axis.
10. The illumination optical apparatus according to claim 5, wherein the region on the pupil plane comprises a plurality of substantially discrete regions within an annular region about the optical axis.
11. The illumination optical apparatus according to claim 4, wherein the region on the pupil plane comprises a plurality of substantially discrete regions which are aligned along a circumference about the optical axis.
12. The illumination optical apparatus according to claim 11, wherein the plurality of the regions on the pupil plane comprises a pair of regions which is arranged symmetrically with respect to the optical axis.
13. The illumination optical apparatus according to claim 4, wherein the optical integrator comprises a fly's eye lens, and a surface of an exit side of the fly's eye lens is arranged at a position substantially equivalent to the pupil plane.
14. The illumination optical apparatus according to claim 3, further comprising a polarization changing member which is arranged in the optical path on an incidence side of the polarization member, and which changes a polarization state of the illumination light from a first polarization state, in which a principal component is a substantially single polarization light, into a second polarization state different from the first polarization state.
15. The illumination optical apparatus according to claim 14, wherein a principal component of the second polarization state is linearly polarized light polarized in a substantially single direction.
16. The illumination optical apparatus according to claim 14, wherein the substantially single polarization light is linearly polarized light or elliptically polarized light.
17. The illumination optical apparatus according to claim 14, wherein the polarization changing member comprises at least one of a half wavelength plate and a quarter wavelength plate.
18. The illumination optical apparatus according to claim 3, wherein the region on the pupil plane is an annular region about the optical axis.
19. The illumination optical apparatus according to claim 3, wherein the region on the pupil plane comprises a plurality of substantially discrete regions within an annular region about the optical axis.
20. The illumination optical apparatus according to claim 3, wherein the region on the pupil plane comprises a plurality of substantially discrete regions which are aligned along a circumference about the optical axis.
21. The illumination optical apparatus according to claim 20, wherein the plurality of substantially discrete regions on the pupil plane comprises a pair of regions which is arranged symmetrically with respect to the optical axis.
22. The illumination optical apparatus according to claim 3, wherein the optical integrator comprises a fly's eye lens, and a surface of an exit side of the fly's eye lens is arranged at a position substantially equivalent to the pupil plane.
24. The exposure apparatus according to claim 23, wherein the image of the pattern is projected onto the substrate through a liquid disposed in an optical path between the projection optical system and the substrate.
25. The exposure apparatus according to claim 23, wherein the illumination light from the pupil plane is irradiated onto the pattern in a polarization state in which a principal component is S-polarized light.
26. The exposure apparatus according to claim 23, wherein the polarization member changes a polarization state of the illumination light, distributed in a region on the pupil plane away from the optical axis, so that a polarization direction of the illumination light in the region is substantially coincident with a circumferential direction about the optical axis.
27. The exposure apparatus according to claim 26, wherein a first thickness of the polarization member in an optical path of a first light of the illumination light is different from a second thickness of the polarization member in an optical path of a second light of the illumination light, and
the first light passes through a first position in the region on the pupil plane, and the second light passes through a second position in the region different from the first position on the pupil plane.
28. The exposure apparatus according to claim 27, further comprising a polarization changing member which is arranged in the optical path on an incidence side of the polarization member, and which changes a polarization state of the illumination light from a first polarization state, in which a principal component is a substantially single polarization light, into a second polarization state different from the first polarization state.
29. The exposure apparatus according to claim 28, wherein a principal component of the second polarization state is linearly polarized light polarized in a substantially single direction.
30. The exposure apparatus according to claim 28, wherein the substantially single polarization light is linearly polarized light or elliptically polarized light.
31. The exposure apparatus according to claim 28, wherein the polarization changing member comprises at least one of a half wavelength plate and a quarter wavelength plate.
32. The exposure apparatus according to claim 27, wherein the region on the pupil plane is an annular region about the optical axis.
33. The exposure apparatus according to claim 27, wherein the region on the pupil plane comprises a plurality of substantially discrete regions within an annular region about the optical axis.
34. The exposure apparatus according to claim 27, wherein the region on the pupil plane comprises a plurality of substantially discrete regions which are aligned along a circumference about the optical axis.
35. The exposure apparatus according to claim 34, wherein the plurality of substantially discrete regions on the pupil plane comprises a pair of regions which is arranged symmetrically with respect to the optical axis.
36. The exposure apparatus according to claim 27, wherein the optical integrator comprises a fly's eye lens, and a surface of an exit side of the fly's eye lens is arranged at a position substantially equivalent to the pupil plane.
37. The exposure apparatus according to claim 26, further comprising a polarization changing member which is arranged in the optical path on an incidence side of the polarization member, and which changes a polarization state of the illumination light from a first polarization state, in which a principal component is a substantially single polarization light, into a second polarization state different from the first polarization state.
38. The exposure apparatus according to claim 37, wherein a principal component of the second polarization state is linearly polarized light polarized in a substantially single direction.
39. The exposure apparatus according to claim 37, wherein the substantially single polarization light is linearly polarized light or elliptically polarized light.
40. The exposure apparatus according to claim 37, wherein the polarization changing member comprises at least one of a half wavelength plate and a quarter wavelength plate.
41. The exposure apparatus according to claim 26, wherein the region on the pupil plane is an annular region about the optical axis.
42. The exposure apparatus according to claim 26, wherein the region on the pupil plane comprises a plurality of substantially discrete regions within an annular region about the optical axis.
43. The exposure apparatus according to claim 26, wherein the region on the pupil plane comprises a plurality of substantially discrete regions which are aligned along a circumference about the optical axis.
44. The exposure apparatus according to claim 43, wherein the plurality of substantially discrete regions on the pupil plane comprises a pair of regions which is arranged symmetrically with respect to the optical axis.
45. The exposure apparatus according to claim 26, wherein the optical integrator comprises a fly's eye lens, and a surface of an exit side of the fly's eye lens is arranged at a position substantially equivalent to the pupil plane.
46. A device manufacturing method, comprising:
transferring a pattern to a substrate by using the exposure apparatus as defined in claim 23; and
developing the substrate to which the pattern is transferred.
47. An exposure method for exposing a substrate with light from a pattern on a mask, the exposure method comprising:
holding the substrate by a stage;
illuminating the pattern by using the illumination optical apparatus as defined in claim 1; and
projecting an image of the pattern, illuminated by the illumination optical apparatus, onto the substrate.
48. The exposure method according to claim 47, wherein the image of the pattern is projected onto the substrate through a liquid disposed in an optical path between the projection optical system and the substrate.
49. A device manufacturing method, comprising:
transferring a pattern to a substrate by using the exposure method as defined in claim 47; and
developing the substrate to which the pattern is transferred.

This is a continuation of application Ser. No. 13/137,002 filed on Jul. 14, 2011, which is a continuation of application Ser. No. 12/461,852 filed on Aug. 26, 2009 (abandoned), which is a continuation of application Ser. No. 11/319,057 filed on Dec. 28, 2005 (abandoned), which is a continuation-in-part of Application No. PCT/JP2004/016247 filed on Nov. 2, 2004, which claims the benefit of Japanese Application No. 2003-390674 filed on Nov. 20, 2003. The disclosures of the prior applications are incorporated by reference herein in their entireties.

1. Field of the Invention

The present invention relates to a beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method and, more particularly, to an illumination optical apparatus suitably applicable to exposure apparatus used in production of microdevices such as semiconductor elements, image pickup elements, liquid crystal display elements, and thin-film magnetic heads by lithography.

2. Related Background Art

In the typical exposure apparatus of this type, a beam emitted from a light source travels through a fly's eye lens as an optical integrator to form a secondary light source as a substantial surface illuminant consisting of a number of light sources. Beams from the secondary light source (generally, an illumination pupil distribution formed on or near an illumination pupil of the illumination optical apparatus) are limited through an aperture stop disposed near the rear focal plane of the fly's eye lens and then enter a condenser lens.

The beams condensed by the condenser lens superposedly illuminate a mask on which a predetermined pattern is formed. The light passing through the pattern of the mask is focused on a wafer through a projection optical system. In this manner, the mask pattern is projected for exposure (or transcribed) onto the wafer. The pattern formed on the mask is a highly integrated pattern, and, in order to accurately transcribe this microscopic pattern onto the wafer, it is indispensable to obtain a uniform illuminance distribution on the wafer.

For example, Japanese Patent No. 3246615 owned by the same Applicant of the present application discloses the following technology for realizing the illumination condition suitable for faithful transcription of the microscopic pattern in arbitrary directions: the secondary light source is formed in an annular shape on the rear focal plane of the fly's eye lens and the beams passing the secondary light source of the annular shape are set to be in a linearly polarized state with a direction of polarization along the circumferential direction thereof (hereinafter referred to as a “azimuthal polarization state”).

An object of the present invention is to form an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity. Another object of the present invention is to transcribe a microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput, by forming an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity.

In order to achieve the above objects, a first aspect of the present embodiment is to provide a beam transforming element for forming a predetermined light intensity distribution on a predetermined surface on the basis of an incident beam, comprising:

a first basic element made of an optical material with optical activity, for forming a first region distribution of the predetermined light intensity distribution on the basis of the incident beam; and

a second basic element made of an optical material with optical activity, for forming a second region distribution of the predetermined light intensity distribution on the basis of the incident beam,

wherein the first basic element and the second basic element have their respective thicknesses different from each other along a direction of transmission of light.

A second aspect of the present embodiment is to provide a beam transforming element for, based on an incident beam, forming a predetermined light intensity distribution of a shape different from a sectional shape of the incident beam, on a predetermined surface, comprising:

a diffracting surface or a refracting surface for forming the predetermined light intensity distribution on the predetermined surface,

wherein the predetermined light intensity distribution is a distribution in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and

wherein a beam from the beam transforming element passing through the predetermined annular region has a polarization state in which a principal component is linearly polarized light having a direction of polarization along a circumferential direction (azymuthally direction) of the predetermined annular region.

A third aspect of the present invention is to provide an illumination optical apparatus for illuminating a surface to be illuminated, based on a beam from a light source, comprising:

the beam transforming element of the first aspect or the second aspect for transforming the beam from the light source in order to form an illumination pupil distribution on or near an illumination pupil of the illumination optical apparatus.

A fourth aspect of the present embodiment is to provide an exposure apparatus comprising the illumination optical apparatus of the third aspect for illuminating a pattern,

the exposure apparatus being arranged to project the pattern onto a photosensitive substrate.

A fifth aspect of the present embodiment is to provide an exposure method comprising: an illumination step of illuminating a pattern by use of the illumination optical apparatus of the third aspect; and an exposure step of projecting the pattern onto a photosensitive substrate.

The illumination optical apparatus of the present embodiment, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, by diffraction and optical rotating action of the diffractive optical element as the beam transforming element. Namely, the illumination optical apparatus of the present invention is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.

Since the exposure apparatus and exposure method using the illumination optical apparatus of the present embodiment are arranged to use the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, they are able to transcribe a microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput and, in turn, to produce good devices with high throughput.

The present invention will be more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by way of illustration only and are not to be considered as limiting the embodiment.

Further scope of applicability of the embodiment will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from this detailed description.

FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus with an illumination optical apparatus according to an embodiment of the present invention.

FIG. 1(b) is an illustration schematically showing a configuration of an exposure apparatus with an illumination optical apparatus that includes a liquid LM in the optical path between the projection optical system and the photosensitive substrate according to an embodiment of the present invention.

FIG. 2 is an illustration showing a secondary light source of an annular shape formed in annular illumination.

FIG. 3 is an illustration schematically showing a configuration of a conical axicon system disposed in an optical path between a front lens unit and a rear lens unit of an afocal lens in FIG. 1.

FIG. 4 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape.

FIG. 5 is an illustration to illustrate the action of a zoom lens on the secondary light source of the annular shape.

FIG. 6 is an illustration schematically showing a first cylindrical lens pair and a second cylindrical lens pair disposed in an optical path between the front lens unit and the rear lens unit of the afocal lens in FIG. 1.

FIG. 7 is a first drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape.

FIG. 8 is a second drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape.

FIG. 9 is a third drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape.

FIG. 10 is a perspective view schematically showing an internal configuration of a polarization monitor in FIG. 1.

FIG. 11 is an illustration schematically showing a configuration of a diffractive optical element for azimuthally polarized annular illumination according to an embodiment of the present invention.

FIG. 12 is an illustration schematically showing a secondary light source of an annular shape set in the azimuthal polarization state.

FIG. 13 is an illustration to illustrate the action of a first basic element.

FIG. 14 is an illustration to illustrate the action of a second basic element.

FIG. 15 is an illustration to illustrate the action of a third basic element.

FIG. 16 is an illustration to illustrate the action of a fourth basic element.

FIG. 17 is an illustration to illustrate the optical activity of crystalline quartz.

FIGS. 18A and 18B are illustrations showing octapole secondary light sources in the azimuthal polarization state consisting of eight arc regions spaced from each other along the circumferential direction and a quadrupole secondary light source in the azimuthal polarization state consisting of four arc regions spaced from each other along the circumferential direction.

FIG. 19 is an illustration showing a secondary light source of an annular shape in the azimuthal polarization state consisting of eight arc regions overlapping with each other along the circumferential direction.

FIGS. 20A and 20B are illustrations showing hexapole secondary light sources in the azimuthal polarization state consisting of six arc regions spaced from each other along the circumferential direction and a secondary light source in the azimuthal polarization state having a plurality of regions spaced from each other along the circumferential direction and a region on the optical axis.

FIG. 21 is an illustration showing an example in which an entrance-side surface of a diffractive optical element for azimuthally polarized annular illumination is planar.

FIG. 22 is a flowchart of a procedure of obtaining semiconductor devices as microdevices.

FIG. 23 is a flowchart of a procedure of obtaining a liquid crystal display element as a microdevice.

Embodiments of the present invention will be described based on the accompanying drawings.

FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus with an illumination optical apparatus according to an embodiment of the present invention. In FIG. 1, the Z-axis is defined along a direction of a normal to a wafer W being a photosensitive substrate, the Y-axis along a direction parallel to the plane of FIG. 1 in the plane of the wafer W, and the X-axis along a direction of a normal to the plane of FIG. 1 in the plane of wafer W. The exposure apparatus of the present embodiment is provided with a light source 1 for supplying exposure light (illumination light).

The light source 1 can be, for example, a KrF excimer laser light source for supplying light with the wavelength of 248 nm, an ArF excimer laser light source for supplying light with the wavelength of 193 nm, or the like. A nearly parallel beam emitted along the Z-direction from the light source 1 has a cross section of a rectangular shape elongated along the X-direction, and is incident to a beam expander 2 consisting of a pair of lenses 2a and 2b. The lenses 2a and 2b have a negative refracting power and a positive refracting power, respectively, in the plane of FIG. 1 (or in the YZ plane). Therefore, the beam incident to the beam expander 2 is enlarged in the plane of FIG. 1 and shaped into a beam having a cross section of a predetermined rectangular shape.

The nearly parallel beam passing through the beam expander 2 as a beam shaping optical system is deflected into the Y-direction by a bending mirror 3, and then travels through a quarter wave plate 4a, a half wave plate 4b, a depolarizer (depolarizing element) 4c, and a diffractive optical element 5 for annular illumination to enter an afocal lens 6. Here the quarter wave plate 4a, half wave plate 4b, and depolarizer 4c constitute a polarization state converter 4, as described later. The afocal lens 6 is an afocal system (afocal optic) set so that the front focal position thereof approximately coincides with the position of the diffractive optical element 5 and so that the rear focal position thereof approximately coincides with the position of a predetermined plane 7 indicated by a dashed line in the drawing.

In general, a diffractive optical element is constructed by forming level differences with the pitch of approximately the wavelength of exposure light (illumination light) in a substrate and has the action of diffracting an incident beam at desired angles. Specifically, the diffractive optical element 5 for annular illumination has the following function: when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of an annular shape in its far field (or Fraunhofer diffraction region). Therefore, the nearly parallel beam incident to the diffractive optical element 5 as a beam transforming element forms a light intensity distribution of an annular shape on the pupil plane of the afocal lens 6 and then emerges as a nearly parallel beam from the afocal lens 6.

In an optical path between front lens unit 6a and rear lens unit 6b of the afocal lens 6 there are a conical axicon system 8, a first cylindrical lens pair 9, and a second cylindrical lens pair 10 arranged in order from the light source side on or near the pupil plane of the afocal lens, and the detailed configuration and action thereof will be described later. For easier description, the fundamental configuration and action will be described below, in disregard of the action of the conical axicon system 8, first cylindrical lens pair 9, and second cylindrical lens pair 10.

The beam through the afocal lens 6 travels through a zoom lens 11 for variation of σ-value and then enters a micro fly's eye lens (or fly's eye lens) 12 as an optical integrator. The micro fly's eye lens 12 is an optical element consisting of a number of micro lenses with a positive refracting power arranged lengthwise and breadthwise and densely. In general, a micro fly's eye lens is constructed, for example, by forming a micro lens group by etching of a plane-parallel plate.

Here each micro lens forming the micro fly's eye lens is much smaller than each lens element forming a fly's eye lens. The micro fly's eye lens is different from the fly's eye lens consisting of lens elements spaced from each other, in that a number of micro lenses (micro refracting surfaces) are integrally formed without being separated from each other. In the sense that lens elements with a positive refracting power are arranged lengthwise and breadthwise, however, the micro fly's eye lens is a wavefront splitting optical integrator of the same type as the fly's eye lens. Detailed explanation concerning the micro fly's eye lens capable of being used in the present invention is disclosed, for example, in U.S. Pat. No. 6,913,373(B2) which is incorporated herein by reference in its entirety.

The position of the predetermined plane 7 is arranged near the front focal position of the zoom lens 11, and the entrance surface of the micro fly's eye lens 12 is arranged near the rear focal position of the zoom lens 11. In other words, the zoom lens 11 arranges the predetermined plane 7 and the entrance surface of the micro fly's eye lens 12 substantially in the relation of Fourier transform and eventually arranges the pupil plane of the afocal lens 6 and the entrance surface of the micro fly's eye lens 12 approximately optically conjugate with each other.

Accordingly, for example, an illumination field of an annular shape centered around the optical axis AX is formed on the entrance surface of the micro fly's eye lens 12, as on the pupil plane of the afocal lens 6. The entire shape of this annular illumination field similarly varies depending upon the focal length of the zoom lens 11. Each micro lens forming the micro fly's eye lens 12 has a rectangular cross section similar to a shape of an illumination field to be formed on a mask M (eventually, a shape of an exposure region to be formed on a wafer W).

The beam incident to the micro fly's eye lens 12 is two-dimensionally split by a number of micro lenses to form on its rear focal plane (eventually on the illumination pupil) a secondary light source having much the same light intensity distribution as the illumination field formed by the incident beam, i.e., a secondary light source consisting of a substantial surface illuminant of an annular shape centered around the optical axis AX, as shown in FIG. 2. Beams from the secondary light source formed on the rear focal plane of the micro fly's eye lens 12 (in general, an illumination pupil distribution formed on or near the pupil plane 12aa of the illumination optical apparatus) travel through beam splitter 13a and condenser optical system 14 to superposedly illuminate a mask blind 15.

In this manner, an illumination field of a rectangular shape according to the shape and focal length of each micro lens forming the micro fly's eye lens 12 is formed on the mask blind 15 as an illumination field stop. The internal configuration and action of polarization monitor 13 incorporating a beam splitter 13a will be described later. Beam through a rectangular aperture (light transmitting portion) of the mask blind 15 are subject to light condensing action of imaging optical system 16 and thereafter superposedly illuminate the mask M on which a predetermined pattern is formed.

Namely, the imaging optical system 16 forms an image of the rectangular aperture of the mask blind 15 on the mask M. A beam passing through the pattern of mask M travels through a projection optical system PL to form an image of the mask pattern on the wafer W being a photosensitive substrate. In this manner, the pattern of the mask M is sequentially printed in each exposure area on the wafer W through full-wafer exposure or scan exposure with two-dimensional drive control of the wafer Win the plane (XY plane) perpendicular to the optical axis AX of the projection optical system PL.

In the polarization state converter 4, the quarter wave plate 4a is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it transforms incident light of elliptical polarization into light of linear polarization. The half wave plate 4b is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it changes the plane of polarization of linearly polarized light incident thereto. The depolarizer 4c is composed of a wedge-shaped crystalline quartz prism (not shown) and a wedge-shaped fused sillica prism (not shown) having complementary shapes. The crystalline quartz prism and the fussed sillica prism are constructed as an integral prism assembly so as to be set into and away from the illumination optical path.

Where the light source 1 is the KrF excimer laser light source or the ArF excimer laser light source, light emitted from these light sources typically has the degree of polarization of 95% or more and light of almost linear polarization is incident to the quarter wave plate 4a. However, if a right-angle prism as a back-surface reflector is interposed in the optical path between the light source 1 and the polarization state converter 4, the linearly polarized light will be changed into elliptically polarized light by virtue of total reflection in the right-angle prism unless the plane of polarization of the incident, linearly polarized light agrees with the P-polarization plane or S-polarization plane.

In the case of the polarization state converter 4, for example, even if light of elliptical polarization is incident thereto because of the total reflection in the right-angle prism, light of linear polarization transformed by the action of the quarter wave plate 4a will be incident to the half wave plate 4b. Where the crystallographic axis of the half wave plate 4b is set at an angle of 0° or 90° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4b will pass as it is, without change in the plane of polarization.

Where the crystallographic axis of the half wave plate 4b is set at an angle of 45° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4b will be transformed into light of linear polarization with change of polarization plane of 90°. Furthermore, where the crystallographic axis of the crystalline quartz prism in the depolarizer 4c is set at an angle of 45° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will be transformed (or depolarized) into light in an unpolarized state.

The polarization state converter 4 is arranged as follows: when the depolarizer 4c is positioned in the illumination optical path, the crystallographic axis of the crystalline quartz prism makes the angle of 45° relative to the polarization plane of the incident, linearly polarized light. Incidentally, where the crystallographic axis of the crystalline quartz prism is set at the angle of 0° or 90° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will pass as it is, without change of the polarization plane. Where the crystallographic axis of the half wave plate 4b is set at an angle of 22.5° relative to the polarization plane of incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4b will be transformed into light in an unpolarized state including a linear polarization component directly passing without change of the polarization plane and a linear polarization component with the polarization plane rotated by 90°.

The polarization state converter 4 is arranged so that light of linear polarization is incident to the half wave plate 4b, as described above, and, for easier description hereinafter, it is assumed that light of linear polarization having the direction of polarization (direction of the electric field) along the Z-axis in FIG. 1 (hereinafter referred to as “Z-directionally polarized light”) is incident to the half wave plate 4b. When the depolarizer 4c is positioned in the illumination optical path and when the crystallographic axis of the half wave plate 4b is set at the angle of 0° or 90° relative to the polarization plane (direction of polarization) of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4b passes as kept as Z-directionally polarized light without change of the polarization plane and enters the crystalline quartz prism in the depolarizer 4c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the crystalline quartz prism is transformed into light in an unpolarized state.

The light depolarized through the crystalline quartz prism travels through the quartz prism as a compensator for compensating the traveling direction of the light and is incident into the diffractive optical element 5 while being in the depolarized state. On the other hand, if the crystallographic axis of the half wave plate 4b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4b will be rotated in the polarization plane by 90° and transformed into light of linear polarization having the polarization direction (direction of the electric field) along the X-direction in FIG. 1 (hereinafter referred to as “X-directionally polarized light”) and the X-directionally polarized light will be incident to the crystalline quartz prism in the depolarizer 4c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the incident, X-directionally polarized light as well, the light of X-directional polarization incident to the crystalline quartz prism is transformed into light in the depolarized state, and the light travels through the quartz prism to be incident in the depolarized state into the diffractive optical element 5.

In contrast, when the depolarizer 4c is set away from the illumination optical path, if the crystallographic axis of the half wave plate 4b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4b will pass as kept as Z-directionally polarized light without change of the polarization plane, and will be incident in the Z-directionally polarized state into the diffractive optical element 5. If the crystallographic axis of the half wave plate 4b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto on the other hand, the light of Z-directional polarization incident to the half wave plate 4b will be transformed into light of X-directional polarization with the polarization plane rotated by 90°, and will be incident in the X-directionally polarized state into the diffractive optical element 5.

In the polarization state converter 4, as described above, the light in the depolarized state can be made incident to the diffractive optical element 5 when the depolarizer 4c is set and positioned in the illumination optical path. When the depolarizer 4c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the Z-directionally polarized state can be made incident to the diffractive optical element 5. Furthermore, when the depolarizer 4c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the X-directionally polarized state can be made incident to the diffractive optical element 5.

In other words, the polarization state converter 4 is able to switch the polarization state of the incident light into the diffractive optical element 5 (a state of polarization of light to illuminate the mask M and wafer W in use of an ordinary diffractive optical element except for the diffractive optical element for azimuthally polarized annular illumination according to the present invention as will be described later) between the linearly polarized state and the unpolarized state through the action of the polarization state converter consisting of the quarter wave plate 4a, half wave plate 4b, and depolarizer 4c, and, in the case of the linearly polarized state, it is able to switch between mutually orthogonal polarization states (between the Z-directional polarization and the X-directional polarization).

FIG. 3 is an illustration schematically showing the configuration of the conical axicon system disposed in the optical path between the front lens unit and the rear lens unit of the afocal lens in FIG. 1. The conical axicon system 8 is composed of a first prism member 8a whose plane is kept toward the light source and whose refracting surface of a concave conical shape is kept toward the mask, and a second prism member 8b whose plane is kept toward the mask and whose refracting surface of a convex conical shape is kept toward the light source, in order from the light source side.

The refracting surface of the concave conical shape of the first prism member 8a and the refracting surface of the convex conical shape of the second prism member 8b are formed in a complementary manner so as to be able to be brought into contact with each other. At least one of the first prism member 8a and the second prism member 8b is arranged movable along the optical axis AX, so that the spacing can be varied between the refracting surface of the concave conical shape of the first prism member 8a and the refracting surface of the convex conical shape of the second prism member 8b.

In a state in which the refracting surface of the concave conical shape of the first prism member 8a and the refracting surface of the convex conical shape of the second prism member 8b are in contact with each other, the conical axicon system 8 functions as a plane-parallel plate and has no effect on the secondary light source of the annular shape formed. However, when the refracting surface of the concave conical shape of the first prism member 8a and the refracting surface of the convex conical shape of the second prism member 8b are spaced from each other, the conical axicon system 8 functions a so-called beam expander. Therefore, the angle of the incident beam to the predetermined plane 7 varies according to change in the spacing of the conical axicon system 8.

FIG. 4 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape. With reference to FIG. 4, the secondary light source 30a of the minimum annular shape formed in a state where the spacing of the conical axicon system 8 is zero and where the focal length of the zoom lens 11 is set at the minimum (this state will be referred to hereinafter as a “standard state”) is changed into secondary light source 30b of an annular shape with the outside diameter and inside diameter both enlarged and without change in the width (half of the difference between the inside diameter and the outside diameter: indicated by arrows in the drawing) when the spacing of the conical axicon system 8 is increased from zero to a predetermined value. In other words, an annular ratio (inside diameter/outside diameter) and size (outside diameter) both vary through the action of the conical axicon system 8, without change in the width of the secondary light source of the annular shape.

FIG. 5 is an illustration to illustrate the action of the zoom lens on the secondary light source of the annular shape. With reference to FIG. 5, the secondary light source 30a of the annular shape formed in the standard state is changed into secondary light source 30c of an annular shape whose entire shape is similarly enlarged by increasing the focal length of the zoom lens 11 from the minimum to a predetermined value. In other words, the width and size (outside diameter) both vary through the action of zoom lens 11, without change in the annular ratio of the secondary light source of the annular shape.

FIG. 6 is an illustration schematically showing the configuration of the first cylindrical lens pair and the second cylindrical lens pair disposed in the optical path between the front lens unit and the rear lens unit of the afocal lens in FIG. 1. In FIG. 6, the first cylindrical lens pair 9 and the second cylindrical lens pair 10 are arranged in order from the light source side. The first cylindrical lens pair 9 is composed, for example, of a first cylindrical negative lens 9a with a negative refracting power in the YZ plane and with no refracting power in the XY plane, and a first cylindrical positive lens 9b with a positive refracting power in the YZ plane and with no refracting power in the XY plane, which are arranged in order from the light source side.

On the other hand, the second cylindrical lens pair 10 is composed, for example, of a second cylindrical negative lens 10a with a negative refracting power in the XY plane and with no refracting power in the YZ plane, and a second cylindrical positive lens 10b with a positive refracting power in the XY plane and with no refracting power in the YZ plane, which are arranged in order from the light source side. The first cylindrical negative lens 9a and the first cylindrical positive lens 9b are arranged so as to integrally rotate around the optical axis AX. Similarly, the second cylindrical negative lens 10a and the second cylindrical positive lens 10b are arranged so as to integrally rotate around the optical axis AX.

In the state shown in FIG. 6, the first cylindrical lens pair 9 functions as a beam expander having a power in the Z-direction, and the second cylindrical lens pair 10 as a beam expander having a power in the X-direction. The power of the first cylindrical lens pair 9 and the power of the second cylindrical lens pair 10 are set to be equal to each other.

FIGS. 7 to 9 are illustrations to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape. FIG. 7 shows such a setting that the direction of the power of the first cylindrical lens pair 9 makes the angle of +45° around the optical axis AX relative to the Z-axis and that the direction of the power of the second cylindrical lens pair 10 makes the angle of −45° around the optical axis AX relative to the Z-axis.

Therefore, the direction of the power of the first cylindrical lens pair 9 is perpendicular to the direction of the power of the second cylindrical lens pair 10, and the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 has the Z-directional power and the X-directional power identical to each other. As a result, in a perfect circle state shown in FIG. 7, a beam passing through the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 is subject to enlargement at the same power in the Z-direction and in the X-direction to form the secondary light source of a perfect-circle annular shape on the illumination pupil.

In contrast to it, FIG. 8 shows such a setting that the direction of the power of the first cylindrical lens pair 9 makes, for example, the angle of +80° around the optical axis AX relative to the Z-axis and that the direction of the power of the second cylindrical lens pair 10 makes, for example, the angle of −80° around the optical axis AX relative to the Z-axis. Therefore, the power in the X-direction is greater than the power in the Z-direction in the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10. As a result, in a horizontally elliptic state shown in FIG. 8, the beam passing through the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 is subject to enlargement at the power greater in the X-direction than in the Z-direction, whereby the secondary light source of a horizontally long annular shape elongated in the X-direction is formed on the illumination pupil.

On the other hand, FIG. 9 shows such a setting that the direction of the power of the first cylindrical lens pair 9 makes, for example, the angle of +10° around the optical axis AX relative to the Z-axis and that the direction of the power of the second cylindrical lens pair 10 makes, for example, the angle of −10° around the optical axis AX relative to the Z-axis. Therefore, the power in the Z-direction is greater than the power in the X-direction in the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10. As a result, in a vertically elliptical state shown in FIG. 9, the beam passing through the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 is subject to enlargement at the power greater in the Z-direction than in the X-direction, whereby the secondary light source of a vertically long annular shape elongated in the Z-direction is formed on the illumination pupil.

Furthermore, by setting the first cylindrical lens pair 9 and the second cylindrical lens pair 10 in an arbitrary state between the perfect circle state shown in FIG. 7 and the horizontally elliptical state shown in FIG. 8, the secondary light source can be formed in a horizontally long annular shape according to any one of various aspect ratios. By setting the first cylindrical lens pair 9 and the second cylindrical lens pair 10 in an arbitrary state between the perfect circle state shown in FIG. 7 and the vertically elliptical state shown in FIG. 9, the secondary light source can be formed in a vertically long annular shape according to any one of various aspect ratios.

FIG. 10 is a perspective view schematically showing the internal configuration of the polarization monitor shown in FIG. 1. With reference to FIG. 10, the polarization monitor 10 is provided with a first beam splitter 13a disposed in the optical path between the micro fly's eye lens 12 and the condenser optical system 14. The first beam splitter 13a has, for example, the form of a non-coated plane-parallel plate made of quartz glass (i.e., raw glass), and has a function of taking reflected light in a polarization state different from a polarization state of incident light, out of the optical path.

The light taken out of the optical path by the first beam splitter 13a is incident to a second beam splitter 13b. The second beam splitter 13b has, for example, the form of a non-coated plane-parallel plate made of quartz glass as the first beam splitter 13a does, and has a function of generating reflected light in a polarization state different from the polarization state of incident light. The polarization monitor is so set that the P-polarized light for the first beam splitter 13a becomes the S-polarized light for the second beam splitter 13b and that the S-polarized light for the first beam splitter 13a becomes the P-polarized light for the second beam splitter 13b.

Light transmitted by the second beam splitter 13b is detected by first light intensity detector 13c, while light reflected by the second beam splitter 13b is detected by second light intensity detector 13d. Outputs from the first light intensity detector 13c and from the second light intensity detector 13d are supplied each to a controller (not shown). The controller drives the quarter wave plate 4a, half wave plate 4b, and depolarizer 4c constituting the polarization state converter 4, according to need.

As described above, the reflectance for the P-polarized light and the reflectance for the S-polarized light are substantially different in the first beam splitter 13a and in the second beam splitter 13b. In the polarization monitor 13, therefore, the reflected light from the first beam splitter 13a includes the S-polarization component (i.e., the S-polarization component for the first beam splitter 13a and P-polarization component for the second beam splitter 13b), for example, which is approximately 10% of the incident light to the first beam splitter 13a, and the P-polarization component (i.e., the P-polarization component for the first beam splitter 13a and S-polarization component for the second beam splitter 13b), for example, which is approximately 1% of the incident light to the first beam splitter 13a.

The reflected light from the second beam splitter 13b includes the P-polarization component (i.e., the P-polarization component for the first beam splitter 13a and S-polarization component for the second beam splitter 13b), for example, which is approximately 10%×1%=0.1% of the incident light to the first beam splitter 13a, and the S-polarization component (i.e., the S-polarization component for the first beam splitter 13a and P-polarization component for the second beam splitter 13b), for example, which is approximately 1%×10%=0.1% of the incident light to the first beam splitter 13a.

In the polarization monitor 13, as described above, the first beam splitter 13a has the function of extracting the reflected light in the polarization state different from the polarization state of the incident light out of the optical path in accordance with its reflection characteristic. As a result, though there is slight influence of variation of polarization due to the polarization characteristic of the second beam splitter 13b, it is feasible to detect the polarization state (degree of polarization) of the incident light to the first beam splitter 13a and, therefore, the polarization state of the illumination light to the mask M, based on the output from the first light intensity detector 13c (information about the intensity of transmitted light from the second beam splitter 13b, i.e., information about the intensity of light virtually in the same polarization state as that of the reflected light from the first beam splitter 13a).

The polarization monitor 13 is so set that the P-polarized light for the first beam splitter 13a becomes the S-polarized light for the second beam splitter 13b and that the S-polarized light for the first beam splitter 13a becomes the P-polarized light for the second beam splitter 13b. As a result, it is feasible to detect the light quantity (intensity) of the incident light to the first beam splitter 13a and, therefore, the light quantity of the illumination light to the mask M, with no substantial effect of change in the polarization state of the incident light to the first beam splitter 13a, based on the output from the second light intensity detector 13d (information about the intensity of light successively reflected by the first beam splitter 13a and the second beam splitter 13b).

In this manner, it is feasible to detect the polarization state of the incident light to the first beam splitter 13a and, therefore, to determine whether the illumination light to the mask M is in the desired unpolarized state or linearly polarized state, using the polarization monitor 13. When the controller determines that the illumination light to the mask M (eventually, to the wafer W) is not in the desired unpolarized state or linearly polarized state, based on the detection result of the polarization monitor 13, it drives and adjusts the quarter wave plate 4a, half wave plate 4b, and depolarizer 4c constituting the polarization state converter 4 so that the state of the illumination light to the mask M can be adjusted into the desired unpolarized state or linearly polarized state.

Quadrupole illumination can be implemented by setting a diffractive optical element for quadrupole illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for quadrupole illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a quadrupole shape in the far field thereof. Therefore, the beam passing through the diffractive optical element for quadrupole illumination forms an illumination field of a quadrupole shape consisting of four circular illumination fields centered around the optical axis AX, for example, on the entrance surface of the micro fly's eye lens 12. As a result, the secondary light source of the same quadrupole shape as the illumination field formed on the entrance surface is also formed on the rear focal plane of the micro fly's eye lens 12.

In addition, ordinary circular illumination can be implemented by setting a diffractive optical element for circular illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for circular illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a circular shape in the far field. Therefore, a beam passing through the diffraction optical element for circular illumination forms a circular illumination field centered around the optical axis AX, for example, on the entrance plane of the micro fly's eye lens 12. As a result, the secondary light source of the same circular shape as the illumination field formed on the entrance surface is also formed on the rear focal plane of the micro fly's eye lens 12.

Furthermore, a variety of multipole illuminations (dipole illumination, octapole illumination, etc.) can be implemented by setting other diffractive optical elements for multipole illuminations (not shown), instead of the diffractive optical element 5 for annular illumination. Likewise, modified illuminations in various forms can be implemented by setting diffractive optical elements with appropriate characteristics (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.

In the present embodiment, a diffractive optical element 50 for so-called azimuthally polarized annular illumination can be set, instead of the diffractive optical element 5 for annular illumination, in the illumination optical path, so as to implement the modified illumination in which the beam passing through the secondary light source of the annular shape is set in the azimuthal polarization state, i.e., the azimuthally polarized annular illumination. FIG. 11 is an illustration schematically showing the configuration of the diffractive optical element for azimuthally polarized annular illumination according to the present embodiment. FIG. 12 is an illustration schematically showing the secondary light source of the annular shape set in the azimuthal polarization state.

With reference to FIGS. 11 and 12, the diffractive optical element 50 for azimuthally polarized annular illumination according to the present embodiment is constructed in such an arrangement that four types of basic elements 50A-50D having the same cross section of a rectangular shape and having their respective thicknesses different from each other along the direction of transmission of light (Y-direction) (i.e., lengths in the direction of the optical axis) are arranged lengthwise and breadthwise and densely. The thicknesses are set as follows: the thickness of the first basic elements 50A is the largest, the thickness of the fourth basic elements 50D the smallest, and the thickness of the second basic elements 50B is greater than the thickness of the third basic elements 50C.

The diffractive optical element 50 includes an approximately equal number of first basic elements 50A, second basic elements 50B, third basic elements 50C, and fourth basic elements 50D, and the four types of basic elements 50A-50D are arranged substantially at random. Furthermore, a diffracting surface (indicated by hatching in the drawing) is formed on the mask side of each basic element 50A-50D, and the diffracting surfaces of the respective basic elements 50A-50D are arrayed along one plane perpendicular to the optical axis AX (not shown in FIG. 11). As a result, the mask-side surface of the diffractive optical element 50 is planar, while the light-source-side surface of the diffractive optical element 50 is uneven due to the differences among the thicknesses of the respective basic elements 50A-SOD.

The diffracting surface of each first basic element 50A is arranged to form a pair of arc regions (bow shape) 31A symmetric with respect to an axis line of the Z-direction passing the optical axis AX, in the secondary light source 31 of the annular shape shown in FIG. 12. Namely, as shown in FIG. 13, each first basic element 50A has a function of forming a pair of arc (bow shape) light intensity distributions 32A symmetric with respect to the axis line of the Z-direction passing the optical axis AX (corresponding to a pair of arc regions 31A) in the far field 50E of the diffractive optical element 50 (i.e., in the far field of each basic element 50A-50D).

The diffracting surface of each second basic element 50B is arranged so as to form a pair of arc (bow shape) regions 31B symmetric with respect to an axis line obtained by rotating the axis line of the Z-direction passing the optical axis AX, by −45° around the Y-axis (or obtained by rotating it by 45° counterclockwise in FIG. 12). Namely, as shown in FIG. 14, each second basic element SOB has a function of forming a pair of arc (bow shape) light intensity distributions 32B symmetric with respect to the axis line resulting from the −45° rotation around the Y-axis, of the axis line of the Z-direction passing the optical axis AX (corresponding to a pair of arc regions 31B), in the far field 50E.

The diffracting surface of each third basic element 50C is arranged to form a pair of arc (bow shape) regions 31C symmetric with respect to an axis line of the X-direction passing the optical axis AX. Namely, as shown in FIG. 15, each third basic element 50C has a function of forming a pair of arc (bow shape) light intensity distributions 32C symmetric with respect to the axis line of the X-direction passing the optical axis AX (corresponding to a pair of arc regions 31C), in the far field 50E.

The diffracting surface of each fourth basic element 50D is arranged so as to form a pair of arc (bow shape) regions 31D symmetric with respect to an axis line obtained by rotating the axis of the Z-direction passing the optical axis AX by +45° around the Y-axis (i.e., obtained by rotating it by 45° clockwise in FIG. 12). Namely, as shown in FIG. 16, each fourth basic element 50D has a function of forming a pair of arc (bow shape) light intensity distributions 32D symmetric with respect to the axis line resulting from the +45° rotation around the Y-axis, of the axis line of the Z-direction passing the optical axis AX (corresponding to a pair of arc regions 31D), in the far field 50E. The sizes of the respective arc regions 31A-31D are approximately equal to each other, and they form the secondary light source 31 of the annular shape centered around the optical axis AX, while the eight arc regions 31A-31D are not overlapping with each other and not spaced from each other.

In the present embodiment, each basic element 50A-50D is made of crystalline quartz being an optical material with optical activity, and the crystallographic axis of each basic element 50A-50D is set approximately to coincide with the optical axis AX. The optical activity of crystalline quartz will be briefly described below with reference to FIG. 17. With reference to FIG. 17, an optical member 35 of a plane-parallel plate shape made of crystalline quartz and in a thickness d is arranged so that its crystallographic axis coincides with the optical axis AX. In this case, by virtue of the optical activity of the optical member 35, incident, linearly polarized light emerges in a state in which its-polarization direction is rotated by θ around the optical axis AX.

At this time, the angle θ of rotation of the polarization direction due to the optical activity of the optical member 35 is represented by Eq (1) below, using the thickness d of the optical member 35 and the rotatory power ρ of crystalline quartz.
θ=d·ρ  (1)

In general, the rotatory power ρ of crystalline quartz tends to increase with decrease in the wavelength of used light and, according to the description on page 167 in “Applied Optics II,” the rotatory power ρ of crystalline quartz for light having the wavelength of 250.3 nm is 153.9°/mm.

In the present embodiment the first basic elements 50A are designed in such a thickness dA that when light of linear polarization having the direction of polarization along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +180° rotation of the Z-direction around the Y-axis, i.e., along the Z-direction, as shown in FIG. 13. As a result, the polarization direction of beams passing through a pair of arc light intensity distributions 32A formed in the far field 50E is also the Z-direction, and the polarization direction of beams passing through a pair of arc regions 31A shown in FIG. 12 is also the Z-direction.

The second basic elements 50B are designed in such a thickness dB that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +135° rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from −45° rotation of the Z-direction around the Y-axis, as shown in FIG. 14. As a result, the polarization direction of beams passing through a pair of arc light intensity distributions 32B formed in the far field 50E is also the direction obtained by rotating the Z-direction by −45° around the Y-axis, and the polarization direction of beams passing through a pair of arc regions 31A shown in FIG. 12 is also the direction obtained by rotating the Z-direction by −45° around the Y-axis.

The third basic elements 50C are designed in such a thickness dC that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +90° rotation of the Z-direction around the Y-axis, i.e., along the X-direction, as shown in FIG. 15. As a result, the polarization direction of beams passing through a pair of arc light intensity distributions 32C formed in the far field 50E is also the X-direction, and the polarization direction of beams passing through a pair of arc regions 31C shown in FIG. 12 is also the X-direction.

The fourth basic elements 50D are designed in such a thickness dD that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +45° rotation of the Z-direction around the Y-axis, as shown in FIG. 16. As a result, the polarization direction of beams passing through a pair of arc light intensity distributions 32D formed in the far field 50E is also the direction obtained by rotating the Z-direction by +45° around the Y-axis, and the polarization direction of beams passing through a pair of arc regions 31D shown in FIG. 12 is also the direction obtained by rotating the Z-direction by +45° around the Y-axis.

In the present embodiment, the diffractive optical element 50 for azimuthally polarized annular illumination is set in the illumination optical system on the occasion of effecting the azimuthally polarized annular illumination, whereby the light of linear polarization having the polarization direction along the Z-direction is made incident to the diffractive optical element 50. As a result, the secondary light source of the annular shape (illumination pupil distribution of annular shape) 31 is formed on the rear focal plane of the micro fly's eye lens 12 (i.e., on or near the illumination pupil), as shown in FIG. 12, and the beams passing through the secondary light source 31 of the annular shape are set in the azimuthal polarization state.

In the azimuthal polarization state, the beams passing through the respective arc regions 31A-31D constituting the secondary light source 31 of the annular shape turn into the linearly polarized state having the polarization direction substantially coincident with a tangent line to a circle centered around the optical axis AX, at the central position along the circumferential direction of each arc region 31A-31D.

In the present embodiment, as described above, the beam transforming element 50 for forming the predetermined light intensity distribution on the predetermined surface on the basis of the incident beam comprises the first basic element 50A made of the optical material with optical activity, for forming the first region distribution 32A of the predetermined light intensity distribution on the basis of the incident beam; and the second basic element 50B made of the optical material with optical activity, for forming the second region distribution 32B of the predetermined light intensity distribution on the basis of the incident beam, and the first basic element 50A and the second basic element 50B have their respective thicknesses different from each other along the direction of transmission of light.

Thanks to this configuration, the present embodiment is able to form the secondary light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the diffracting action and optical rotating action of the diffractive optical element 50 as the beam transforming element, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop.

In a preferred form of the present embodiment, the thickness of the first basic element 50A and the thickness of the second basic element 50B are so set that with incidence of linearly polarized light the polarization direction of the linearly polarized light forming the first region distribution 32A is different from the polarization direction of the linearly polarized light forming the second region distribution 32B. Preferably, the first region distribution 32A and the second region distribution 32B are positioned in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and the beams passing through the first region distribution 32A and through the second region distribution 32B have a polarization state in which a principal component is linearly polarized light having the polarization direction along the circumferential direction of the predetermined annular region.

In this case, preferably, the predetermined light intensity distribution has a contour of virtually the same shape as the predetermined annular region, the polarization state of the beam passing through the first region distribution 32A has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the first region distribution 32A, and the polarization state of the beam passing through the second region distribution 32B has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the second region distribution 32B. In another preferred configuration, the predetermined light intensity distribution is a distribution of a multipole shape in the predetermined annular region, the polarization state of the beam passing through the first region distribution has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the first region distribution, and the polarization state of the beam passing through the second region distribution has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the second region distribution.

In a preferred form of the present embodiment, the first basic element and the second basic element are made of an optical material with an optical rotatory power of not less than 100°/mm for light of a wavelength used. Preferably, the first basic element and the second basic element are made of crystalline quartz. The beam transforming element preferably includes virtually the same number of first basic elements and second basic elements. The first basic element and the second basic element preferably have diffracting action or refracting action.

In another preferred form of the present embodiment, preferably, the first basic element forms at least two first region distributions on the predetermined surface on the basis of the incident beam, and the second basic element forms at least two second region distributions on the predetermined surface on the basis of the incident beam. In addition, preferably, the beam transforming element further comprises the third basic element 50C made of the optical material with optical activity, for forming the third region distribution 32C of the predetermined light intensity distribution on the basis of the incident beam, and the fourth basic element SOD made of the optical material with optical activity, for forming the fourth region distribution 32D of the predetermined light intensity distribution on the basis of the incident beam.

In the present embodiment, the beam transforming element 50 for forming the predetermined light intensity distribution of the shape different from the sectional shape of the incident beam, on the predetermined surface, has the diffracting surface or refracting surface for forming the predetermined light intensity distribution on the predetermined surface, the predetermined light intensity distribution is a distribution in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and the beam from the beam transforming element passing through the predetermined annular region has a polarization state in which a principal component is linearly polarized light having the direction of polarization along the circumferential direction of the predetermined annular region.

In the configuration as described above, the present embodiment, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the secondary light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the diffracting action and optical rotating action of the diffractive optical element 50 as the beam transforming element.

In a preferred form of the present embodiment, the predetermined light intensity distribution has a contour of a multipole shape or annular shape. The beam transforming element is preferably made of an optical material with optical activity.

The illumination optical apparatus of the present embodiment is the illumination optical apparatus for illuminating the surface to be illuminated, based on the beam from the light source, and comprises the above-described beam transforming element for transforming the beam from the light source in order to form the illumination pupil distribution on or near the illumination pupil of the illumination optical apparatus. In this configuration, the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.

Here the beam transforming element is preferably arranged to be replaceable with another beam transforming element having a different characteristic. Preferably, the apparatus further comprises the wavefront splitting optical integrator disposed in the optical path between the beam transforming element and the surface to be illuminated, and the beam transforming element forms the predetermined light intensity distribution on the entrance surface of the optical integrator on the basis of the incident beam.

In a preferred form of the illumination optical apparatus of the present embodiment, at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the surface to be illuminated. Preferably, the polarization state of the beam from the beam transforming element is so set that the light illuminating the surface to be illuminated is in a polarization state in which a principal component is S-polarized light.

The exposure apparatus of the present embodiment comprises the above-described illumination optical apparatus for illuminating the mask, and projects the pattern of the mask onto the photosensitive substrate. Preferably, at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the photosensitive substrate. Preferably, the polarization state of the beam from the beam transforming element is so set that the light illuminating the photosensitive substrate is in a polarization state in which a principal component is S-polarized light.

The exposure method of the present embodiment comprises the illumination step of illuminating the mask by use of the above-described illumination optical apparatus, and the exposure step of projecting the pattern of the mask onto the photosensitive substrate. Preferably, at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the photosensitive substrate. Preferably, the polarization state of the beam from the beam transforming element is so set that the light illuminating the photosensitive substrate is in a polarization state in which a principal component is S-polarized light.

In other words, the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity. As a result, the exposure apparatus of the present embodiment is able to transcribe the microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput because it uses the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.

In the azimuthally polarized annular illumination based on the illumination pupil distribution of the annular shape in the azimuthal polarization state, the light illuminating the wafer W as a surface to be illuminated is in the polarization state in which the principal component is the S-polarized light. Here the S-polarized light is linearly polarized light having the direction of polarization along a direction normal to a plane of incidence (i.e., polarized light with the electric vector oscillating in the direction normal to the plane of incidence). The plane of incidence herein is defined as the following plane: when light arrives at a boundary surface of a medium (a surface to be illuminated: surface of wafer W), the plane includes the normal to the boundary plane at the arrival point and the direction of incidence of light.

In the above-described embodiment, the diffractive optical element 50 for azimuthally polarized annular illumination is constructed by randomly arranging virtually the same number of four types of basic elements 50A-50D with the same rectangular cross section lengthwise and breadthwise and densely. However, without having to be limited to this, a variety of modification examples can be contemplated as to the number of basic elements of each type, the sectional shape, the number of types, the arrangement, and so on.

In the above-described embodiment, the secondary light source 31 of the annular shape centered around the optical axis AX is composed of the eight arc regions 31A-31D arrayed without overlapping with each other and without being spaced from each other, using the diffractive optical element 50 consisting of the four types of basic elements 50A-50D. However, without having to be limited to this, a variety of modification examples can be contemplated as to the number of regions forming the secondary light source of the annular shape, the shape, the arrangement, and so on.

Specifically, as shown in FIG. 18A, it is also possible to form a secondary light source 33a of an octapole shape in the azimuthal polarization state consisting of eight arc (bow shape) regions spaced from each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements. In addition, as shown in FIG. 18B, it is also possible to form a secondary light source 33b of a quadrupole shape in the azimuthal polarization state consisting of four arc (bow shape) regions spaced from each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements. In the secondary light source of the octapole shape or the secondary light source of the quadrupole shape, the shape of each region is not limited to the arc shape, but it may be, for example, circular, elliptical, or sectorial. Furthermore, as shown in FIG. 19, it is also possible to form a secondary light source 33c of an annular shape in the azimuthal polarization state consisting of eight arc regions overlapping with each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements.

In addition to the quadrupole or octapole secondary light source in the azimuthal polarization state consisting of the four or eight regions spaced from each other along the circumferential direction, the secondary light source may be formed in a hexapole shape in the azimuthal polarization state and of six regions spaced from each other along the circumferential direction, as shown in FIG. 20A. In addition, as shown in FIG. 20B, the secondary light source may be formed as one having secondary light source of a multipole shape in the azimuthal polarization state consisting of a plurality of regions spaced from each other along the circumferential direction, and a secondary light source on the center pole in the unpolarized state or linearly polarized state consisting of a region on the optical axis. Furthermore, the secondary light source may also be formed in a dipole shape in the azimuthal polarization state and of two regions spaced from each other along the circumferential direction.

In the aforementioned embodiment, as shown in FIG. 11, the four types of basic elements 50A-50D are individually formed, and the diffractive optical element 50 is constructed by combining these elements. However, without having to be limited to this, the diffractive optical element 50 can also be integrally constructed in such a manner that a crystalline quartz substrate is subjected, for example, to etching to form the exit-side diffracting surfaces and the entrance-side uneven surfaces of the respective basic elements 50A-50D.

In the aforementioned embodiment each basic element 50A-50D (therefore, the diffractive optical element 50) is made of crystalline quartz. However, without having to be limited to this, each basic element can also be made of another appropriate optical material with optical activity. In this case, it is preferable to use an optical material with an optical rotatory power of not less than 100°/mm for light of a wavelength used. Specifically, use of an optical material with a low rotatory power is undesirable because the thickness necessary for achieving the required rotation angle of the polarization direction becomes too large, so as to cause the loss of light quantity.

The aforementioned embodiment is arranged to form the illumination pupil distribution of the annular shape (secondary light source), but, without having to be limited to this, the illumination pupil distribution of a circular shape can also be formed on or near the illumination pupil. In addition to the illumination pupil distribution of the annular shape and the illumination pupil distribution of the multipole shape, it is also possible to implement a so-called annular illumination with the center pole and a multipole illumination with the center pole, for example, by forming a center region distribution including the optical axis.

In the aforementioned embodiment, the illumination pupil distribution in the azimuthal polarization state is formed on or near the illumination pupil. However, the polarization direction can vary because of polarization aberration (retardation) of an optical system (the illumination optical system or the projection optical system) closer to the wafer than the diffractive optical element as the beam transforming element. In this case, it is necessary to properly set the polarization state of the beam passing through the illumination pupil distribution formed on or near the illumination pupil, with consideration to the influence of polarization aberration of these optical systems.

In connection with the foregoing polarization aberration, reflected light can have a phase difference in each polarization direction because of a polarization characteristic of a reflecting member disposed in the optical system (the illumination optical system or the projection optical system) closer to the wafer than the beam transforming element. In this case, it is also necessary to properly set the polarization state of the beam passing through the illumination pupil distribution formed on or near the illumination pupil, with consideration to the influence of the phase difference due to the polarization characteristic of the reflecting member.

The reflectance in the reflecting member can vary depending upon the polarization direction, because of a polarization characteristic of a reflecting member disposed in the optical system (the illumination optical system or the projection optical system) closer to the wafer than the beam transforming element. In this case, it is desirable to provide offsets on the light intensity distribution formed on or near the illumination pupil, i.e. to provide a distribution of numbers of respective basic elements, in consideration of the reflectance in each polarization direction. The same technique can also be similarly applied to cases where the transmittance in the optical system closer to the wafer than the beam transforming element varies depending upon the polarization direction.

In the foregoing embodiment, the light-source-side surface of the diffractive optical element 50 is of the uneven shape with level differences according to the differences among the thicknesses of respective basic elements 50A-50D. Then the surface on the light source side (entrance side) of the diffractive optical element 50 can also be formed in a planar shape, as shown in FIG. 21, by adding a compensation member 36 on the entrance side of the basic elements except for the first basic elements 50A with the largest thickness, i.e., on the entrance side of the second basic elements 50B, third basic elements 50C, and fourth basic elements 50D. In this case, the compensation member 36 is made of an optical material without optical activity.

The aforementioned embodiment shows the example wherein the beam passing through the illumination pupil distribution formed on or near the illumination pupil has only the linear polarization component along the circumferential direction. However, without having to be limited to this, the expected effect of the present invention can be achieved as long as the polarization state of the beam passing through the illumination pupil distribution is a state in which the principal component is linearly polarized light having the polarization direction along the circumferential direction.

The foregoing embodiment uses the diffractive optical element consisting of the plural types of basic elements having the diffracting action, as the beam transforming element for forming the light intensity distribution of the shape different from the sectional shape of the incident beam, on the predetermined plane, based on the incident beam. However, without having to be limited to this, it is also possible to use as the beam transforming element a refracting optical element, for example, consisting of plural types of basic elements having refracting surfaces virtually optically equivalent to the diffracting surfaces of the respective basic elements, i.e., consisting of plural types of basic elements having the refracting action.

The exposure apparatus according to the foregoing embodiment is able to produce microdevices (semiconductor elements, image pickup elements, liquid crystal display elements, thin-film magnetic heads, etc.) by illuminating a mask (reticle) by the illumination optical apparatus (illumination step) and projecting a pattern for transcription formed on the mask, onto a photosensitive substrate by use of the projection optical system (exposure step). The following will describe an example of a procedure of producing semiconductor devices as microdevices by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate by means of the exposure apparatus of the foregoing embodiment, with reference to the flowchart of FIG. 22.

The first step 301 in FIG. 22 is to deposit a metal film on each, of wafers in one lot. The next step 302 is to apply a photoresist onto the metal film on each wafer in the lot. Thereafter, step 303 is to sequentially transcribe an image of a pattern on a mask into each shot area on each wafer in the lot, through the projection optical system by use of the exposure apparatus of the foregoing embodiment. Subsequently, step 304 is to perform development of the photoresist on each wafer in the lot, and step 305 thereafter is to perform etching with the resist pattern as a mask on each wafer in the lot, thereby forming a circuit pattern corresponding to the pattern on the mask, in each shot area on each wafer. Thereafter, devices such as semiconductor elements are produced through execution of formation of circuit patterns in upper layers and others. The semiconductor device production method as described above permits us to produce the semiconductor devices with extremely fine circuit patterns at high throughput.

The exposure apparatus of the foregoing embodiment can also be applied to production of a liquid crystal display element as a microdevice in such a manner that predetermined patterns (a circuit pattern, an electrode pattern, etc.) are formed on a plate (glass substrate). An example of a procedure of this production will be described below with reference to the flowchart of FIG. 23. In FIG. 23, pattern forming step 401 is to execute a so-called photolithography step of transcribing a pattern on a mask onto a photosensitive substrate (a glass substrate coated with a resist or the like) by use of the exposure apparatus of the foregoing embodiment. In this photolithography step, the predetermined patterns including a number of electrodes and others are formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to steps such as a development step, an etching step, a resist removing step, etc., to form the predetermined patterns on the substrate, followed by next color filter forming step 402.

The next color filter forming step 402 is to form a color filter in which a number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arrayed in a matrix, or in which a plurality of sets of filters of three stripes of R, G and B are arrayed in the direction of horizontal scan lines. After the color filter forming step 402, cell assembly step 403 is carried out. The cell assembly step 403 is to assemble a liquid crystal panel (liquid crystal cell), using the substrate with the predetermined patterns obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and so on.

In the cell assembly step 403, for example, a liquid crystal is poured into the space between the substrate with the predetermined patterns obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402 to produce the liquid crystal panel (liquid crystal cell). Thereafter, module assembly step 404 is carried out to attach such components as an electric circuit, a backlight, and so on for implementing the display operation of the assembled liquid crystal panel (liquid crystal cell), to complete the liquid crystal display element. The production method of the liquid crystal display element described above permits us to produce the liquid crystal display elements with extremely fine circuit patterns at high throughput.

The foregoing embodiment is arranged to use the KrF excimer laser light (wavelength: 248 nm) or the ArF excimer laser light (wavelength: 193 nm) as the exposure light, but, without having to be limited to this, the present invention can also be applied to other appropriate laser light sources, e.g., an F2 laser light source for supplying laser light of the wavelength of 157 nm. Furthermore, the foregoing embodiment described the present invention, using the exposure apparatus with the illumination optical apparatus as an example, but it is apparent that the present invention can be applied to ordinary illumination optical apparatus for illuminating the surface to be illuminated, except for the mask and wafer.

In the foregoing embodiment, it is also possible to apply the so-called liquid immersion method, which is a technique of filling a medium (typically, a liquid LM) with a refractive index larger than 1.1 in the optical path between the projection optical system and the photosensitive substrate, as shown in FIG. 1(b). In this case, the technique of filling the liquid in the optical path between the projection optical system and the photosensitive substrate can be selected from the technique of locally filling the liquid as disclosed in PCT International Publication No. W099/49504, the technique of moving a stage holding a substrate as an exposure target in a liquid bath as disclosed in Japanese Patent Application Laid-Open No. 6-124873, the technique of forming a liquid bath in a predetermined depth on a stage and holding the substrate therein as disclosed in Japanese Patent Application Laid-Open No. 10-303114, and so on. The PCT International Publication No. W099/49504, Japanese Patent Application Laid-Open No. 6-124873, and Japanese Patent Application Laid-Open No. 10-303114 are incorporated herein by reference.

The liquid is preferably one that is transparent to the exposure light, that has the refractive index as high as possible, and that is stable against the projection optical system and the photoresist applied to the surface of the substrate; for example, where the exposure light is the KrF excimer laser light or the ArF excimer laser light, pure water or deionized water can be used as the liquid. Where the F2 laser light is used as the exposure light, the liquid can be a fluorinated liquid capable of transmitting the F2 laser light, e.g., fluorinated oil or perfluoropolyether (PFPE).

From the invention thus described, it will be obvious that the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.

Toyoda, Mitsunori

Patent Priority Assignee Title
Patent Priority Assignee Title
3146294,
3180216,
3758201,
3892469,
3892470,
4103260, Jan 03 1977 Hughes Aircraft Company Spatial polarization coding electro-optical transmitter
4175830, Dec 23 1976 Wave mode converter
4198123, Mar 23 1977 SLM INSTRUMENTS, INC Optical scrambler for depolarizing light
4211471, Dec 28 1977 Mode converters for converting a non-confining wave into a confining wave in the far infrared range
4286843, May 14 1979 Polariscope and filter therefor
4346164, Oct 06 1980 MERCOTRUST AKTIENGESELLSCHAFT, A CORP OF LIECOTENSTEIN Photolithographic method for the manufacture of integrated circuits
4370026, Sep 10 1979 Thomson-CSF Illuminating device for providing an illumination beam with adjustable distribution of intensity and a pattern-transfer system comprising such a device
4744615, Jan 29 1986 INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NEW YORK Laser beam homogenizer
4755027, Jul 02 1985 Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V. Method and device for polarizing light radiation
4952815, Apr 14 1988 Nikon Corporation Focusing device for projection exposure apparatus
4981342, Sep 24 1987 FIALA, WERNER J Multifocal birefringent lens system
5072126, Oct 31 1990 International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY Promixity alignment using polarized illumination and double conjugate projection lens
5216541, May 09 1989 Sumitomo Cement Company Ltd. Optical associative identifier with real time joint transform correlator
5251222, Apr 01 1991 TELEDYNE INDUSTRIES, INC A CORPORATION OF CA Active multi-stage cavity sensor
5253110, Dec 22 1988 Nikon Corporation Illumination optical arrangement
5272501, Aug 28 1991 Nikon Corporation Projection exposure apparatus
5312513, Apr 03 1992 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DELAWARE Methods of forming multiple phase light modulators
5345292, Mar 31 1992 Canon Kabushiki Kaisha Illumination device for projection exposure apparatus
5365371, Feb 10 1992 Renesas Electronics Corporation Projection exposure apparatus
5382999, Dec 11 1992 Renesas Electronics Corporation Optical pattern projecting apparatus
5436761, Feb 10 1992 Renesas Electronics Corporation Projection exposure apparatus and polarizer
5448336, Jul 15 1993 Nikon Corporation Apparatus and method for projection exposure
5459000, Oct 14 1992 Canon Kabushiki Kaisha Image projection method and device manufacturing method using the image projection method
5467166, Aug 13 1993 Nikon Corporation Projection exposure method and apparatus
5473465, Jun 24 1994 Optical rotator and rotation-angle-variable half-waveplate rotator
5541026, Jun 13 1991 Nikon Corporation Exposure apparatus and photo mask
5559583, Feb 24 1994 NEC Corporation Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer
5610683, Nov 27 1992 Canon Kabushiki Kaisha Immersion type projection exposure apparatus
5610684, Feb 17 1994 Nikon Corporation Projection exposure apparatus
5621498, Oct 15 1991 Kabushiki Kaisha Toshiba Projection exposure apparatus
5627626, Jan 20 1902 Kabushiki Kaisha Toshiba Projectin exposure apparatus
5631721, May 24 1995 ASML US, INC; ASML HOLDING N V Hybrid illumination system for use in photolithography
5663785, May 24 1995 International Business Machines Corporation Diffraction pupil filler modified illuminator for annular pupil fills
5673103, Sep 24 1993 Kabushiki Kaisha Toshiba Exposure apparatus and method
5675401, Jun 17 1994 Carl Zeiss SMT AG Illuminating arrangement including a zoom objective incorporating two axicons
5677755, Oct 29 1993 Renesas Electronics Corporation Method and apparatus for pattern exposure, mask used therefor, and semiconductor integrated circuit produced by using them
5677757, Mar 29 1994 Nikon Corporation Projection exposure apparatus
5684567, Jun 25 1992 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method for projecting light from a secondary light source onto a mask or pattern
5691803, Jun 19 1995 SAMSUNG ELECTRONICS CO , LTD Advanced exposure apparatus and exposure method using the same
5707501, Oct 15 1991 Kabushiki Kaisha Toshiba Filter manufacturing apparatus
5739898, Feb 03 1994 Nikon Corporation Exposure method and apparatus
5838408, Oct 26 1994 BOE TECHNOLOGY GROUP CO , LTD Liquid crystal device and electronic equipment using the same
5841500, Jan 09 1997 Rembrandt Communications, LP Wedge-shaped liquid crystal cell
5933219, Apr 22 1994 Canon Kabushiki Kaisha Projection exposure apparatus and device manufacturing method capable of controlling polarization direction
5969441, Dec 24 1996 ASML NETHERLANDS B V Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
6031658, Sep 25 1998 Siemens Aktiengesellschaft Digital control polarization based optical scanner
6191829, Oct 08 1996 CITIZEN HOLDINGS CO , LTD Optical apparatus for optically rotating a portion of a polarization axis of a linearly polarized light
6191880, Sep 23 1995 Carl Zeiss SMT AG Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
6208407, Dec 22 1997 ASML NETHERLANDS B V Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
6211944, Aug 21 1990 Nikon Corporation Projection exposure method and apparatus
6229647, Dec 14 1992 Canon Kabushiki Kaisha Reflection and refraction optical system and projection exposure apparatus using the same
6233041, Aug 21 1990 Nikon Corporation Exposure method utilizing diffracted light having different orders of diffraction
6238063, Apr 27 1998 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
6252647, Nov 15 1990 Nikon Corporation Projection exposure apparatus
6252712, Feb 20 1998 Carl Zeiss SMT AG Optical system with polarization compensator
6259512, Aug 04 1997 Canon Kabushiki Kaisha Illumination system and exposure apparatus having the same
6304317, Feb 17 1994 Nikon Corporation Projection apparatus and method
6333776, Mar 27 1995 Nikon Corporation Projection exposure apparatus
6341007, Nov 28 1996 Nikon Corporation Exposure apparatus and method
6361909, Dec 06 1999 Industrial Technology Research Institute Illumination aperture filter design using superposition
6366404, Jan 06 1999 Nikon Corporation Projection optical system, production method thereof, and projection exposure apparatus using it
6373614, Aug 31 2000 Cambridge Research Instrumentation Inc. High performance polarization controller and polarization sensor
6392800, Sep 23 1995 Carl Zeiss SMT AG Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
6400441, Nov 28 1996 Nikon Corporation Projection exposure apparatus and method
6404482, Oct 01 1992 Nikon Corporation Projection exposure method and apparatus
6406148, Dec 31 1998 Texas Instruments Incorporated Electronic color switching in field sequential video displays
6452662, Apr 08 1998 ASML NETHERLANDS B V Lithography apparatus
6466303, Jun 12 1998 Nikon Corporation Projection exposure apparatus with a catadioptric projection optical system
6483573, May 11 1999 Carl Zeiss SMT AG Projection exposure system and an exposure method in microlithography
6498869, Jun 14 1999 Devices for depolarizing polarized light
6522483, Apr 25 2000 ASML US, INC; ASML HOLDING N V Optical reduction system with elimination of reticle diffraction induced bias
6535273, Jul 02 1998 Carl Zeiss SMT AG Microlithographic illumination system with depolarizer
6538247, Aug 24 2000 PENTAX Corporation Method of detecting arrangement of beam spots
6549269, Nov 28 1996 Nikon Corporation Exposure apparatus and an exposure method
6577379, Nov 05 2001 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method and apparatus for shaping and/or orienting radiation irradiating a microlithographic substrate
6583931, Jan 06 1999 Nikon Corporation Projection optical system, production method thereof, and projection exposure apparatus using it
6590634, Nov 28 1996 Nikon Corporation Exposure apparatus and method
6597430, May 18 1998 Nikon Corporation Exposure method, illuminating device, and exposure system
6606144, Sep 29 1999 Nikon Corporation Projection exposure methods and apparatus, and projection optical systems
6636295, Mar 31 2000 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
6646690, Jul 23 1999 Seiko Epson Corporation Arrangement of λ/2 retardation plate in projector
6661499, Jun 12 1998 Nikon Corporation Projection exposure apparatus with a catadioptric projection optical system
6665119, Oct 15 2002 Moxtek, Inc Wire grid polarizer
6674513, Sep 29 1999 Nikon Corporation Projection exposure methods and apparatus, and projection optical systems
6674514, Mar 16 2000 Canon Kabushiki Kaisha Illumination optical system in exposure apparatus
6680798, Apr 25 2000 ASML HOLDING N V Optical reduction system with control of illumination polarization
6698891, Nov 02 2001 SHARP NEC DISPLAY SOLUTIONS, LTD Polarizing unit, polarizing illumination device using same polarizing unit and projection display device using same polarizing illumination device
6710855,
6762824, Jan 26 2001 Canon Kabushiki Kaisha Correction apparatus that corrects optical shift in two optical units, and exposure apparatus having the same
6769273, Jul 05 1999 Nikon Corporation Method of manufacturing silica glass member and silica glass member obtained by the method
6771350, Feb 25 2000 Nikon Corporation Exposure apparatus and exposure method capable of controlling illumination distribution
6774984, May 15 2001 Carl Zeiss SMT AG Optical imaging system with polarizer and a crystalline-quartz plate for use therewith
6831731, Jun 28 2001 Nikon Corporation Projection optical system and an exposure apparatus with the projection optical system
6836365, Apr 15 1999 Nikon Corporation DIFFRACTIVE OPTICAL ELEMENT, METHOD OF FABRICATING THE ELEMENT, ILLUMINATION DEVICE PROVIDED WITH THE ELEMENT, PROJECTION EXPOSURE APPARATUS, EXPOSURE METHOD, OPTICAL HOMOGENIZER, AND METHOD OF FABRICATING THE OPTICAL HOMOGENIZER
6836380, Apr 25 2000 ASML HOLDING N V Optical reduction system with elimination of reticle diffraction induced bias
6842223, Apr 11 2003 Nikon Precision Inc. Enhanced illuminator for use in photolithographic systems
6844982, Apr 26 2002 Nikon Corporation Projection optical system, exposure system provided with the projection optical system, and exposure method using the projection optical system
6856379, May 22 2001 Carl Zeiss SMT AG Polarizer and microlithography projection system with a polarizer
6864961, Sep 29 1999 Nikon Corporation Projection exposure methods and apparatus, and projection optical systems
6870668, Oct 10 2000 Nikon Corporation Method for evaluating image formation performance
6876437, Jul 31 2002 Canon Kabushiki Kaisha Illumination optical system, exposure method and apparatus using the same
6885493, Feb 05 2001 Micronic Laser Systems AB; FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E V Method and a device for reducing hysteresis or imprinting in a movable micro-element
6891655, Jan 02 2003 Micronic Laser Systems AB High energy, low energy density, radiation-resistant optics used with micro-electromechanical devices
6900915, Nov 14 2001 Ricoh Company, LTD Light deflecting method and apparatus efficiently using a floating mirror
6913373, May 27 2002 Nikon Corporation Optical illumination device, exposure device and exposure method
6958806, Dec 02 2002 ASML NETHERLANDS B V Lithographic apparatus and device manufacturing method
6965484, Jul 26 2002 Massachusetts Institute of Technology Optical imaging systems and methods using polarized illumination and coordinated pupil filter
6970233, Dec 03 2003 Texas Instruments Incorporated System and method for custom-polarized photolithography illumination
6977718, Mar 02 2004 GLOBALFOUNDRIES U S INC Lithography method and system with adjustable reflector
6999157, Apr 23 2002 Canon Kabushiki Kaisha Illumination optical system and method, and exposure apparatus
7009686, Sep 19 2002 Canon Kabushiki Kaisha Exposure method
7031077, Apr 25 2000 ASML Holding N.V. Optical reduction method with elimination of reticle diffraction induced bias
7038763, May 31 2002 ASML NETHERLANDS B V Kit of parts for assembling an optical element, method of assembling an optical element, optical element, lithographic apparatus, and device manufacturing method
7061583, Apr 08 1998 ASML Netherlands B.V. Lithography apparatus
7095546, Apr 24 2003 Lumentum Operations LLC Micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays
7098992, Sep 10 1999 Nikon Corporation Light source unit and wavelength stabilizing control method, exposure apparatus and exposure method, method of making exposure apparatus, and device manufacturing method and device
7130025, Mar 18 2004 Canon Kabushiki Kaisha Illumination apparatus, exposure apparatus and device manufacturing method
7145720, May 15 2001 Carl Zeiss SMT AG Objective with fluoride crystal lenses
7217503, Apr 24 2001 Canon Kabushiki Kaisha Exposure method and apparatus
7239446, Apr 25 2000 ASML Holding N.V. Optical reduction system with control of illumination polarization
7245353, Oct 12 2004 ASML NETHERLANDS B V Lithographic apparatus, device manufacturing method
7245355, Oct 12 2004 ASML NETHERLANDS B V Lithographic apparatus, device manufacturing method
7295286, May 26 2005 Renesas Electronics Corporation Exposure device and method of exposure
7345740, Dec 28 2004 ASML NETHERLAND B V ; Carl Zeiss SMT AG Polarized radiation in lithographic apparatus and device manufacturing method
7408616, Sep 26 2003 Carl Zeiss SMT AG Microlithographic exposure method as well as a projection exposure system for carrying out the method
7433046, Sep 03 2004 CARL ZIESS MEDITEC, INC Patterned spinning disk based optical phase shifter for spectral domain optical coherence tomography
7446858, Apr 09 2003 Nikon Corporation Exposure method and apparatus, and method for fabricating device
7508493, Feb 15 2006 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
7847921, Sep 26 2003 Carl Zeiss SMT AG Microlithographic exposure method as well as a projection exposure system for carrying out the method
20010012154,
20010019404,
20010035942,
20010046038,
20010052968,
20020001134,
20020008863,
20020024008,
20020027719,
20020080338,
20020085176,
20020085276,
20020101572,
20020126380,
20020152452,
20020167653,
20020176166,
20020177048,
20020177054,
20020186462,
20020191288,
20020196416,
20030007158,
20030011756,
20030025890,
20030038225,
20030038931,
20030043356,
20030053036,
20030086071,
20030098959,
20030103196,
20030128349,
20030160949,
20030174400,
20030206289,
20030214571,
20030227607,
20040004771,
20040012764,
20040053148,
20040057034,
20040057036,
20040100629,
20040104654,
20040119954,
20040120044,
20040150806,
20040160582,
20040169924,
20040174512,
20040184019,
20040207386,
20040227923,
20040240073,
20050024612,
20050041232,
20050094268,
20050095749,
20050122499,
20050128458,
20050146704,
20050168790,
20050237509,
20050237527,
20050264885,
20050270608,
20060012769,
20060050261,
20060055834,
20060072095,
20060077370,
20060092398,
20060132748,
20060139611,
20060146384,
20060158624,
20060164711,
20060170901,
20060171138,
20060203214,
20060232841,
20060291057,
20070008511,
20070019179,
20070058151,
20070081114,
20070146676,
20070183017,
20070201338,
20070263199,
20070296936,
20070296941,
20080021948,
20080024747,
20080030706,
20080030707,
20080068572,
20080316459,
20080316598,
20090002675,
20090073411,
20090073414,
20090073441,
20090091730,
20090097007,
20090109417,
20090116093,
20090122292,
20090128886,
20090147233,
20090147234,
20090147235,
20090185154,
20090185156,
20090284729,
20090316132,
20090323041,
20100141921,
20100141926,
20100142051,
20110037962,
20110069296,
20110205519,
20110273692,
20110273693,
20110273697,
20110273698,
20110299055,
CN1453645,
CN1501175,
CN1573571,
DE10029938,
DE10123725,
DE10206061,
DE10343333,
DE206607,
DE221563,
DE224448,
DE242880,
EP23231,
EP208552,
EP230931,
EP564264,
EP656555,
EP744664,
EP764858,
EP779530,
EP937999,
EP1014196,
EP1071292,
EP1139521,
EP1211561,
EP1260849,
EP1280007,
EP1489462,
EP1577709,
EP1662553,
EP1674935,
EP1681710,
EP1693885,
EP1798758,
EP1840945,
EP1953805,
FR2474708,
GB856621,
JP10002865,
JP10104427,
JP10116760,
JP10116778,
JP10135099,
JP10163099,
JP10163302,
JP10169249,
JP10189427,
JP10189700,
JP1020195,
JP10206714,
JP10208993,
JP10209018,
JP10214783,
JP10228661,
JP10255319,
JP10294268,
JP10303114,
JP103039,
JP1032160,
JP10340846,
JP1038517,
JP1038812,
JP10503300,
JP1055713,
JP1062305,
JP1064790,
JP1079337,
JP1082611,
JP1092735,
JP1097969,
JP11111601,
JP11111818,
JP11111819,
JP11121328,
JP11135400,
JP11142556,
JP1114876,
JP11150062,
JP1115033,
JP11159571,
JP11162831,
JP11163103,
JP11164543,
JP11166990,
JP1116816,
JP11176727,
JP11176744,
JP11195602,
JP11204390,
JP11204432,
JP11218466,
JP11219882,
JP11233434,
JP11238680,
JP11239758,
JP11260686,
JP11260791,
JP11264756,
JP1127379,
JP11283903,
JP11288879,
JP11307610,
JP11312631,
JP11354624,
JP113849,
JP113856,
JP1140657,
JP1147516,
JP1154426,
JP1174185,
JP118194,
JP1187237,
JP1198,
JP1202833,
JP1214042,
JP1255404,
JP1258550,
JP1276043,
JP1278240,
JP1286478,
JP1292343,
JP1314247,
JP1319964,
JP191419,
JP2000106340,
JP2000114157,
JP2000121491,
JP200012453,
JP2000147346,
JP2000154251,
JP2000180371,
JP2000206279,
JP2000208407,
JP200021742,
JP200021748,
JP2000240717,
JP2000243684,
JP2000252201,
JP2000283889,
JP2000286176,
JP200029202,
JP2000311853,
JP2000323403,
JP200032403,
JP200036449,
JP20003874,
JP200058436,
JP200058441,
JP200081320,
JP200092815,
JP200097616,
JP2001100311,
JP2001110707,
JP2001118773,
JP2001135560,
JP2001144004,
JP2001167996,
JP2001176766,
JP2001203140,
JP200120951,
JP2001218497,
JP2001228401,
JP2001228404,
JP2001230323,
JP200123996,
JP2001242269,
JP2001265581,
JP2001267227,
JP2001272764,
JP2001274083,
JP2001282526,
JP2001284228,
JP2001296105,
JP2001297976,
JP2001304332,
JP2001307982,
JP2001307983,
JP2001313250,
JP2001338868,
JP2001345262,
JP200137201,
JP200144097,
JP20017015,
JP200174240,
JP200183472,
JP200185307,
JP200197734,
JP2002075816,
JP2002100561,
JP2002118058,
JP200214005,
JP2002141270,
JP2002158157,
JP200215978,
JP200216124,
JP2002162655,
JP2002170495,
JP2002190438,
JP2002195912,
JP2002198284,
JP2002202221,
JP2002203763,
JP2002208562,
JP2002222754,
JP2002227924,
JP2002231619,
JP2002258487,
JP2002261004,
JP2002263553,
JP2002277742,
JP2002289505,
JP2002305140,
JP2002323658,
JP2002324743,
JP2002329651,
JP2002334836,
JP2002353105,
JP2002357715,
JP2002359174,
JP2002362737,
JP2002365783,
JP2002367523,
JP2002367886,
JP2002373849,
JP200243213,
JP2002520810,
JP200257097,
JP200266428,
JP200271513,
JP200275816,
JP200275835,
JP200291922,
JP200293686,
JP200293690,
JP2003015314,
JP2003059821,
JP2003068600,
JP2003068607,
JP2003090978,
JP2003100597,
JP2003114387,
JP2003124095,
JP2003130132,
JP2003149363,
JP200315040,
JP2003151880,
JP2003161882,
JP2003163158,
JP2003166856,
JP200317003,
JP2003173957,
JP200317404,
JP2003188087,
JP2003224961,
JP2003229347,
JP2003233001,
JP2003234285,
JP2003238577,
JP2003240906,
JP2003249443,
JP2003258071,
JP2003262501,
JP2003263119,
JP2003272837,
JP2003273338,
JP2003282423,
JP200328673,
JP2003297727,
JP2003311923,
JP200335822,
JP200343223,
JP200345219,
JP200345712,
JP2003532281,
JP2003532282,
JP200359799,
JP200359803,
JP200359821,
JP200359826,
JP200368600,
JP200368604,
JP200375703,
JP200381654,
JP200384445,
JP200398651,
JP2004078136,
JP2004087987,
JP2004101362,
JP2004103674,
JP2004111569,
JP2004119497,
JP2004119717,
JP2004128307,
JP2004134682,
JP2004140145,
JP2004145269,
JP200414642,
JP2004146702,
JP200414876,
JP200415187,
JP2004152705,
JP2004153064,
JP2004153096,
JP2004163555,
JP2004165249,
JP2004165416,
JP2004172471,
JP2004177468,
JP2004179172,
JP2004187401,
JP2004193252,
JP2004193425,
JP2004198748,
JP2004205698,
JP2004207696,
JP2004207711,
JP2004221253,
JP2004224421,
JP200422708,
JP2004228497,
JP2004241666,
JP2004247527,
JP2004258670,
JP2004259828,
JP2004259966,
JP2004259985,
JP2004260043,
JP2004260081,
JP2004260115,
JP2004294202,
JP2004301825,
JP2004302043,
JP2004303808,
JP2004304135,
JP2004307264,
JP2004307265,
JP2004307266,
JP2004307267,
JP2004319724,
JP2004320017,
JP2004327660,
JP2004335808,
JP2004335864,
JP2004336922,
JP2004342987,
JP2004349645,
JP2004356410,
JP200438247,
JP200439952,
JP200440039,
JP200445063,
JP2004520618,
JP200463847,
JP200471851,
JP20047417,
JP200485612,
JP200487987,
JP200495653,
JP200498012,
JP2005005521,
JP2005012190,
JP2005050718,
JP2005093522,
JP2005108925,
JP2005108934,
JP2005114882,
JP2005116570,
JP2005116571,
JP2005116831,
JP200511990,
JP200512228,
JP2005123586,
JP2005127460,
JP2005136404,
JP2005140999,
JP2005150759,
JP2005156592,
JP2005166871,
JP2005167254,
JP2005175176,
JP2005175177,
JP2005191344,
JP200519628,
JP200519864,
JP2005203483,
JP2005209705,
JP2005209706,
JP2005233979,
JP2005234359,
JP2005236088,
JP2005243770,
JP2005243904,
JP2005251549,
JP2005257740,
JP2005259789,
JP2005259830,
JP200526634,
JP2005268700,
JP2005268741,
JP2005268742,
JP2005276932,
JP2005302826,
JP2005303167,
JP2005311020,
JP2005315918,
JP2005340605,
JP2005366813,
JP200551147,
JP2005524112,
JP20055295,
JP20055395,
JP20055521,
JP200555811,
JP200564210,
JP200564391,
JP200579222,
JP200579584,
JP200579587,
JP200586148,
JP200591023,
JP200593324,
JP200593948,
JP200597057,
JP2006019702,
JP2006100363,
JP2006100686,
JP2006113437,
JP2006120985,
JP2006128192,
JP2006135165,
JP2006140366,
JP2006170811,
JP2006170899,
JP2006177865,
JP200617895,
JP20061821,
JP2006184414,
JP2006194665,
JP200619702,
JP200624706,
JP200624819,
JP2006250587,
JP2006253572,
JP2006269762,
JP2006278820,
JP2006289684,
JP200632750,
JP2006332355,
JP2006349946,
JP2006351586,
JP200641302,
JP2006513442,
JP20065197,
JP2006524349,
JP200654364,
JP200673584,
JP200673951,
JP200680281,
JP200686141,
JP200686442,
JP2007103153,
JP2007113939,
JP2007119851,
JP2007120333,
JP2007120334,
JP2007142313,
JP2007144864,
JP2007170938,
JP2007187649,
JP2007207821,
JP2007227637,
JP2007235041,
JP2007274881,
JP2007280623,
JP2007295702,
JP200743980,
JP200748819,
JP200751300,
JP2007515768,
JP20075830,
JP200787306,
JP200793546,
JP2008103737,
JP2008180492,
JP20083740,
JP200858580,
JP200864924,
JP200917540,
JP200960339,
JP2010226117,
JP2010514716,
JP2011233911,
JP2106917,
JP2116115,
JP2139146,
JP2166717,
JP2261073,
JP2264901,
JP2285320,
JP2287308,
JP2298431,
JP2311237,
JP23246615,
JP242382,
JP24976015,
JP2629102,
JP265149,
JP265222,
JP297239,
JP3102327,
JP3132663,
JP3134341,
JP3167419,
JP3168640,
JP3211812,
JP3263810,
JP341399,
JP364811,
JP372298,
JP394445,
JP4065603,
JP4101148,
JP411613,
JP4117212,
JP4130710,
JP4132909,
JP4133414,
JP4152512,
JP4179115,
JP4186244,
JP4211110,
JP4225357,
JP4235558,
JP4265805,
JP4273245,
JP4273427,
JP4280619,
JP4282539,
JP4296092,
JP4297030,
JP4305915,
JP4305917,
JP432154,
JP4330961,
JP4343307,
JP4350925,
JP444993,
JP480052,
JP496315,
JP4976094,
JP5090128,
JP5109601,
JP5127086,
JP5129184,
JP5134230,
JP5160002,
JP5175098,
JP5199680,
JP521314,
JP5217837,
JP5217840,
JP5226225,
JP5241324,
JP5243364,
JP5259069,
JP5283317,
JP5304072,
JP5319774,
JP5323583,
JP5326370,
JP545886,
JP562877,
JP566666,
JP57117238,
JP57152129,
JP57153433,
JP58115945,
JP58202448,
JP5845502,
JP5849932,
JP590128,
JP59155843,
JP5919912,
JP59226317,
JP6104167,
JP61156736,
JP6118623,
JP61196532,
JP6120110,
JP61217434,
JP6124126,
JP6124872,
JP6124873,
JP61251025,
JP61270049,
JP6140306,
JP6144429,
JP6145923,
JP6148399,
JP6163350,
JP6168866,
JP6177007,
JP6181157,
JP6186025,
JP6188169,
JP6191662,
JP6194342,
JP6196388,
JP6204113,
JP6204121,
JP62100161,
JP62120026,
JP62121417,
JP62122215,
JP62153710,
JP6217705,
JP62183522,
JP62188316,
JP62203526,
JP622539,
JP622540,
JP62265722,
JP6229741,
JP6241720,
JP6244082,
JP6265326,
JP6267825,
JP6281869,
JP6283403,
JP6291023,
JP629204,
JP6310399,
JP6312134,
JP63128713,
JP63131008,
JP63141313,
JP63157419,
JP63160192,
JP63231217,
JP6325894,
JP6326174,
JP63275912,
JP63292005,
JP6336526,
JP6349701,
JP636054,
JP6373628,
JP6418002,
JP6426704,
JP642918,
JP6468926,
JP653120,
JP697269,
JP7057993,
JP7122469,
JP7132262,
JP7134955,
JP7135158,
JP7135165,
JP7147223,
JP7161622,
JP7167998,
JP7168286,
JP7174974,
JP7176468,
JP7183201,
JP7183214,
JP7190741,
JP7201723,
JP7220989,
JP7220990,
JP7220995,
JP7221010,
JP7230945,
JP7239212,
JP7243814,
JP7245258,
JP7263315,
JP7283119,
JP7297272,
JP7307268,
JP7318847,
JP7335748,
JP757992,
JP769621,
JP792424,
JP810971,
JP8115868,
JP8136475,
JP8151220,
JP8162397,
JP8166475,
JP8171054,
JP817709,
JP8195375,
JP8203803,
JP822948,
JP8279549,
JP8288213,
JP8297699,
JP8316125,
JP8316133,
JP8330224,
JP8334695,
JP8335552,
JP837149,
JP837227,
JP846751,
JP863231,
JP9108551,
JP9115794,
JP9134870,
JP9148406,
JP9151658,
JP915834,
JP9160004,
JP9160219,
JP9162106,
JP9178415,
JP9184787,
JP9184918,
JP9186082,
JP9190969,
JP9213129,
JP9219358,
JP922121,
JP9227294,
JP9232213,
JP9243892,
JP9246672,
JP9251208,
JP9281077,
JP9325255,
JP9326338,
JP961686,
JP97933,
JP982626,
JP983877,
JP992593,
JPH10116779,
JPH10125572,
JPH10134028,
KR100474578,
KR101020378,
KR101020455,
KR1019970016641,
KR1020000048227,
KR1020000076783,
KR1020010051438,
KR1020020042462,
KR1020030036105,
KR1020060132598,
KR1020100061551,
KR1020110036050,
KR10839686,
KR10869390,
KR19950009365,
KR20010053240,
TW94100817,
TW200301848,
TW516097,
TW518662,
WO11706,
WO2092,
WO67303,
WO103170,
WO110137,
WO120733,
WO122480,
WO123935,
WO127978,
WO135451,
WO159502,
WO165296,
WO181977,
WO2063664,
WO2069049,
WO2080185,
WO2084720,
WO2084850,
WO2093209,
WO2101804,
WO216993,
WO3003429,
WO3023832,
WO3063212,
WO3077036,
WO3085708,
WO2004051717,
WO2004053596,
WO2004053950,
WO2004053951,
WO2004053952,
WO2004053953,
WO2004053954,
WO2004053955,
WO2004053956,
WO2004053957,
WO2004053958,
WO2004053959,
WO2004071070,
WO2004086468,
WO2004086470,
WO2004090956,
WO2004091079,
WO2004094940,
WO2004104654,
WO2004105106,
WO2004105107,
WO2004107048,
WO2004107417,
WO2004109780,
WO2004114380,
WO2005006415,
WO2005006418,
WO2005008754,
WO2005022615,
WO2005026843,
WO2005027207,
WO2005029559,
WO2005031467,
WO2005036619,
WO2005036620,
WO2005036622,
WO2005036623,
WO2005041276,
WO2005041277,
WO2005048325,
WO2005048326,
WO2005050718,
WO2005057636,
WO2005067013,
WO2005069081,
WO2005071717,
WO2005076045,
WO2005076321,
WO2005076323,
WO2005081291,
WO2005081292,
WO2005104195,
WO2006006730,
WO2006016551,
WO2006019124,
WO2006025341,
WO2006028188,
WO2006030727,
WO2006030910,
WO2006035775,
WO2006049134,
WO2006051909,
WO2006064851,
WO2006068233,
WO2006077958,
WO2006080285,
WO2006085524,
WO2006100889,
WO2006118108,
WO2006343023,
WO2007003563,
WO2007018127,
WO2007055120,
WO2007055237,
WO2007055373,
WO2007066692,
WO2007066758,
WO2007097198,
WO2007132862,
WO2007141997,
WO2008041575,
WO2008059748,
WO2008061681,
WO2008065977,
WO2008074673,
WO2008075613,
WO2008078688,
WO2008090975,
WO2008139848,
WO2009153925,
WO2009157154,
WO2010001537,
WO9711411,
WO9815952,
WO9824115,
WO9859364,
WO9923692,
WO9927568,
WO9931716,
WO9934255,
WOO9949366AI,
WO9949504,
WO9950712,
WO9966370,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 08 2013Nikon Corporation(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Oct 27 20184 years fee payment window open
Apr 27 20196 months grace period start (w surcharge)
Oct 27 2019patent expiry (for year 4)
Oct 27 20212 years to revive unintentionally abandoned end. (for year 4)
Oct 27 20228 years fee payment window open
Apr 27 20236 months grace period start (w surcharge)
Oct 27 2023patent expiry (for year 8)
Oct 27 20252 years to revive unintentionally abandoned end. (for year 8)
Oct 27 202612 years fee payment window open
Apr 27 20276 months grace period start (w surcharge)
Oct 27 2027patent expiry (for year 12)
Oct 27 20292 years to revive unintentionally abandoned end. (for year 12)