A method and arrangement for transmitting and receiving RF signals, associated with different radio interfaces of communication systems, employ a direct conversion based transceiver which substantially comprises one receive signal branch and one transmit signal branch. mixing frequencies of the different systems are generated by a single common by use of an output frequency divider in combination with the synthesizer, and by use of filtering corresponding to a system channel bandwidth by means of a controllable low-pass filter operating at baseband frequency.

Patent
   9191035
Priority
Nov 26 1998
Filed
May 08 2014
Issued
Nov 17 2015
Expiry
Nov 25 2019

TERM.DISCL.
Assg.orig
Entity
unknown
0
151
EXPIRED
2. A direct-conversion transmitter comprising:
a transmit synthesizer common to a plurality of radio interfaces of the direct-conversion transmitter and configured to generate a mixing signal;
a controllable low-pass filter common to the plurality of radio interfaces of the direct-conversion transmitter, the controllable low-pass filter configured to perform filtering of an analog baseband transmission signal using a controllable cut-off frequency according to which one of the plurality of radio interfaces of the direct-conversion transmitter is selected;
a frequency divider common to the plurality of radio interfaces of the direct-conversion transmitter, the frequency divider configured to divide a frequency of the mixing signal according to which one of the plurality of radio interfaces of the direct-conversion transmitter is selected, wherein the dividing produces two mixing signal components having a 90-degree phase difference; and
a controllable gain transmitter amplifier common to the plurality of radio interfaces of the direct-conversion transmitter and configured to amplify a carrier-frequency signal from a mixer at a gain controlled according to which one of the plurality of radio interfaces of the direct-conversion transmitter is selected, wherein at least one of the plurality of radio interfaces of the direct-conversion transmitter comprises a modulation, a channel spacing, and a channel bit rate that at least one other of the plurality of radio interfaces of the direct-conversion transmitter does not have.
57. A transceiver configured to employ direct conversion in both the transmission and reception of RF signals associated with different radio interfaces of communication systems, comprising
means for generating a digital baseband quadrature signal on the basis of the information signal to be transmitted,
digital-to-analog converter means for converting the digital baseband transmission signal to analog,
synthesizer,
a controllable frequency divider for dividing a frequency of an output signal generated by the synthesizer to produce a tx mixing signal, wherein the number by which the frequency divider divides the synthesizer output signal depends on the selected transmit frequency band, so that the frequency corresponds to the selected transmission frequency, and wherein 90-degree phase-shifted components of the tx mixing signal are produced as quotients generated already in the frequency divider, wherein said frequency division is a division at least by two, so that a synthesizer operating frequency is used which is a multiple of the highest system frequency,
mixing means for producing a signal at a carrier frequency from the analog baseband transmission signal by means of the tx mixing signal,
characterised in that the transceiver further comprises
a low-pass filter means for filtering the analog baseband transmission signal, the cut-off frequency of the low-pass filter means being controllable so as to correspond to the specifications of the radio interface selected,
controllable gain transmitter amplifier configured to amplify a carrier frequency signal destined to be amplified by a power amplifier and transmitted by an antenna means,
and wherein in a direct conversion transmitter portion of the transceiver, the controllable gain transmit amplifier and the controllable low pass filter means are configured to process transmit signals associated with different radio interfaces.
1. A direct-conversion transceiver capable of operating with a plurality of radio interfaces, comprising:
a first controllable bandpass filter configured to filter a received signal according to a first bandpass control signal that selects one of a plurality of passbands corresponding to a selected one of the plurality of radio interfaces, wherein the first controllable bandpass filter has a signal path common to the plurality of radio interfaces;
a low-noise amplifier configured to amplify the filtered received signal according to a first gain control signal that controls an amount of gain, wherein the low-noise amplifier has a signal path common to the plurality of radio interfaces;
a first programmable synthesizer configured to generate a first mixing signal according to a first mixing control signal corresponding to the selected one of the plurality of radio interfaces, wherein the first programmable synthesizer has a signal path common to the plurality of radio interfaces;
a first frequency divider coupled to the first programmable synthesizer and configured to divide a frequency of the first mixing signal by two to provide a first divided frequency signal according to a first divider control signal corresponding to the selected one of plurality of radio interfaces;
a first mixer coupled to the low-noise amplifier and configured to mix the amplified and filtered received signal with the first divided mixing signal to produce a first baseband quadrature signal, wherein the first mixer has a signal path common to the plurality of radio interfaces and wherein the first mixer produces the first baseband quadrature signal on a basis of two 90-degree phase-shifted components produced from the first frequency divider;
a first low-pass filter coupled to the first mixer and configured to low-pass filter the first baseband quadrature signal according to a first filter control signal corresponding to the selected one of the plurality of radio interfaces, wherein the first low-pass filter has a signal path common to the plurality of radio interfaces;
a first gain-controlled amplifier coupled to the first low-pass filter and configured to provide gain-controlled amplification of the first low-pass filtered baseband quadrature signal, wherein the first gain-controlled amplifier has a signal path common to the plurality of radio interfaces;
an analog-to-digital converter coupled to the first gain-controlled amplifier and configured to convert to digital form an output of the first gain-controlled amplifier;
a digital signal processor configured to receive digital output from the analog-to-digital converter and to further process said digital output;
a digital-to-analog converter coupled to the digital signal processor and configured to receive a second baseband quadrature signal therefrom and to provide analog output signals;
a second low-pass filter coupled to the digital-to-analog converter and configured to low-pass filter the analog output signals from the digital-to-analog converter according to a second filter control signal corresponding to the selected one of the plurality of radio interfaces, wherein the second low-pass filter has a signal path common to the plurality of radio interfaces;
a second programmable synthesizer configured to generate a second mixing signal according to a second mixing control signal corresponding to the selected one of the plurality of radio interfaces, wherein the second programmable synthesizer has a signal path common to the plurality of radio interfaces;
a second frequency divider coupled to the second programmable synthesizer and configured to divide a frequency of the second mixing signal by two to provide a second divided frequency signal according to a second divider control signal corresponding to the selected one of the plurality of radio interfaces;
a second mixer coupled to the second low-pass filter and configured to mix signals from the second low-pass filter and the second frequency divider to produce a carrier-frequency transmission signal, wherein the second mixer has a signal path common to the plurality of radio interfaces and wherein the second mixer produces the carrier-frequency transmission signal on the basis of two 90-degree phase-shifted components produced from the second frequency divider;
a second gain-controlled amplifier coupled to the second mixer and configured to control gain according to a second gain control signal corresponding to the selected one of the plurality of radio interfaces, wherein the second gain-controlled amplifier has a signal path common to the plurality of radio interfaces;
a power amplifier coupled to the second gain-controlled amplifier and configured to produce an amplified output using a frequency band determined on the basis of a power control signal corresponding to the selected one of the plurality of radio interfaces, wherein the power amplifier has a signal path common to the plurality of radio interfaces;
a second controllable bandpass filter configured to filter an output of the power amplifier according to a second bandpass control signal that selects one of a second plurality of passbands corresponding to the selected one of the plurality of radio interfaces, wherein the second controllable bandpass filter has a signal path common to the plurality of radio interfaces; and
a microprocessor configured to generate one or more control signals to cause selection of the selected one of the plurality of radio interfaces, wherein at least one of the plurality of radio interfaces comprises a modulation, a channel spacing, and a channel bit rate that at least one other of the plurality of radio interfaces does not have.
3. The direct-conversion transmitter of claim 2, wherein the frequency divider is configured to divide the frequency of the mixing signal so as to correspond to a selected transmission frequency band of a radio interface of the plurality of radio interfaces.
4. The direct-conversion transmitter of claim 3, wherein a first radio interface of the plurality of radio interfaces employs a WCDMA system and a second radio interface of the plurality of radio interfaces employs a Global System for Mobile communications (GSM) system.
5. The direct-conversion transmitter of claim 3, wherein the direct-conversion transmitter is part of a transceiver that comprises a direct-conversion receiver.
6. The direct-conversion transmitter of claim 3, wherein the controllable low-pass filter and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
7. The direct-conversion transmitter of claim 3, wherein a first radio interface of the plurality of radio interfaces employs a WCDMA system and a second radio interface of the plurality of radio interfaces employs a Global System for Mobile communications (GSM) system, and wherein the controllable low-pass filter and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
8. The direct-conversion transmitter of claim 3, further comprising a power amplifier configured to amplify the carrier-frequency signal amplified by the controllable gain transmitter amplifier, the power amplifier having a controllable operating frequency band set according to which one of the plurality of radio interfaces is selected.
9. The direct-conversion transmitter of claim 2, wherein the frequency divider comprises a control input that determines a divisor by which the frequency of the mixing signal is divided.
10. The direct-conversion transmitter of claim 2, wherein the frequency divider is configured to produce the two mixing signal components as quotients of the division of the frequency of the mixing signal.
11. The direct-conversion transmitter of claim 10, wherein the frequency divider is configured to produce the two mixing signal components without the use of a phase shifter after the division of the frequency of the mixing signal.
12. The direct-conversion transmitter of claim 2, wherein the frequency divider is configured to produce the two mixing signal components using a phase shifter after the division of the frequency of the mixing signal.
13. The direct-conversion transmitter of claim 2, wherein the frequency divider comprises a controllable frequency divider.
14. The direct-conversion transmitter of claim 2, wherein the frequency divider is configured to divide the frequency of the mixing signal at least by two.
15. The direct-conversion transmitter of claim 14, wherein the frequency divider comprises a controllable frequency divider.
16. The direct-conversion transmitter of claim 2, wherein the frequency divider is configured to divide the frequency of the mixing signal at least by two and by four.
17. The direct-conversion transmitter of claim 16, wherein the frequency divider is a controllable frequency divider.
18. The direct-conversion transmitter of claim 2, wherein the frequency divider is configured to divide the frequency of the mixing signal by different divisors determined according to which one of the plurality of radio interfaces of the direct-conversion transmitter is selected.
19. The direct-conversion transmitter of claim 18, wherein a first radio interface of the plurality of radio interfaces employs a WCDMA system and a second radio interface of the plurality of radio interfaces employs a Global System for Mobile communications (GSM) system.
20. The direct-conversion transmitter of claim 18, wherein the direct-conversion transmitter is part of a transceiver that comprises a direct-conversion receiver.
21. The direct-conversion transmitter of claim 18, wherein the controllable low-pass filter and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
22. The direct-conversion transmitter of claim 18, wherein a first radio interface of the plurality of radio interfaces employs a WCDMA system and a second radio interface of the plurality of radio interfaces employs a Global System for Mobile communications (GSM) system, and wherein the controllable low-pass filter and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
23. The direct-conversion transmitter of claim 18, further comprising a power amplifier configured to amplify the carrier-frequency signal amplified by the controllable gain transmitter amplifier, the power amplifier having a controllable operating frequency band set according to which one of the plurality of radio interfaces is selected.
24. The direct-conversion transmitter of claim 18, wherein the controllable low-pass filter, the mixer, and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
25. The direct-conversion transmitter of claim 2, wherein the controllable gain transmitter amplifier is configured to perform automatic gain control.
26. The direct-conversion transmitter of claim 2, wherein at least two of the plurality of the radio interfaces of the direct conversion transmitter have different transmission frequencies.
27. The direct-conversion transmitter of claim 2, wherein at least two of the plurality of the radio interfaces of the direct conversion transmitter have different transmission frequency ranges.
28. The direct-conversion transmitter of claim 2, wherein at least two of the plurality of the radio interfaces of the direct conversion transmitter have overlapping transmission frequency ranges.
29. The direct-conversion transmitter of claim 2, wherein at least two of the plurality of the radio interfaces of the direct conversion transmitter have transmission frequency ranges that are the same.
30. The direct-conversion transmitter of claim 2, wherein at least two of the plurality of the radio interfaces of the direct conversion transmitter have adjacent transmission frequency ranges.
31. The direct-conversion transmitter of claim 2, wherein a first radio interface of the plurality of radio interfaces of the direct conversion transmitter operates at a first transmission frequency, wherein a second radio interface of the plurality of the radio interfaces of the direct conversion transmitter operates at a second transmission frequency, and wherein the first transmission frequency and the second transmission frequency are within 100 MHz of each other.
32. The direct-conversion transmitter of claim 2, wherein a separation of respective transmission frequencies of at least two of the plurality of radio interfaces ranges from 0 MHz to 1156 MHz.
33. The direct-conversion transmitter of claim 2, wherein a first transmission frequency of the at least one of the plurality of radio interfaces of the direct-conversion transmitter and a second transmission frequency of the least one other of the plurality of radio interfaces of the direct-conversion transmitter differ by 91 MHz to 132 MHz.
34. The direct-conversion transmitter of claim 2, wherein a first radio interface of the plurality of radio interfaces employs a time division multiple access method and a second radio interface of the plurality of radio interfaces employs a code division multiple access method.
35. The direct-conversion transmitter of claim 2, wherein a first radio interface of the plurality of radio interfaces employs a WCDMA system and a second radio interface of the plurality of radio interfaces employs a Global System for Mobile communications (GSM) system.
36. The direct-conversion transmitter of claim 2, wherein the direct-conversion transmitter is part of a transceiver that comprises a direct-conversion receiver.
37. The direct-conversion transmitter of claim 2, wherein the plurality of radio interfaces further differ from each other by multiple access method.
38. The direct-conversion transmitter of claim 2, wherein the plurality of radio interfaces further differ from each other by duplex method.
39. The direct-conversion transmitter of claim 2, wherein the plurality of radio interfaces further differ from each other by RF bandwidth.
40. The direct-conversion transmitter of claim 2, further comprising a control block circuit configured to generate at least one control signal that indicates which of the plurality of radio interfaces is selected, wherein the control block circuit comprises a microprocessor.
41. The direct-conversion transmitter of claim 2, wherein the carrier-frequency signal comprises a signal from the mixing signal components mixed with the analog baseband transmission signal filtered by the controllable low-pass filter.
42. The direct-conversion transmitter of claim 2, wherein the controllable gain transmitter amplifier is configured to amplify the carrier-frequency signal through a signal path that is common to each of the plurality of radio interfaces.
43. The direct-conversion transmitter of claim 2, wherein the controllable low-pass filter is configured to filter the analog baseband transmission signal through a signal path that is common to each of the plurality of radio interfaces.
44. The direct-conversion transmitter of claim 2, wherein the controllable low-pass filter and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
45. The direct-conversion transmitter of claim 2, further comprising the mixer wherein the mixer is configured to generate the carrier-frequency signal from the two mixing signal components and the analog baseband transmission signal filtered by the controllable low-pass filter.
46. The direct-conversion transmitter of claim 45, wherein the mixer is configured to generate the carrier-frequency signal through a signal path that is common to each of the plurality of radio interfaces.
47. The direct-conversion transmitter of claim 45, wherein the controllable low-pass filter and the mixer are part of a transmit path common to the plurality of radio interfaces.
48. The direct-conversion transmitter of claim 45, wherein the mixer, and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
49. The direct-conversion transmitter of claim 45, wherein the controllable low-pass filter, the mixer, and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
50. The direct-conversion transmitter of claim 45, wherein the mixer is common to the plurality of radio interfaces.
51. The direct-conversion transmitter of claim 45, further comprising a power amplifier, wherein the controllable low-pass filter, the mixer, the power amplifier, and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
52. The direct-conversion transmitter of claim 45, further comprising a digital-to-analog converter common to the plurality of radio interfaces of the direct-conversion transmitter and configured to generate the analog baseband transmission signal, wherein the digital-to-analog converter, the controllable low-pass filter, the mixer, and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
53. The direct-conversion transmitter of claim 2, further comprising a power amplifier configured to amplify the carrier-frequency signal amplified by the controllable gain transmitter amplifier, the power amplifier having a controllable operating frequency band set according to which one of the plurality of radio interfaces is selected.
54. The direct-conversion transmitter of claim 2, further comprising a power amplifier, wherein the controllable low-pass filter, the mixer, the power amplifier, and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.
55. The direct-conversion transmitter of claim 2, further comprising a bandpass filter, wherein the controllable low-pass filter, the controllable gain transmitter amplifier, and the bandpass filter are part of a transmit path common to the plurality of radio interfaces.
56. The direct-conversion transmitter of claim 2, further comprising a digital-to-analog converter common to the plurality of radio interfaces of the direct-conversion transmitter and configured to generate the analog baseband transmission signal, wherein the digital-to-analog converter, the controllable low-pass filter, and the controllable gain transmitter amplifier are part of a transmit path common to the plurality of radio interfaces.

This application is a continuation of U.S. application Ser. No. 14/272,191, filed May 7, 2014, which is a continuation of U.S. application Ser. No. 13/614,272, filed Sep. 13, 2012, which is a continuation of U.S. application Ser. No. 12/136,465, filed Jun. 10, 2008, which is a continuation of U.S. application Ser. No. 09/856,746, filed May 24, 2001 (issued as U.S. Pat. No. 7,415,247 on Aug. 19, 2008), which is a U.S. national stage of PCT/FI99/00974, filed Nov. 25, 1999, which is based on and claims priority to Finnish application no. 982559, filed Nov. 26, 1998, all incorporated by reference herein.

The invention relates to a method and arrangement for transmitting and receiving RF signals associated with various radio interfaces of communication systems. The invention finds particular utility in transceivers of general-purpose mobile stations.

Mobile communication systems are developing and expanding rapidly which has led to a situation in which there are in many areas systems complying with several different standards. This has brought about a need for mobile stations that can be used in more than one system. Good examples are the digital systems called GSM (Global System for Mobile communications) and DCS (Digital Cellular System), which operate on different frequency bands but have otherwise similar radio interfaces. In addition, the modulation, multiplexing and coding schemes used may be different. The systems mentioned above use the time division multiple access (TDMA) method; other methods include the frequency division multiple access (FDMA) and code division multiple access (CDMA).

One possible way of making a mobile station capable of operating in multiple systems is to have in the mobile station completely separate signal paths for each system. This, however, would lead to an unreasonable increase in the mobile station size and manufacturing costs. Therefore, the goal is to design a mobile station in which the differences relating to the radio interfaces of the various systems could be largely dealt with by means of programming, instead of having separate signal processing paths.

It is known e.g. from patent application document EP 653851 a transceiver arrangement using one local oscillator the frequency of which falls between the lower operating frequency band and the higher operating frequency band such that one and the same intermediate frequency (IF) can be used for both operating frequency bands. However, the disadvantage of such a solution is that the necessary IF stages make the implementation rather complex, and the manufacturing costs of the device will be high because of the great number of components. Furthermore, the IF stages require filters in order to eliminate spurious responses and spurious emissions. In addition, channel filtering at the intermediate frequency sets great demands on the IF filters.

In a direct-conversion, or zero-IF, receiver the radio-frequency (RF) signal is directly converted into baseband without any intermediate frequencies. Since no IF stages are needed, the receiver requires only a few components, therefore being an advantageous solution for general-purpose mobile stations which have multiple signal branches for different systems. To aid in understanding the problems relating to the direct conversion technique and prior art it is next described in more detail a prior-art solution.

FIG. 1 shows a direct conversion based arrangement for realizing a dual frequency band transceiver, known from the Finnish Patent document FI 100286. Depending on the receive frequency band, a RF signal received by an antenna is coupled by means of switch 104 either to a first receive branch (DCS) or second receive branch (GSM).

If the received signal is in the DCS frequency band, it is conducted to bandpass filter 106, low-noise amplifier (LNA) 108 and bandpass filter 110. After that the signal is brought to block 112 which produces signal components having a 90-degree phase difference. The in-phase component I and quadrature component Q are further conducted by means of switches 114 and 134 to mixers 116 and 136. The mixers get their mixing signals from a DCS synthesizer 140 the frequency of which corresponds to the received carrier frequency so that the mixing produces the in-phase and quadrature components of the complex baseband signal. The baseband signal is further processed in the receive (RX) signal processing unit, block 139.

If the signal received is a USM signal, switch 104 directs the received signal to the GSM branch which comprises, connected in series bandpass filter 126, low-noise amplifier 128, bandpass filter 130 and phase shifter 132 which generates two signals with a mutual phase difference of 90 degrees. The signals are further conducted by means of switches 114 and 134 to mixers 116 and 136 where the mixing frequency is now determined by a signal coming from the GSM synthesizer 150 via switch 161. The signals produced by the mixers are further conducted to the baseband RX signal processing unit 139.

The DCS synthesizer comprises in a known manner a phase-locked loop (PLL) which includes a voltage-controlled oscillator (VCO) 141 the output signal of which is amplified at amplifier 146 thus producing the synthesizer output signal. The frequency of the signal from oscillator 141 is divided by an integer Y in divider 142 and the resulting signal is conducted to phase comparator 43. Similarly, the frequency of the signal generated by reference oscillator 158 is divided by an integer X in divider 144 and conducted to phase comparator 143. The phase comparator produces a signal proportional to the phase difference of said two input signals, which signal is conducted to a low-pass filter (LPF) 145 producing a filtered signal that controls the voltage-controlled oscillator 141 The phase-locked loop described above operates in a known manner in which the output frequency of the synthesizer becomes locked to the frequency coming to the phase comparator from the reference frequency branch. The output frequency is controlled by varying the divisor Y.

The GSM synthesizer 150 comprises a voltage-controlled oscillator 150, amplifier 156, dividers 152 and 154, phase comparator 153 and a low-pass filter 155. The GSM synthesizer operates like the DCS synthesizer described above, but the output frequency of the GSM synthesizer corresponds to GSM frequency bands.

In the transmitter part, a baseband complex transmit (TX) signal is processed in a TX signal processing unit wherefrom the in-phase and quadrature components of the signal are conducted to mixers 162 and 182 that produce a carrier-frequency signal by multiplying the input signal by the mixing signal. If the transmission is at the DCS frequency, switch 161 selects the DCS synthesizer's output signal as the mixing signal. The carrier-frequency signal is conducted through switch 164 to the DCS branch where a 90-degree phase shift is first produced between the in-phase component and quadrature component, and the resulting signals are then summed, block 166. The resulting DCS signal is conducted to bandpass filter 168, amplifier 170, and bandpass filter 172. The RF signal thus produced is further conducted to the antenna 102 via switch 180.

If the transmission is at the GSM frequency, the output signal of the GSM synthesizer is used as the mixing signal. The resulting carrier-frequency signal is conducted to the GSM branch in which it is processed in the same manner as in the DCS branch blocks 186, 188, 190 and 192. The RF signal thus produced is conducted to the antenna 102 via switch 180. One and the same antenna 102 can be used in both transmission and reception if the TX and RX circuits are coupled to the antenna through a duplex filter, for example. If the apparatus is designed to operate in two or more frequency bands, it needs separate filters for each frequency band.

The circuit arrangement described above has, however, some disadvantages. First, separate carrier-frequency signal branches in the receiver and m the transmitter add to the complexity, size and manufacturing costs of the transceiver. Second, each operating frequency band needs a separate synthesizer of its own.

An object of the invention is to provide a simple solution for realizing a programmable transceiver operating in a plurality of systems in such a manner that the aforementioned disadvantages related to the prior art can be avoided.

In the direct conversion based transceiver according to the invention signal processing can be performed using one and the same signal processing line regardless of the system. This is achieved using the signal processing steps set forth below.

The method according to the invention for processing signals received from different radio interfaces of communication systems is characterized in that it comprises steps in which

The method according to the invention for processing signals transmitted to different radio interfaces of communication systems is characterized in that it comprises steps in which

The direct-conversion receiver according to the invention operating at different interfaces of communication systems is characterized in that it comprises

The direct-conversion transmitter according to the invention operating at different radio interfaces of communication systems is characterized in that it comprises

Other preferred embodiments of the invention are described in the dependent claims.

In the present invention, signal band limiting is advantageously performed at the baseband frequency so that there is no need for “steep” filters and, therefore, system-specific filter lines. Filtering can thus be performed as low-pass filtering using a filter with a controllable cut-off frequency. This way, it is possible to completely avoid separate system-specific channel filtering circuits.

To enable the generation of mixing frequencies of the different operating frequency bands by one and the same synthesizer it is advantageously used frequency division of the synthesizer output signal. If the synthesizer's operating frequency is set higher than the frequencies used in the systems, it is possible to generate, in conjunction with the synthesizer frequency division, two mixing signals with a 90-degree phase difference, thus avoiding the need for phase shifters on the signal line and achieving a good phase accuracy.

Using the solution according to the invention it is possible to realize a general-purpose transceiver which is considerably simpler and more economical to manufacture than prior-art solutions. The circuit arrangement according to the invention requires only one TX signal branch and one RX signal branch. Moreover, one and the same synthesizer may be used to generate the mixing signals. Furthermore, there is no need for channel filters operating at the radio frequency. Therefore, the circuitry can be easily integrated. Since the invention involves only a few components, the advantages of the transceiver according to the invention include small size and low power consumption.

The invention will now be described in more detail with reference to the accompanying drawing wherein

FIG. 1 shows a block diagram of a dual-band direct-conversion transceiver according to the prior art,

FIG. 2 shows in the form of block diagram a solution according to the invention for a direct-conversion transceiver operating in multiple systems.

FIG. 1 was already discussed in conjunction with the description of the prior art. Next, a transceiver according to the invention will be described, referring to FIG. 2.

FIG. 2 shows in the form of block diagram a transceiver according to the invention. A RF signal received through an antenna is conducted via matching circuits 1 to controllable bandpass filters 2. The matching circuits 1 may advantageously be controllable (AX) with respect to the operating frequency band. A controllable bandpass filter 2 may be advantageously realized using a plurality of bandpass filters so that the RF signal is conducted via switch elements controlled by a control signal FX1 from the matching circuit 1 to the bandpass filter that corresponds to the selected operating frequency band. The bandpass filter may also be realized so as to be adjustable and tuneable by means of programming. The bandpass filtered carrier-frequency signal is further conducted to a low-noise amplifier 4, the gain of which is advantageously controllable. The control signal is marked GX1 in the drawing. In addition to amplifier 4, it is also possible to have integrated amplifiers in connection with the bandpass filters.

The signal is then conducted to a mixer 5 in which the carrier-frequency signal is mixed with an RX mixing signal at the receive frequency to produce a baseband quadrature signal. The RX mixing signal is advantageously generated by a synthesizer 10 the output signal frequency of which is divided by a divider 11 so as to correspond to the selected receive frequency. The synthesizer 10 operates in a similar manner as the synthesizers depicted in FIG. 1. Thus it comprises a voltage-controlled oscillator VCO which produces an output signal. The frequency of the VCO output signal is divided by S1 in a divider in the phase-locked loop PLL. The resulting signal is conducted to a first input of a phase comparator in the phase-locked loop. Similarly, the frequency of a signal generated by a reference oscillator in the phase-locked loop PLL is divided by an integer and conducted to a second input of the phase comparator. The phase comparator produces a signal which is proportional to the phase difference of the two input signals and conducted to a low-pass filter, and the filtered signal then controls the voltage-controlled oscillator VCO. The output frequency is controlled by varying the divisor S1.

The synthesizer output signal is divided in divider 11 by N1 so that the RX mixing signal corresponds to the selected receive frequency band. The output frequency of the synthesizer may be e.g. in the 4-GHz band, so that with 2-GHz systems the synthesizer output frequency is divided by two, and with 1-GHz systems it is divided by four (N1). This way, systems operating in the 1-GHz and 2-GHz bands can be covered with a synthesizer the operating frequency band of which is narrow with respect to the operating frequency.

To produce a quadrature baseband signal the mixer needs two mixing signals with a phase shift of 90 degrees. Phase-shifted components may be produced by a phase shifter in connection with the mixer or they may be produced as quotients generated already in the frequency divider 11, thus achieving an accurate phase difference. Therefore, it is advantageous to use a synthesizer operating frequency which is a multiple of the highest system frequency.

The in-phase component 1 and quadrature component Q from the mixer 5 are further conducted to low-pass filters 6. The higher cut-off frequency of the low-pass filters is advantageously controllable with control signal FX3. Thus the filtering can be performed at a bandwidth corresponding to the selected radio interface, and since the filtering is performed at baseband, it is easy to get the filtering function steep. Also, no strict demands are set on the bandpass filtering (2) of the RF signal.

The baseband signal is further conducted to a gain control block 7 which possibly includes an offset voltage correction block. On the other hand, considering the broad bandwidth of the CDMA system, the offset voltage can easily be removed by high-pass filtering. The amplifier advantageously realizes automatic gain control (AGC). Finally, the signal is convened digital in an analog-to-digital converter 8, and the digital baseband signal is further processed in a digital signal processor (DSP) 9. Channel filtering may also be performed digitally in the DSP, whereby the low-pass filtering of the baseband signal may be performed using a fixed cut-off frequency. Then, however, the dynamics of the analog-to-digital converter must be considerably better.

In the transmitter part, a quadrature baseband signal is first digitally generated in block 9 on the basis of the information signal to be sent. The components of the digital signal are converted analog by digital-to-analog converters 14, whereafter the analog signals are low-pass filtered by low-pass filters 15. Advantageously, the cutoff frequency of the low-pass filters can be controlled with control signal FX4 so as to correspond to the specifications of the selected radio interface.

A TX mixing signal at the carrier frequency is generated by a synthesizer 13 and divider 12. The synthesizer 13 operates in a similar manner as the synthesizer 10 in the receiver pan. Moreover, the synthesizers may share a reference oscillator. The frequency of the synthesizer output signal is controlled with control signal S2 within the synthesizer's operating frequency range. The frequency of the output signal from synthesizer 13 is divided in divider 12 so as to correspond to the selected transmission frequency band. Components phase-shifted by 90 degrees are generated from the TX mixing signal in order to perform complex mixing in mixer 16. The phase-shifted components may be generated in the same way as in the receiver part.

The signal at the carrier frequency is then amplified in an amplifier 17, the gain of which is advantageously controllable in order to set the transmission power and realize automatic gain control (AGC). The control signal is marked GX3 in FIG. 2. The signal is then conducted to a power amplifier 18. The operating frequency band of the power amplifier is advantageously selectable with control signal BX. This can be achieved e.g. such that the amplifier comprises partly separate signal lines for the different operating frequency bands.

The RF signal generated is filtered by a bandpass filter 3. The pass band of the bandpass filter is advantageously controllable with control signal FX2. This can be realized in the same way as in the receiver part. The receiver and transmitter part filters 2 and 3 are advantageously realized in duplex filter pairs for each transmit-receive frequency band associated with a given system. The filters may advantageously be surface acoustic wave (SAW) or bulk acoustic wave (BAW) filters so that several filters with their switches may be attached to one component.

The control signals in the mobile station transceiver according to FIG. 2 are preferably generated in a control block of the mobile station which advantageously comprises a processing unit such as a microprocessor. The control block generates the signal on the basis of a system switch instruction input from the keypad of the mobile station, for example. System selection may be e.g. menu-based so that the desired system is selected by choosing it from a displayed menu by pressing a certain key on the keypad. The control block then generates the control signals that correspond to the selected system. The system switch instruction may also come via the mobile communication system in such a manner that data received from the system may include a system switch instruction on the basis of which the control block performs the system switch. Advantageously, a control program is stored in a memory unit used by the control block, which control program monitors the received data and, as it detects a system switch instruction in the data, gives the control block an instruction to set the control signals into states according to the selection instruction.

The implementation of the blocks described above is not illustrated in more detail as the blocks can be realized on the basis of the information disclosed above, applying the usual know-how of a person skilled in the art.

Above it was described embodiments of the solution according to the invention. Naturally, the principle according to the invention may be modified within the scope of the invention as defined by the claims appended hereto, e.g. as regards implementation details and fields of application. It is especially noteworthy that the solution according to the invention may be well applied to communication systems other than the mobile communication systems mentioned above. Apart from the cellular radio interface proper, the solution may be used to realize e.g. a GPS receiver for the location of a mobile station or other apparatus. Furthermore, the operating frequencies mentioned are given by way of example only, and the implementation of the invention is in no way restricted to them.

It is also noteworthy that the solution according to the invention may be applied to all current coding techniques such as the narrow-band FDMA (Frequency Division Multiple Access) and TDMA (Time Division Multiple Access), as well as the broadband CDMA (Code Division Multiple Access) technique. In addition, the solution according to the invention may be used to realize an FM (Frequency Modulation) receiver.

Below is a table listing some of the so-called second generation mobile communication systems to which the present invention may be applied. The table shows the most important radio interface related characteristics of the systems.

CELLULAR SYSTEM
DECT PHS
GSM Global Digital Personal
System for PDC Personal European Handy
IS-95 US Mobile Digital Cordless Phone
AMPS IS-54/136 CDMA Communications DCS 1800 Cellular Telephone System
RX FREQ. (MHz) 869-894 869-894 869-894 935-960 1805-1880 810-826, 1880-1900 1895-1918
1429-1453
TX FREQ. (MHz) 824-849 824-849 824-849 890-915 1710-1785 940-956 1880-1900 1895-1918
1477-1501
RF BANDWIDTH 25 MHz 25 MHz  25 MHz  25 MHz  75 MHz 16 MHz, 24 MHz   20 MHz  23 MHz
MULTIPLE ACCESS FDMA TDMA/ CDMA/ TDMA/ TDMA/ TDMA/ TDMA/ TDMA/
METHOD FDMA FDMA FDMA FDMA FDMA FDMA FDMA
DUPLEX METHOD FDD FDD FDD FDD FDD FDD TDD TDD
NUMBER OF 832 832, 3 users/ 20, 798 users/ 124, 8 users/ 374, 8 users/ 1600, 3 users/ 10, 12 users/ 300, 4 users/
CHANNELS channel channel channel channel channel channel channel
CHANNEL SPACING 30 kHz 30 kHz 1250 kHz 200 kHz 200 kHz 25 kHz 1.728 MHz 300 kHz
MODULATION FM π/4 QPSK/ GMSK 0.3 GMSK 0.3 π/4 GFSK 0.3 π/4
DQPSK OQPSK Gaussian Gaussian DQPSK Gaussian DQPSK
filter filter filter

Below is another table listing some of the so-called third generation mobile communication systems to which the present invention may be applied. The table shows the most important radio interface related characteristics of the system.

CELLULAR SYSTEM WCDMA
RX FREQ. (MHz) 2110-2170 1900-1920
TX FREQ. (MHz) 1920-1980 1900-1920
MULTIPLE ACCESS METHOD CDMA TDMA
DUPLEX METHOD FDD TDD
CHANNEL SPACING 5 MHz 5 MHz
MODULATION QPSK
CHANNEL BIT RATE 144 kb/s in rural outdoor,
500 kb/s in urban outdoor and
up to 2 Mb/s in indoor

Kaltiokallio, Kim, Väisänen, Risto

Patent Priority Assignee Title
Patent Priority Assignee Title
4254504, Aug 08 1978 ALCATEL NETWORK SYSTEMS, INC Control apparatus for a transceiver employing a programmable memory
4395776, Sep 27 1979 Toyo Communication Equipment Co., Ltd. Transmitter having a phase synchronizing system
4731796, Oct 23 1985 STC, PLC, A BRITISH COMPANY Multi-mode radio transceiver
4736390, Oct 15 1986 ITT Corporation Zero IF radio receiver apparatus
4761798, Apr 02 1987 ITT CORPORATION, 320 PARK AVE , NEW YORK, NY 10022 A CORP OF DE Baseband phase modulator apparatus employing digital techniques
4768187, Jul 08 1985 U S PHILIPS CORPORATION, 100 EAST 42ND STREET, NEW YORK NY 10017 Signal transmission system and a transmitter and a receiver for use in the system
4870699, Mar 26 1986 ERICSSON GE MOBILE COMMUNICATIONS INC Method and apparatus for controlling the frequency of operation and at least one further variable operating parameter of a radio communications device
4972455, Jun 23 1989 Motorola, Inc Dual-bandwidth cellular telephone
5187809, Aug 24 1990 Motorola, Inc. Dual mode automatic gain control
5291516, May 13 1991 Intel Corporation Dual mode transmitter and receiver
5438692, Nov 26 1992 CALLAHAN CELLULAR L L C Direct conversion receiver
5465409, Mar 07 1994 Google Technology Holdings LLC Radio architecture with dual frequency source selection
5483691, Jun 08 1992 MOTOROLA SOLUTIONS, INC Zero intermediate frequency receiver having an automatic gain control circuit
5511235, May 02 1994 NXP, B V F K A FREESCALE SEMICONDUCTOR, INC Apparatus for detecting a signaling channel during scanning including a controlled frequency converter circuit and a controlled filter bandwidth, and a method therefor
5519885, Nov 05 1991 Nokia Mobile Phones Ltd. Method to generate different frequency signals in a digital radio telephone
5548825, Jul 06 1993 Mitsubishi Denki Kabushiki Kaisha Radio transmitter with active band-pass filtering
5557642, Aug 25 1992 GLENAYRE ELECTRONICS, INC Direct conversion receiver for multiple protocols
5564076, Jun 25 1993 Alcatel Mobile Communication France Portable digital signal transceiver providing communication via a terrestrial network and via a satellite network
5574985, Feb 14 1992 CASSIDIAN FINLAND OY Radio transmitter receiver for operation in plural radio systems having unequal bands of operating frequencies represented by channel numbers
5584068, Nov 26 1992 ST Wireless SA Direct conversion receiver
5590412, Nov 19 1993 Sanyo Electric Co., Ltd. Communication apparatus using common amplifier for transmission and reception
5642378, Nov 17 1994 MERIDIAN WIRELESS TECHNOLOGIES, INC Dual mode analog and digital cellular phone
5694414, May 13 1991 Intel Corporation Multi-band, multi-mode spread-spectrum communication system
5710998, Dec 19 1995 Google Technology Holdings LLC Method and apparatus for improved zero intermediate frequency receiver latency
5722053, Sep 30 1994 Qualcomm Incorporated Multiple frequency communication device
5732330, Jul 02 1996 Ericsson Inc. Dual band transceiver
5734970, Feb 08 1995 Sony Corporation Single oscillator transceiver with multiple frequency converters
5751249, Sep 14 1994 Pendragon Wireless LLC Radio transmission system and a radio apparatus for use in such a system
5752169, Mar 14 1995 Sony Corporation Integrated circuit and transmitter/receiver
5757858, Dec 23 1994 Qualcomm Incorporated Dual-mode digital FM communication system
5758266, Sep 30 1994 Qualcomm Incorporated Multiple frequency communication device
5758271, Jun 02 1995 Google Technology Holdings LLC Apparatus and method for optimizing the quality of a received signal in a radio receiver
5786782, Jan 05 1996 RPX Corporation Multiplexed signal conversion
5794119, Nov 21 1995 ALCATEL USA SOURCING, L P Subscriber frequency control system and method in point-to-multipoint RF communication system
5794159, Aug 07 1996 Nokia Technologies Oy Dual band mobile station employing cross-connected transmitter and receiver circuits
5796772, May 13 1991 Intel Corporation Multi-band, multi-mode spread-spectrum communication system
5819165, Nov 14 1994 Nokia Mobile Phones Ltd. System for regulating the power output of and linearizing the transmission signal from a radio transmitter
5822366, Apr 21 1995 Qualcomm Incorporated Transceiver and method for generating and processing complex I/Q-signals
5825809, Jan 20 1996 SAMSUNG ELECTRONICS CO , LTD Digital filter having an energy level detector for selecting a coefficient
5867535, Aug 31 1995 Northrop Grumman Systems Corporation Common transmit module for a programmable digital radio
5872810, Jan 26 1996 Agilent Technologies, Inc Programmable modem apparatus for transmitting and receiving digital data, design method and use method for said modem
5894592, Apr 17 1997 QUARTERHILL INC ; WI-LAN INC Wideband frequency synthesizer for direct conversion transceiver
5896562, Apr 01 1996 Qualcomm Incorporated Transmitter/receiver for transmitting and receiving of an RF signal in two frequency bands
5909643, Nov 24 1995 COLLABO INNOVATIONS, INC Transmitter power varying device having a bypass line for a power amplifier
5926749, Mar 29 1996 ALPS Electric Co., Ltd. Amplifier circuit having common AGC to IF and RF amplifiers for use in a transmitter
5926750, Apr 09 1996 NEC Corporation Receiver
5953641, Dec 22 1995 Alcatel Mobile Phones Multimode radio communication terminal
5955992, Feb 12 1998 DEPARTMENT 13, INC Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
5963852, Mar 24 1997 BlackBerry Limited Dual band mobile station
5983081, Mar 29 1996 Nokia Mobile Phones, Ltd. Method for generating frequencies in a direct conversion transceiver of a dual band radio communication system, a direct conversion transceiver of a dual band radio communication system and the use of this method and apparatus in a mobile station
6006080, Aug 08 1996 Matsushita Electric Industrial Co., Ltd. Receiving mixer circuit for mobile radio transceiver designed to operate with multiple modulation modes and multiple frequency bands
6009119, Mar 25 1997 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Adaptive power leveling of an RF transceiver utilizing information stored in non-volatile memory
6009126, Sep 06 1996 HANGER SOLUTIONS, LLC Zero-IF receiver
6014571, Jun 10 1996 Matsushita Electric Industrial Co., Ltd. Multiband mobile unit communication apparatus
6018553, Sep 18 1996 QUARTERHILL INC ; WI-LAN INC Multi-level mixer architecture for direct conversion of FSK signals
6028850, Jul 10 1998 HYUNDAI ELECTRONICS AMERICA, INC Wireless transceiver and frequency plan
6029052, Jul 01 1997 Telefonaktiebolaget LM Ericsson Multiple-mode direct conversion receiver
6029058, Jul 19 1996 LELAND STANFORD JUNIOR UNIVERSITY, THE, BOARD OF TRUSTEES OF, THE Spectrum control for direct conversion radio frequency reception
6049722, Sep 13 1994 Kabushiki Kaisha Toshiba Radio communication apparatus for use in dual-mode radio communication system and having factor variable control means dependent on the set mode
6054887, Jul 09 1997 Denso Corporation Offset voltage correction circuit
6075996, Nov 28 1996 Samsung Electronics Co., Ltd. Intermediate frequency selecting device for use in dual band cellular telephone and method thereof
6081697, Mar 21 1997 FINGERPRINT CARDS AB Multi-carrier radio system and radio transceiver implementation
6085075, Dec 05 1997 U.S. Philips Corporation Communication system, a communication device and a frequency synthesizer
6125268, Nov 19 1997 Ericsson Inc. Tuning bandwidth minimization for low voltage dual band receiver
6134452, Nov 23 1998 Google Technology Holdings LLC Multiple band mixer with common local oscillator
6151354, Dec 19 1997 TELEDYNE SCIENTIFIC & IMAGING, LLC Multi-mode, multi-band, multi-user radio system architecture
6163710, Oct 20 1997 Ericsson, Inc. Method and apparatus for compliance to multiple frequency plans
6167245, May 29 1998 Silicon Laboratories Inc Method and apparatus for operating a PLL with a phase detector/sample hold circuit for synthesizing high-frequency signals for wireless communications
6169733, May 12 1997 Microsoft Technology Licensing, LLC Multiple mode capable radio receiver device
6175746, Apr 08 1996 Matsushita Electric Industrial Co., Ltd. Multiband mobile unit communication apparatus
6188877, Sep 29 1997 Unwired Planet, LLC Dual-band, dual-mode power amplifier with reduced power loss
6194947, Jul 24 1998 GCT SEMICONDUCTOR, INC VCO-mixer structure
6208875, Apr 08 1998 Intel Corporation RF architecture for cellular dual-band telephones
6215988, May 15 1997 Qualcomm Incorporated Dual band architectures for mobile stations
6243569, Aug 12 1998 MEDIATEK, INC Direct conversion circuit for radio frequency signals
6256511, Feb 16 1996 Apple Inc Dual-mode radio architecture
6269253, Sep 26 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Multi-mode wireless communication system
6278864, Apr 20 1995 Fujitsu Limited (Japan) Radio tranceiver for data communications
6282184, Dec 22 1997 Microsoft Technology Licensing, LLC Common digitizing rate for multiple air interfaces for generic cell sites in cellular radio
6298226, Nov 30 1998 Intel Corporation Receiver for RF signals
6308050, Mar 23 1998 Freescale Semiconductor, Inc Dual band mobile phone using the same intermediate frequency for both bands
6337976, Dec 18 1997 NEC Corporation Selective-calling radio receiver using direct conversion method
6356746, Jul 24 1998 Matsushita Electric Industrial Co., Ltd. Direct converting receiver
6366622, Dec 18 1998 Qualcomm Incorporated Apparatus and method for wireless communications
6366765, Mar 30 1998 Hitachi Kokusai Electric Inc Receiver
6411646, Jun 30 1998 ALPHA INDUSTRIES, INC ; Skyworks Solutions, Inc; WASHINGTON SUB, INC Direct conversion time division duplex radio, direct sequence spread spectrum cordless telephone
6415001, Dec 01 1998 Intel Corporation System and process for shared frequency source multi-band transmitters and receivers
6434401, Nov 13 1998 SAGEM SA Method for the setting of a multiband mobile telephony transmitter-receiver and mobile telephone thus obtained
6438462, Mar 26 1996 Daimler AG Semiconductor circuit for an electronic unit
6449264, Nov 18 1997 Google Technology Holdings LLC Radio transceiver with two frequency bands
6484038, Nov 19 1997 Ericsson Inc. Method and apparatus for generating a plurality of reference frequencies in a mobile phone using a common crystal reference oscillator
6484042, Aug 25 1999 Intel Corporation Secondary automatic gain control loops for direct conversion CDMA receivers
6510310, Jan 26 1998 WASHINGTON SUB, INC ; ALPHA INDUSTRIES, INC ; Skyworks Solutions, Inc Dual mode phone architecture utilizing a single transmit-receive switch
6516023, Nov 06 1996 Nera Asa System and method of downconversion where the received signal is downconverted
6535499, Feb 27 1998 Fujitsu Limited Multi-mode communication device
6535561, Nov 17 1997 Ericsson Inc. Dual-mode modulation systems and methods including oversampling of narrow bandwidth signals and DC offset compensation
6535748, May 27 1998 Nokia Technologies Oy Wireless communication transceiver having a dual mode of operation
6584090, Apr 23 1999 Cisco Technology, Inc System and process for shared functional block CDMA and GSM communication transceivers
6584305, May 13 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Direct conversion radio receiving system using digital signal processing for channel filtering and down conversion to base band
6600911, Sep 30 1998 Mitsubishi Denki Kabushiki Kaisha Even harmonic direct-conversion receiver, and a transmitting and receiving apparatus using the same
6621853, Aug 28 1998 Samsung Electronics Co., Ltd. Frequency synthesizing device and method for dual frequency hopping with fast lock time
6697606, Nov 06 1997 Koninklijke Philips Electronics N V Transceiver and a telecommunication system having a transceiver
6813485, Oct 21 1998 ParkerVision, Inc Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same
6826237, Sep 30 1998 Pendragon Wireless LLC Radio transmitter
6954624, Sep 12 2000 Nokia Siemens Networks Oy Transmitter and wireless communication device having a low power bypass branch
7065327, Sep 10 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Single-chip CMOS direct-conversion transceiver
7082293, Oct 21 1999 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Adaptive radio transceiver with CMOS offset PLL
7415247, Nov 26 1998 Nokia Technologies Oy Method and arrangement for transmitting and receiving RF signals through various radio interfaces of communication systems
7672645, Jun 15 2006 Gula Consulting Limited Liability Company Programmable transmitter architecture for non-constant and constant envelope modulation
8102929, Feb 12 2009 Qualcomm Incorporated Low power ultra wideband transceiver
8768408, Nov 26 1998 Nokia Technologies Oy Method and arrangement for transmitting and receiving RF signals through various radio interfaces of communication systems
20060178165,
20080176523,
CN1148444,
CN1187270,
DE19712161,
DE69735156,
DE69736793,
DE69737000,
EP581572,
EP581573,
EP599409,
EP631400,
EP633674,
EP782358,
EP797311,
EP798880,
EP800283,
EP809366,
EP813312,
EP823788,
EP878974,
EP653851,
GB2215945,
GB2287144,
GB2312107,
GB2312108,
JP10032520,
JP10065749,
JP10093475,
JP10224250,
JP5075495,
JP7059162,
JP9130275,
JP9275358,
JP9312578,
WO9221195,
WO9706604,
WO9853625,
WO9901933,
WO9917445,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 08 2014Nokia Technologies Oy(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Nov 17 20184 years fee payment window open
May 17 20196 months grace period start (w surcharge)
Nov 17 2019patent expiry (for year 4)
Nov 17 20212 years to revive unintentionally abandoned end. (for year 4)
Nov 17 20228 years fee payment window open
May 17 20236 months grace period start (w surcharge)
Nov 17 2023patent expiry (for year 8)
Nov 17 20252 years to revive unintentionally abandoned end. (for year 8)
Nov 17 202612 years fee payment window open
May 17 20276 months grace period start (w surcharge)
Nov 17 2027patent expiry (for year 12)
Nov 17 20292 years to revive unintentionally abandoned end. (for year 12)