An example particle therapy system includes a particle accelerator to output a particle beam, where the particle accelerator includes: a particle source to provide pulses of ionized plasma to a cavity, where each pulse of the particle source has a pulse width corresponding to a duration of operation of the particle source to produce the corresponding pulse, and where the particle beam is based on the pulses of ionized plasma; and a modulator wheel having different thicknesses, where each thickness extends across a different circumferential length of the modulator wheel, and where the modulator wheel is arranged to receive a precursor to the particle beam and is configured to create a spread-out Bragg peak for the particle beam.

Patent
   9192042
Priority
Sep 28 2012
Filed
Sep 27 2013
Issued
Nov 17 2015
Expiry
Mar 07 2034
Extension
161 days
Assg.orig
Entity
unknown
0
732
EXPIRED
17. A particle therapy system comprising:
a particle accelerator to output a particle beam, comprising:
a particle source to provide pulses of ionized plasma to a cavity, each pulse of the particle source having a pulse width corresponding to a duration of operation of the particle source to produce the corresponding pulse, the particle beam being based on the pulses of ionized plasma; and
a modulator wheel having different thicknesses, each thickness extending across a different circumferential length of the modulator wheel, the modulator wheel being arranged to receive a precursor to the particle beam and being configured to create a spread-out Bragg peak for the particle beam;
wherein the particle therapy system is configured so that pulse widths of the particle source vary with rotational positions of the modulator wheel.
1. A particle therapy system comprising:
a particle accelerator to output a particle beam, comprising:
a particle source to provide pulses of ionized plasma to a cavity, each pulse of the particle source having a pulse width corresponding to a duration of operation of the particle source to produce the corresponding pulse, the particle beam being based on the pulses of ionized plasma; and
a modulator wheel having different thicknesses, each thickness extending across a different circumferential length of the modulator wheel, the modulator wheel being arranged to receive a precursor to the particle beam and configured to create a spread-out Bragg peak for the particle beam;
one or more first input/output (I/O) modules operable at a first speed, the one or more first I/O modules being configured to send machine instructions to one or more motor controllers, at least one motor controller for controlling the modulator wheel;
one or more second I/O modules operable at a second speed that is greater than the first speed, at least one of the second I/O modules being configured to send machine instructions to the particle source so that pulse widths of the particle source vary with rotational positions of the modulator wheel.
2. The particle therapy system of claim 1, further comprising;
a therapy control computer programmed to receive prescription information from a hospital, to translate the prescription information to machine information, and to send treatment records to the hospital; and
a master control computer having a real-time operating system, the master control computer programmed to receive machine information from the therapy control computer, to translate the machine information into machine instructions, and send the machine instructions to one or more of the first I/O modules and the second I/O modules.
3. The particle therapy system of claim 2, further comprising an optical fiber over which is monitored a rotational speed and position of the modulator wheel.
4. The particle therapy system of claim 1, wherein the first I/O modules comprise programmable logic controllers (PLC).
5. The particle therapy system of claim 4, wherein at least one of the PLCs is programmed to send machine instructions to motor controllers for controlling a field shaping wheel system for shaping the particle beam prior to output.
6. The particle therapy system of claim 4, wherein at least one of the PLCs is programmed to send machine instructions to a motor controller for controlling a scattering system for collimating the particle beam prior to output.
7. The particle therapy system of claim 4, further comprising:
a radio frequency (RF) system to sweep RF frequencies through the cavity to extract particles from a plasma column produced by the particle source, the RF system comprising a rotating capacitor;
wherein at least one of the PLCs is programmed to send machine instructions to a motor controller that controls the rotating capacitor.
8. The particle therapy system of claim 1, wherein a speed of the first I/O modules is on the order of milliseconds and a speed of the second I/O modules is on the order of one or more hundreds of nanoseconds.
9. The particle therapy system of claim 4, further comprising:
a rotatable gantry on which the particle accelerator is mounted;
wherein at least one of the PLCs is programmed to send machine instructions to a motor controller that controls the rotatable gantry.
10. The particle therapy system of claim 4, wherein two or more of the PLCs are configured to communicate with one another.
11. The particle therapy system of claim 1, wherein the second I/O modules comprise field-programmable gate arrays (FPGA).
12. The particle therapy system of claim 11, further comprising:
a circuit board comprising a microprocessor;
at least one of the FPGAs being on the circuit board and in communication with the microprocessor;
wherein the microprocessor is programmed to communicate with a control computer.
13. The particle therapy system of claim 11, further comprising:
a radio frequency (RF) system to sweep RF frequencies through the cavity to extract particles from a plasma column produced by the particle source;
wherein at least one of the FPGAs comprises an RF control module, the RF control module being configured to receive information about a rotation of the modulator wheel and, based thereon, to coordinate operational aspects of the particle source and the RF system.
14. The particle therapy system of claim 13, wherein coordinating operational aspects of the particle source and the RF system comprises turning the particle source on or off based on a rotational position of the modulator wheel, and turning the RF system on or off based on a rotational position of the modulator wheel.
15. The particle therapy system of claim 14, wherein the RF control module is further configured to send machine instruction to the particle source to turn-on when an RF voltage is at a certain frequency and to turn-off when the RF voltage is at a certain frequency.
16. The control system of claim 14, wherein coordinating operational aspects of the particle source comprises specifying pulse widths during turn-on times of the particle source.

Priority is hereby claimed to U.S. Provisional Application No. 61/707,645, which was filed on Sep. 28, 2012. The contents of U.S. Provisional Application No. 61/707,645 are hereby incorporated by reference into this disclosure.

This disclosure relates generally to a control system for a particle accelerator.

Particle therapy systems use a particle accelerator to generate a particle beam for treating afflictions, such as tumors. A control system manages the behavior of the particle accelerator to ensure that it operates as desired.

An example particle therapy system may include a particle accelerator to output a particle beam, where the particle accelerator includes: a particle source to provide pulses of ionized plasma to a cavity, where each pulse of the particle source has a pulse width corresponding to a duration of operation of the particle source to produce the corresponding pulse, and where the particle beam is based on the pulses of ionized plasma; and a modulator wheel having different thicknesses, where each thickness extends across a different circumferential length of the modulator wheel, and where the modulator wheel is arranged to receive a precursor to the particle beam and is configured to create a spread-out Bragg peak for the particle beam. The example particle therapy system also includes one or more first input/output (I/O) modules operable at a first speed, where the one or more first I/O modules are configured to send machine instructions to one or more motor controllers, at least one of which is for controlling the modulator wheel; and one or more second I/O modules operable at a second speed that is greater than the first speed, at least one of which is configured to send machine instructions to the particle source so that pulse widths of the particle source vary with rotational positions of the modulator wheel. The example particle therapy system may also include one or more of the following features:

The example particle therapy system may include: a therapy control computer programmed to receive prescription information from a hospital, to translate the prescription information to machine information, and to send treatment records to the hospital; and a master control computer having a real-time operating system, where the master control computer is programmed to receive machine information from the therapy control computer, to translate the machine information into machine instructions, and to send the machine instructions to one or more of the first I/O modules and the second I/O modules.

The example particle therapy system may include an optical fiber over which is monitored a rotational speed and position of the modulator wheel. A speed of the first I/O modules may be on the order of milliseconds and a speed of the second I/O modules may be on the order of one or more hundreds of nanoseconds.

The first I/O modules may be programmable logic controllers (PLC). At least one of the PLCs may be programmed to send machine instructions to motor controllers for controlling a field shaping wheel system for shaping the particle beam prior to output. At least one of the PLCs may be programmed to send machine instructions to a motor controller for controlling a scattering system for collimating the particle beam prior to output.

The example particle therapy system may include a radio frequency (RF) system to sweep RF frequencies through the cavity to extract particles from a plasma column produced by the particle source, where the RF system includes a rotating capacitor. At least one of the PLCs may be programmed to send machine instructions to a motor controller that controls the rotating capacitor. Two or more of the PLCs may be configured to communicate with one another.

The example particle therapy system may include a rotatable gantry on which the particle accelerator is mounted. At least one of the PLCs may be programmed to send machine instructions to a motor controller that controls the rotatable gantry.

The second I/O modules may be field-programmable gate arrays (FPGA). The example particle therapy system may include a circuit board including a microprocessor. At least one of the FPGAs may be on the circuit board and in communication with the microprocessor. The microprocessor may be programmed to communicate with a control computer.

The example particle therapy system may include a radio frequency (RF) system to sweep RF frequencies through the cavity to extract particles from a plasma column produced by the particle source. At least one of the FPGAs may be an RF control module. The RF control module may be configured to receive information about a rotation of the modulator wheel and, based thereon, to coordinate operational aspects of the particle source and the RF system. Coordinating operational aspects of the particle source and the RF system may include turning the particle source on or off based on a rotational position of the modulator wheel, and turning the RF system on or off based on a rotational position of the modulator wheel. The RF control module may be configured to send machine instruction to the particle source to turn-on when an RF voltage is at a certain frequency and to turn-off when the RF voltage is at a certain frequency. Coordinating operational aspects of the particle source may include specifying pulse widths during turn-on times of the particle source.

An example particle therapy system may include a particle accelerator to output a particle beam included of pulses and a depth modulator that is in a path of the particle beam. The depth modulator has a variable thickness and is movable so that the particle beam impacts different thicknesses of the depth modulator at different times. The particle therapy system is configured to control numbers of pulses that impact the different thicknesses of the depth modulator. The example particle therapy system may include one or more of the following features, either alone or in combination.

Movement of the depth modulator may be controllable so that different numbers of pulses impact at least two different thicknesses of the depth modulator. The particle therapy system may include a control system to provide control signals and a motor to control movement of the depth modulator in response to the control signals, where the movement is rotation that is controllable by the control signals.

Output of pulses from the accelerator may be controlled so that different numbers of pulses impact at least two different thicknesses of the depth modulator. The particle accelerator may include a particle source configured to generate a plasma stream from which the pulses are extracted, where the plasma stream is generated in response to voltage applied to ionized gas, and the voltage is controllable to turn the particle source on and off to control the number of pulses that impact the at least two different thicknesses. The particle accelerator may include a particle source configured to generate a plasma stream from which the pulses are extracted; and a radio frequency (RF) source to sweep frequencies and thereby extract one or more pulses from the plasma stream at each frequency sweep. The RF source may be controllable to control numbers of pulses that impact different thicknesses of the depth modulator. The RF source may be controllable to skip one or more frequency sweeps. The particle therapy system may be configured by including one or more structures to deflect pulses so as to control numbers of pulses that impact different thicknesses of the depth modulator.

An example particle therapy system may include a particle accelerator to output a particle beam, where the accelerator includes: a particle source to provide pulses of ionized plasma to a cavity, where each pulse of the particle source has a pulse width corresponding to a duration of operation of the particle source to produce the corresponding pulse, and where the particle beam is based on the pulses of ionized plasma; and a modulator wheel having different thicknesses, where each thickness extends across a different circumferential length of the modulator wheel, and where the modulator wheel is arranged to receive a precursor to the particle beam and is configured to create a spread-out Bragg peak for the particle beam. The particle therapy system may be configured so that pulse widths of the particle source vary with rotational positions of the modulator wheel.

Two or more of the features described in this disclosure, including those described in this summary section, may be combined to form implementations not specifically described herein.

Control of the various systems described herein, or portions thereof, may be implemented via a computer program product that includes instructions that are stored on one or more non-transitory machine-readable storage media, and that are executable on one or more processing devices. The systems described herein, or portions thereof, may be implemented as an apparatus, method, or electronic system that may include one or more processing devices and memory to store executable instructions to implement control of the stated functions.

The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.

FIG. 1 is a perspective view of an example particle therapy system.

FIG. 2 is an exploded perspective view of components of an example synchrocyclotron.

FIGS. 3, 4, and 5 are cross-sectional views of an example synchrocyclotron.

FIG. 6 is a perspective view of an example synchrocyclotron.

FIG. 7 is a cross-sectional view of a portion of an example reverse bobbin and windings.

FIG. 8 is a cross-sectional view of an example cable-in-channel composite conductor.

FIG. 9 is a cross-sectional view of an example particle source.

FIG. 10 is a perspective view of an example dee plate and a dummy dee.

FIG. 11 is a perspective view of an example vault.

FIG. 12 is a perspective view of an example treatment room with a vault.

FIG. 13 shows a patient positioned next to a particle accelerator.

FIG. 14 shows a patient positioned within an example inner gantry in a treatment room.

FIG. 15 is a block diagram showing an example of a control system for a particle accelerator.

FIG. 16 shows an example field shaping wheel system.

FIG. 17 is a side view showing a beam path that includes an example modulator wheel and an example scatterer.

FIG. 18 is a graph showing various Bragg peaks and the cumulative effect that produces a spread-out Bragg peak.

FIG. 19 is a side view of an example modulator wheel for producing Bragg peaks at different depths and intensity levels.

FIG. 20 is a top view of the modulator wheel of FIG. 19.

FIG. 21 is a graph showing a frequency sweep and a particle source pulse width output during a period of the frequency sweep.

FIG. 22 is a graph showing spread-out Bragg peaks at different depths within a patient.

FIG. 23 is a graph showing particle source pulse width relative to the angle of the modulation wheel for the spread-out Bragg peaks of FIG. 22.

Like reference symbols in the various drawings indicate like elements.

Described herein is an example of a control system for an example particle accelerator for use in a system, such as a proton or ion therapy system. The example particle therapy system includes a particle accelerator—in this example, a synchrocyclotron—mounted on a gantry. The gantry enables the particle accelerator to be rotated around a patient position, as explained in more detail below. In some implementations, the gantry is steel and has two legs mounted for rotation on two respective bearings that lie on opposite sides of a patient. The particle accelerator is supported by a steel truss that is long enough to span a treatment area in which the patient lies and that is attached stably at both ends to the rotating legs of the gantry. As a result of rotation of the gantry around the patient, the particle accelerator also rotates.

In an example implementation, the particle accelerator (e.g., the synchrocyclotron) includes a cryostat that holds a superconducting coil for conducting a current that generates a magnetic field (B). In this example, the cryostat uses liquid helium (He) to maintain the coil at superconducting temperatures, e.g., 4° Kelvin (K). Magnetic yokes are adjacent (e.g., around) the cryostat, and define a cavity in which particles are accelerated. The cryostat is attached to the magnetic yokes through straps or the like.

In this example implementation, the particle accelerator includes a particle source (e.g., a Penning Ion Gauge—PIG source) to provide a plasma column to the cavity. Hydrogen gas is ionized to produce the plasma column. A voltage source provides a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column. As noted, in this example, the particle accelerator is a synchrocyclotron. Accordingly, the RF voltage is swept across a range of frequencies to account for relativistic effects on the particles (e.g., increasing particle mass) when extracting particles from the column. The magnetic field produced by the coil causes particles accelerated from the plasma column to accelerate orbitally within the cavity. A ferromagnetic arrangement (e.g., a magnetic regenerator) is positioned in the cavity to adjust the existing magnetic field inside the cavity to thereby change locations of successive orbits of the particles accelerated from the plasma column so that, eventually, the particles output to an extraction channel that passes through the yokes. The extraction channel receives particles accelerated from the plasma column and outputs the received particles from the cavity. Elements both inside and outside the extraction channel shape and focus the particle beam for application.

A control system can control the behavior of the particle accelerator. In operation, a particle beam from the particle accelerator is applied to a patient in accordance with a particular treatment plan. A prescription defines operational characteristics of the particle therapy system that are used to implement the treatment plan. Although a prescription may specify any number of operational characteristics appropriate to a particular particle therapy system, in an implementation, the prescription specifies one or more of the following: particle dose, particle dose rate, patient position (as defined by a “couch” on which the patient lies), patient couch rotational angle, gantry rotational angle, beam field size, beam depth, an extent of the beam depth, a configuration of an aperture used to limit the area of the particle beam, and a configuration of a range compensating bolus (or, simply, “bolus”) used to customize the penetration depth of the particle beam.

The control system can include a Therapy Control Computer (TCC) that includes a user interface. In an example, the TCC is programmed to receive prescriptions from a hospital and to send treatment records to the hospital. The TCC can also translate the prescription into machine instructions, including, but not limited to, commands, parameters, and/or other machine-usable information.

The TCC can send the translated machine instructions to a Master Control Computer (MCC). The MCC can include a real-time operating system to execute commands at exact times in an exact order. In an example, the MCC is programmed to send machine instructions to slow and fast input/output modules.

In an example implementation, the slow I/O modules are used to send instructions to motor controllers. The motor controllers may control any movable component of the particle accelerator (e.g., field shaping wheels, scattering foils, a rotating capacitor, a depth modulator wheel, the gantry, etc.).

In an example implementation, the fast I/O modules are used for more time sensitive control. For example, it could be appropriate to use the fast I/O module to control an RF voltage source and/or a particle source (because it can be important for one to be turned at exact times relative to the other). The fast I/O modules can also be used to receive data that samples the position of the modulator wheel (because a very high sampling rate may be appropriate).

The slow and fast I/O modules use the machine instructions to configure the particle therapy system so that it has operational characteristics appropriate for the treatment plan. The particle therapy system is configurable on a case-by-case basis.

The techniques described herein for controlling the particle therapy system are not limited to use with a particular particle therapy system, but rather may be used in any appropriate particle therapy system. The foregoing techniques also may be used in other appropriate medical treatment or diagnostic systems.

An example of a particle therapy system in which the foregoing techniques may be used is provided below.

Referring to FIG. 1, a charged particle radiation therapy system 500 includes a beam-producing particle accelerator 502 having a weight and size small enough to permit it to be mounted on a rotating gantry 504 with its output directed straight (that is, essentially directly) from the accelerator housing toward a patient 506.

In some implementations, the steel gantry has two legs 508, 510 mounted for rotation on two respective bearings 512, 514 that lie on opposite sides of the patient. The accelerator is supported by a steel truss 516 that is long enough to span a treatment area 518 in which the patient lies (e.g., twice as long as a tall person, to permit the person to be rotated fully within the space with any desired target area of the patient remaining in the line of the beam) and is attached stably at both ends to the rotating legs of the gantry.

In some examples, the rotation of the gantry is limited to a range 520 of less than 360 degrees, e.g., about 180 degrees, to permit a floor 522 to extend from a wall of the vault 524 that houses the therapy system into the patient treatment area. The limited rotation range of the gantry also reduces the required thickness of some of the walls, which provide radiation shielding of people outside the treatment area. A range of 180 degrees of gantry rotation is enough to cover all treatment approach angles, but providing a larger range of travel can be useful. For example the range of rotation may be between 180 and 330 degrees and still provide clearance for the therapy floor space.

The horizontal rotational axis 532 of the gantry is located nominally one meter above the floor where the patient and therapist interact with the therapy system. This floor is positioned about 3 meters above the bottom floor of the therapy system shielded vault. The accelerator can swing under the raised floor for delivery of treatment beams from below the rotational axis. The patient couch moves and rotates in a substantially horizontal plane parallel to the rotational axis of the gantry. The couch can rotate through a range 534 of about 270 degrees in the horizontal plane with this configuration. This combination of gantry and patient rotational ranges and degrees of freedom allow the therapist to select virtually any approach angle for the beam. If needed, the patient can be placed on the couch in the opposite orientation and then all possible angles can be used.

In some implementations, the accelerator uses a synchrocyclotron configuration having a very high magnetic field superconducting electromagnetic structure. Because the bend radius of a charged particle of a given kinetic energy is reduced in direct proportion to an increase in the magnetic field applied to it, the very high magnetic field superconducting magnetic structure permits the accelerator to be made smaller and lighter. The synchrocyclotron uses a magnetic field that is uniform in rotation angle and falls off in strength with increasing radius. Such a field shape can be achieved regardless of the magnitude of the magnetic field, so in theory there is no upper limit to the magnetic field strength (and therefore the resulting particle energy at a fixed radius) that can be used in a synchrocyclotron.

Superconducting materials lose their superconducting properties in the presence of very high magnetic fields. High performance superconducting wire windings are used to allow very high magnetic fields to be achieved. Superconducting materials typically need to be cooled to low temperatures for their superconducting properties to be realized. In some examples described here, cryo-coolers are used to bring the superconducting coil windings to temperatures near absolute zero. Using cryo-coolers can reduce complexity and cost.

The synchrocyclotron is supported on the gantry so that the beam is generated directly in line with the patient. The gantry permits rotation of the cyclotron about a horizontal rotational axis that contains a point (isocenter 540) within, or near, the patient. The split truss that is parallel to the rotational axis, supports the cyclotron on both sides.

Because the rotational range of the gantry is limited, a patient support area can be accommodated in a wide area around the isocenter. Because the floor can be extended broadly around the isocenter, a patient support table can be positioned to move relative to and to rotate about a vertical axis 542 through the isocenter so that, by a combination of gantry rotation and table motion and rotation, any angle of beam direction into any part of the patient can be achieved. The two gantry arms are separated by more than twice the height of a tall patient, allowing the couch with patient to rotate and translate in a horizontal plane above the raised floor.

Limiting the gantry rotation angle allows for a reduction in the thickness of at least one of the walls surrounding the treatment room. Thick walls, typically constructed of concrete, provide radiation protection to individuals outside the treatment room. A wall downstream of a stopping proton beam may be about twice as thick as a wall at the opposite end of the room to provide an equivalent level of protection. Limiting the range of gantry rotation enables the treatment room to be sited below earth grade on three sides, while allowing an occupied area adjacent to the thinnest wall reducing the cost of constructing the treatment room.

In the example implementation shown in FIG. 1, the superconducting synchrocyclotron 502 operates with a peak magnetic field in a pole gap of the synchrocyclotron of 8.8 Tesla. The synchrocyclotron produces a beam of protons having an energy of 250 MeV. In other implementations the field strength could be in the range of 6 to 20 Tesla or 4 to 20 Tesla and the proton energy could be in the range of 150 to 300 MeV

The radiation therapy system described in this example is used for proton radiation therapy, but the same principles and details can be applied in analogous systems for use in heavy ion (ion) treatment systems.

As shown in FIGS. 2, 3, 4, 5, and 6, an example synchrocyclotron 10 (e.g., 502 in FIG. 1) includes a magnet system 12 that contains an particle source 90, a radiofrequency drive system 91, and a beam extraction system 38. The magnetic field established by the magnet system has a shape appropriate to maintain focus of a contained proton beam using a combination of a split pair of annular superconducting coils 40, 42 and a pair of shaped ferromagnetic (e.g., low carbon steel) pole faces 44, 46.

The two superconducting magnet coils are centered on a common axis 47 and are spaced apart along the axis. As shown in FIGS. 7 and 8, the coils are formed by of Nb3Sn-based superconducting 0.8 mm diameter strands 48 (that initially comprise a niobium-tin core surrounded by a copper sheath) deployed in a twisted cable-in-channel conductor geometry. After seven individual strands are cabled together, they are heated to cause a reaction that forms the final (brittle) superconducting material of the wire. After the material has been reacted, the wires are soldered into the copper channel (outer dimensions 3.18×2.54 mm and inner dimensions 2.08×2.08 mm) and covered with insulation 52 (in this example, a woven fiberglass material). The copper channel containing the wires 53 is then wound in a coil having a rectangular cross-section of 8.55 cm×19.02 cm, having 26 layers and 49 turns per layer. The wound coil is then vacuum impregnated with an epoxy compound. The finished coils are mounted on an annular stainless steel reverse bobbin 56. Heater blankets 55 are placed at intervals in the layers of the windings to protect the assembly in the event of a magnet quench.

The entire coil can then be covered with copper sheets to provide thermal conductivity and mechanical stability and then contained in an additional layer of epoxy. The precompression of the coil can be provided by heating the stainless steel reverse bobbin and fitting the coils within the reverse bobbin. The reverse bobbin inner diameter is chosen so that when the entire mass is cooled to 4 K, the reverse bobbin stays in contact with the coil and provides some compression. Heating the stainless steel reverse bobbin to approximately 50 degrees C. and fitting coils at a temperature of 100 degrees Kelvin can achieve this.

The geometry of the coil is maintained by mounting the coils in a reverse rectangular bobbin 56 to exert a restorative force 60 that works against the distorting force produced when the coils are energized. As shown in FIG. 5, the coil position is maintained relative to the magnet yoke and cryostat using a set of warm-to-cold support straps 402, 404, 406. Supporting the cold mass with thin straps reduces the heat leakage imparted to the cold mass by the rigid support system. The straps are arranged to withstand the varying gravitational force on the coil as the magnet rotates on board the gantry. They withstand the combined effects of gravity and the large de-centering force realized by the coil when it is perturbed from a perfectly symmetric position relative to the magnet yoke. Additionally the links act to reduce dynamic forces imparted on the coil as the gantry accelerates and decelerates when its position is changed. Each warm-to-cold support includes one S2 fiberglass link and one carbon fiber link. The carbon fiber link is supported across pins between the warm yoke and an intermediate temperature (50-70 K), and the S2 fiberglass link 408 is supported across the intermediate temperature pin and a pin attached to the cold mass. Each link is 5 cm long (pin center to pin center) and is 17 mm wide. The link thickness is 9 mm. Each pin is made of high strength stainless steel and is 40 mm in diameter.

Referring to FIG. 3, the field strength profile as a function of radius is determined largely by choice of coil geometry and pole face shape; the pole faces 44, 46 of the permeable yoke material can be contoured to fine tune the shape of the magnetic field to ensure that the particle beam remains focused during acceleration.

The superconducting coils are maintained at temperatures near absolute zero (e.g., about 4 degrees Kelvin) by enclosing the coil assembly (the coils and the bobbin) inside an evacuated annular aluminum or stainless steel cryostatic chamber 70 that provides a free space around the coil structure, except at a limited set of support points 71, 73. In an alternate version (FIG. 4) the outer wall of the cryostat may be made of low carbon steel to provide an additional return flux path for the magnetic field.

In some implementations, the temperature near absolute zero is achieved and maintained using one single-stage Gifford-McMahon cryo-cooler and three two-stage Gifford McMahon cryo-coolers. Each two stage cryo-cooler has a second stage cold end attached to a condenser that recondenses Helium vapor into liquid Helium. The cryo-cooler heads are supplied with compressed Helium from a compressor. The single-stage Gifford-McMahon cryo-cooler is arranged to cool high temperature (e.g., 50-70 degrees Kelvin) leads that supply current to the superconducting windings.

In some implementations, the temperature near absolute zero is achieved and maintained using two Gifford-McMahon cryo-coolers 72, 74 that are arranged at different positions on the coil assembly. Each cryo-cooler has a cold end 76 in contact with the coil assembly. The cryo-cooler heads 78 are supplied with compressed Helium from a compressor 80. Two other Gifford-McMahon cryo-coolers 77, 79 are arranged to cool high temperature (e.g., 60-80 degrees Kelvin) leads that supply current to the superconducting windings.

The coil assembly and cryostatic chambers are mounted within and fully enclosed by two halves 81, 83 of a pillbox-shaped magnet yoke 82. In this example, the inner diameter of the coil assembly is about 74.6 cm. The iron yoke 82 provides a path for the return magnetic field flux 84 and magnetically shields the volume 86 between the pole faces 44, 46 to prevent external magnetic influences from perturbing the shape of the magnetic field within that volume. The yoke also serves to decrease the stray magnetic field in the vicinity of the accelerator.

As shown in FIGS. 3 and 9, the synchrocyclotron includes a particle source 90 of a Penning ion gauge geometry located near the geometric center 92 of the magnet structure 82. The particle source may be as described below, or the particle source may be of the type described in U.S. patent application Ser. No. 11/948,662 incorporated herein by reference.

Particle source 90 is fed from a supply 99 of hydrogen through a gas line 101 and tube 194 that delivers gaseous hydrogen. Electric cables 94 carry an electric current from a current source 95 to stimulate electron discharge from cathodes 192, 190 that are aligned with the magnetic field, 200.

In some implementations, the gas in gas tube 101 may include a mixture of hydrogen and one or more other gases. For example, the mixture may contain hydrogen and one or more of the noble gases, e.g., helium, neon, argon, krypton, xenon and/or radon (although the mixture is not limited to use with the noble gases). In some implementations, the mixture may be a mixture of hydrogen and helium. For example, the mixture may contain about 75% or more of hydrogen and about 25% or less of helium (with possible trace gases included). In another example, the mixture may contain about 90% or more of hydrogen and about 10% or less of helium (with possible trace gases included). In examples, the hydrogen/helium mixture may be any of the following: >95%/<5%, >90%/<10%, >85%/<15%, >80%/<20%, >75%/<20%, and so forth.

Possible advantages of using a noble (or other) gas in combination with hydrogen in the particle source may include: increased beam intensity, increased cathode longevity, and increased consistency of beam output.

In this example, the discharged electrons ionize the gas exiting through a small hole from tube 194 to create a supply of positive ions (protons) for acceleration by one semicircular (dee-shaped) radio-frequency plate 100 that spans half of the space enclosed by the magnet structure and one dummy dee plate 102. In the case of an interrupted particle source (an example of which is described in U.S. patent application Ser. No. 11/948,662), all (or a substantial part) of the tube containing plasma is removed at the acceleration region, thereby allowing ions to be more rapidly accelerated in a relatively high magnetic field.

As shown in FIG. 10, the dee plate 100 is a hollow metal structure that has two semicircular surfaces 103, 105 that enclose a space 107 in which the protons are accelerated during half of their rotation around the space enclosed by the magnet structure. A duct 109 opening into the space 107 extends through the yoke to an external location from which a vacuum pump 111 can be attached to evacuate the space 107 and the rest of the space within a vacuum chamber 119 in which the acceleration takes place. The dummy dee 102 comprises a rectangular metal ring that is spaced near to the exposed rim of the dee plate. The dummy dee is grounded to the vacuum chamber and magnet yoke. The dee plate 100 is driven by a radio-frequency signal that is applied at the end of a radio-frequency transmission line to impart an electric field in the space 107. The radio frequency electric field is made to vary in time as the accelerated particle beam increases in distance from the geometric center. The radio frequency electric field may be controlled in the manner described in U.S. patent application Ser. No. 11/948,359, entitled “Matching A Resonant Frequency Of A Resonant Cavity To A Frequency Of An Input Voltage”, the contents of which are incorporated herein by reference.

For the beam emerging from the centrally located particle source to clear the particle source structure as it begins to spiral outward, a large voltage difference is required across the radio frequency plates. 20,000 Volts is applied across the radio frequency plates. In some versions from 8,000 to 20,000 Volts may be applied across the radio frequency plates. To reduce the power required to drive this large voltage, the magnet structure is arranged to reduce the capacitance between the radio frequency plates and ground. This is done by forming holes with sufficient clearance from the radio frequency structures through the outer yoke and the cryostat housing and making sufficient space between the magnet pole faces.

The high voltage alternating potential that drives the dee plate has a frequency that is swept downward during the accelerating cycle to account for the increasing relativistic mass of the protons and the decreasing magnetic field. The dummy dee does not require a hollow semi-cylindrical structure as it is at ground potential along with the vacuum chamber walls. Other plate arrangements could be used such as more than one pair of accelerating electrodes driven with different electrical phases or multiples of the fundamental frequency. The RF structure can be tuned to keep the Q high during the required frequency sweep by using, for example, a rotating capacitor having intermeshing rotating and stationary blades. During each meshing of the blades, the capacitance increases, thus lowering the resonant frequency of the RF structure. The blades can be shaped to create a precise frequency sweep required. A drive motor for the rotating condenser can be phase locked to the RF generator for precise control. One bunch of particles is accelerated during each meshing of the blades of the rotating condenser.

The vacuum chamber 119 in which the acceleration occurs is a generally cylindrical container that is thinner in the center and thicker at the rim. The vacuum chamber encloses the RF plates and the particle source and is evacuated by the vacuum pump 111. Maintaining a high vacuum insures that accelerating ions are not lost to collisions with gas molecules and enables the RF voltage to be kept at a higher level without arcing to ground.

Protons traverse a generally spiral orbital path beginning at the particle source. In half of each loop of the spiral path, the protons gain energy as they pass through the RF electric field in space 107. As the ions gain energy, the radius of the central orbit of each successive loop of their spiral path is larger than the prior loop until the loop radius reaches the maximum radius of the pole face. At that location a magnetic and electric field perturbation directs ions into an area where the magnetic field rapidly decreases, and the ions depart the area of the high magnetic field and are directed through an evacuated tube 38, referred to herein as the extraction channel, to exit the yoke of the cyclotron. A magnetic regenerator may be used to change the magnetic field perturbation to direct the ions. The ions exiting the cyclotron will tend to disperse as they enter the area of markedly decreased magnetic field that exists in the room around the cyclotron. Beam shaping elements 107, 109 in the extraction channel 38 redirect the ions so that they stay in a straight beam of limited spatial extent.

The magnetic field within the pole gap needs to have certain properties to maintain the beam within the evacuated chamber as it accelerates. The magnetic field index n, which is shown below,
n=−(r/B)dB/dr,
should be kept positive to maintain this “weak” focusing. Here r is the radius of the beam and B is the magnetic field. Additionally, in some implementations, the field index needs to be maintained below 0.2, because at this value the periodicity of radial oscillations and vertical oscillations of the beam coincide in a vr=2 vz resonance. The betatron frequencies are defined by vr=(1−n)1/2 and vz=n1/2. The ferromagnetic pole face is designed to shape the magnetic field generated by the coils so that the field index n is maintained positive and less than 0.2 in the smallest diameter consistent with a 250 MeV beam in the given magnetic field.

As the beam exits the extraction channel it is passed through a beam formation system 125 (FIG. 5) that can be programmably controlled to create a desired combination of scattering angle and range modulation for the beam. Beam formation system 125 may be used in conjunction with an inner gantry 601 (FIG. 14) to direct a beam to the patient.

During operation, the plates absorb energy from the applied radio frequency field as a result of conductive resistance along the surfaces of the plates. This energy appears as heat and is removed from the plates using water cooling lines 108 that release the heat in a heat exchanger 113 (FIG. 3).

Stray magnetic fields exiting from the cyclotron are limited by both the pillbox magnet yoke (which also serves as a shield) and a separate magnetic shield 114. The separate magnetic shield includes of a layer 117 of ferromagnetic material (e.g., steel or iron) that encloses the pillbox yoke, separated by a space 116. This configuration that includes a sandwich of a yoke, a space, and a shield achieves adequate shielding for a given leakage magnetic field at lower weight. In some implementations, the synchrocyclotron may have an active return system to reduce stray magnetic fields. An example of an active return system is described in U.S. patent application Ser. No. 13/907,601, which was filed on May 31, 2013, the contents of which are incorporated herein by reference.

As mentioned, the gantry allows the synchrocyclotron to be rotated about the horizontal rotational axis 532. The truss structure 516 has two generally parallel spans 580, 582. The synchrocyclotron is cradled between the spans about midway between the legs. The gantry is balanced for rotation about the bearings using counterweights 122, 124 mounted on ends of the legs opposite the truss.

The gantry is driven to rotate by an electric motor mounted to one or both of the gantry legs and connected to the bearing housings by drive gears . The rotational position of the gantry is derived from signals provided by shaft angle encoders incorporated into the gantry drive motors and the drive gears.

At the location at which the ion beam exits the cyclotron, the beam formation system 125 acts on the ion beam to give it properties suitable for patient treatment. For example, the beam may be spread and its depth of penetration varied to provide uniform radiation across a given target volume. The beam formation system can include passive scattering elements as well as active scanning elements.

All of the active systems of the synchrocyclotron (the current driven superconducting coils, the RF-driven plates, the vacuum pumps for the vacuum acceleration chamber and for the superconducting coil cooling chamber, the current driven particle source, the hydrogen gas source, and the RF plate coolers, for example), may be controlled by appropriate synchrocyclotron control electronics (not shown), which may include, e.g., one or more computers programmed with appropriate programs to effect control.

The control of the gantry, the patient support, the active beam shaping elements, and the synchrocyclotron to perform a therapy session is achieved by appropriate therapy control electronics (not shown).

As shown in FIGS. 1, 11, and 12, the gantry bearings are supported by the walls of a cyclotron vault 524. The gantry enables the cyclotron to be swung through a range 520 of 180 degrees (or more) including positions above, to the side of, and below the patient. The vault is tall enough to clear the gantry at the top and bottom extremes of its motion. A maze 146 sided by walls 148, 150 provides an entry and exit route for therapists and patients. Because at least one wall 152 is not in line with the proton beam directly from the cyclotron, it can be made relatively thin and still perform its shielding function. The other three side walls 154, 156, 150/148 of the room, which may need to be more heavily shielded, can be buried within an earthen hill (not shown). The required thickness of walls 154, 156, and 158 can be reduced, because the earth can itself provide some of the needed shielding.

Referring to FIGS. 12 and 13, for safety and aesthetic reasons, a therapy room 160 may be constructed within the vault. The therapy room is cantilevered from walls 154, 156, 150 and the base 162 of the containing room into the space between the gantry legs in a manner that clears the swinging gantry and also maximizes the extent of the floor space 164 of the therapy room. Periodic servicing of the accelerator can be accomplished in the space below the raised floor. When the accelerator is rotated to the down position on the gantry, full access to the accelerator is possible in a space separate from the treatment area. Power supplies, cooling equipment, vacuum pumps and other support equipment can be located under the raised floor in this separate space. Within the treatment room, the patient support 170 can be mounted in a variety of ways that permit the support to be raised and lowered and the patient to be rotated and moved to a variety of positions and orientations.

In system 602 of FIG. 14, a beam-producing particle accelerator of the type described herein, in this case synchrocyclotron 604, is mounted on rotating gantry 605. Rotating gantry 605 is of the type described herein, and can angularly rotate around patient support 606. This feature enables synchrocyclotron 604 to provide a particle beam directly to the patient from various angles. For example, as in FIG. 14, if synchrocyclotron 604 is above patient support 606, the particle beam may be directed downwards toward the patient. Alternatively, if synchrocyclotron 604 is below patient support 606, the particle beam may be directed upwards toward the patient. The particle beam is applied directly to the patient in the sense that an intermediary beam routing mechanism is not required. A routing mechanism, in this context, is different from a shaping or sizing mechanism in that a shaping or sizing mechanism does not re-route the beam, but rather sizes and/or shapes the beam while maintaining the same general trajectory of the beam.

Further details regarding an example implementation of the foregoing system may be found in U.S. Pat. No. 7,728,311, filed on Nov. 16, 2006 and entitled “Charged Particle Radiation Therapy”, and in U.S. patent application Ser. No. 12/275,103, filed on Nov. 20, 2008 and entitled “Inner Gantry”. The contents of U.S. Pat. No. 7,728,311 and in U.S. patent application Ser. No. 12/275,103 are incorporated herein by reference. In some implementations, the synchrocyclotron may be a variable-energy device, such as that described in U.S. patent application Ser. No. 13/916,401, filed on Jun. 12, 2013, the contents of which are incorporated herein by reference.

Referring to FIG. 15, an example control system 1500 may be used to control the example particle therapy system described above, e.g., with respect to FIGS. 1-14. The control system 155 may contain a Therapy Control Computer (TCC) 1502 that can include a user interface, a Master Control Computer (MCC) 1508 for processing machine instructions in real-time, and I/O modules 1510, 1522 that can send machine instructions to components of the particle accelerator.

In some examples, the TCC 1502 is networked to a hospital so the TCC 1502 can receive patent prescriptions 1504 from the hospital before treatment and send treatment records 1506 to the hospital after treatment. The TCC 1502 can also translate a received patient prescription 1504 into machine parameters that can be understood by a Master Control Computer (MCC) 1508.

The MCC 1508 can include a real-time operating system 1508a. A real-time operating system 1508a is an operating system that serves real-time requests. For example, a non-real-time operating systems may delay serving a request if it is busy doing something else.

The MCC 1508 can be configured to receive machine parameters from the TCC 1502. The MCC 1508 can translate the machine parameters into specific machine instructions that can be understood by one or more slow input/output modules 1510 and one or more fast input/output modules 1522, described in more detail below. The MCC 1508, with the aid of the real-time operating system 1508a, can send machine instructions to the slow 1510 and fast I/O modules 1522 at specified times in a specified order.

The slow I/O modules 1510 can be used to send machine instructions to aspects of the particle accelerator that do not require relatively fast transmission. In this context, “slow” refers to an operational speed that is less than a “fast” operational speed, and “fast refers to an operational speed that is greater than “slow” operational speed. The terms “slow” and “fast” are not intended to refer to, or to imply, any specific operational speeds and are relative terms, not absolute values.

In some examples, the slow I/O modules 1510 are programmable logic controllers with speeds in the order of milliseconds. For example, a machine instruction may take more than 1 ms to arrive at the particular component. Slow I/O modules 1510 can be configured to send machine instructions to one or more motor controllers 1530.

In some examples, the slow I/O modules 1510 send machine instructions to one or more motor controllers 1530. In an example, the motor controllers 1530 can control motors that are part of a field shaping wheel system 1512, a scatterer system 1514, a rotating capacitor system 1516, a modular wheel control system 1518, or a gantry control system 1520, although the motor controllers can be part of any system that uses a motor.

Referring to FIG. 16, an example field shaping wheel system 1512 can be used to shape the particle beam to a desired shape. The field shaping wheel system 1512 can include a wheel rack 1608, a wheel chamber 1612, wheels 1610, and wheel motors 1606a-c. Each wheel 1610 alters the shape of the magnetic field in a different way. An example slow I/O module 1510a can send machine instructions to motor controllers 1530a-c depending on which wheel 1610 is appropriate (e.g., based on the translated prescription). Each motor controller 1530a-c can control one wheel motor 1606a-c. Wheel motor 1606a can move the wheel rack 1608 side to side until the selected wheel 1610 is situated below the wheel chamber 1612. Once the selected wheel 1610 is horizontally aligned, wheel motor 1606b can move the wheel up into the wheel chamber 1612. Once the selected wheel 1610 is situated in the wheel chamber 1612, wheel motor 1606c can rotate it. Different rotational positions can have different effects on the shape of the magnetic field that the particle beam experiences.

As explained above, the beam formation system (125 of FIG. 5) can create a desired combination of scattering angle and range modulation for the particle beam. Referring to FIG. 17, the output particle beam 1704 may have a Gaussian profile (with a majority of particles at the center of the beam) after it passes through the extraction channel (and the modulator wheel, described below). A scatterer 1702a can reshape the particle beam so that the particle beam has a substantially constant width (w). For example, the particle beam may have a circular cross-section. In this implementation, scatterer 1702a is a scattering foil, all or part of which may be made of a metal, such as lead. As shown, scatterer 1702a has a side that is convex in shape, and includes more lead at its edges than at its center. To achieve a larger field beam size, thicker lead may be used, and vice versa. In this regard, the particle therapy system may include multiple scatterers 1702a-e, which may be switched into, or out of, the path of the particle beam in order to achieve a particle beam field size (cross-sectional area).

Different treatments require different scattering angles and range modulations. The scatterer system 1514 can be used to place the appropriate scatterer 1702a-e in the particle beam path. In an example, the scatterer system 1514 can include one or more motors 1706 configured to place different scatterers 1702a-e in the particle beam path in a way similar to the field shaping wheel system 1512. An example slow I/O module 1510b can send machine instructions to a motor controller 1530d depending on which scatterer 1702a-e is appropriate (e.g., based on the translated prescription). The motor controller 1530d can control the motor 1706 such that the motor 1706 places the appropriate scatterer 1702a-e in the beam formation system 125.

As explained above, a rotating capacitor can be used tune the RF structure during the frequency sweep. In an example, a rotating capacitor system 1516 can be configured to rotate some of the blades of the rotating capacitor to an appropriate position. The rotating capacitor system 1516 can include one or more motors that can control the rotating capacitor in a way similar to the field shaping wheel system 1512. An example slow I/O module 1510 can send machine instructions to motor controllers to rotate the capacitor at a fixed speed. An associated fast I/O system can coordinate the rotational speed of the modulator wheel with the rotational speed of the capacitor to insure the beam pulses from the synchrocyclotron are uniformly distributed on the modulator wheel azimuthally

As explained above, the gantry enables the particle accelerator to be rotated around a patient position. The gantry control system 1520 can be used to rotate the gantry into the appropriate position (e.g., to apply treatment at the desired angle). In an example, the gantry control system 1520 can include one or more motors configured to rotate the gantry to the appropriate position in a way similar to systems 1512, 1514, and 1516. An example slow I/O module 1510 can send machine instructions to motor controllers 1530 depending on what gantry position is appropriate (e.g., based on the translated prescription). The motor controllers 1530 can control the motors such that the motors rotate the gantry into the correct position.

Downstream from (e.g., after) the extraction channel, various devices are used to affect the particle beam output. One such device is configured to spread-out Bragg peaks of the particle beam to achieve a substantially uniform particle beam dose at a range of depths within the patient. As described in wikipedia.org, “[w]hen a fast charged particle moves through matter, it ionizes atoms of the material and deposits a dose along its path. A peak occurs because the interaction cross section increases as the charged particle's energy decreases.” “The Bragg peak is a pronounced peak on the Bragg curve which plots the energy loss of ionizing radiation during its travel through matter. For protons . . . the peak occurs immediately before the particles come to rest.” FIG. 18 is an example Bragg curve showing a Bragg peak 900 for a particular dose of proton therapy and depth.

To achieve a relatively uniform dose of particle therapy at a range of depths, a modulator device is configured to move Bragg peaks of the particle beam along the graph of FIG. 18 and to change the intensity of the Bragg peaks at the moved locations. Because particle therapy is cumulative, the resulting dosages may be added to obtain a substantially uniform dose. For example, referring to FIG. 18, the dosage at point 901 is the sum of doses at point 902 on Bragg curve 903, at point 904 on Bragg curve 905, and at point 906 on Bragg curve 907. Ideally, the result is a substantially uniform dose from depths 908a to 908b. This is referred to as a “spread-out Bragg peak”, which extends depth-wise into a patient.

In some implementations, the modulator device used to spread-out the Bragg peaks is a structure, such as a modulator wheel, having different thicknesses at different locations along its circumference. Accordingly, the modulator wheel is rotatable in the path of, and relative to, the particle beam in order to provide the appropriate amount of particle therapy for a particular depth and area.

FIG. 19 shows a perspective view of an example modulator wheel 910 and FIG. 20 shows a top view of modulator wheel 910. As shown in the figures, the modulator wheel 910 has numerous steps 911, each with a different thickness (e.g., varying from zero or substantially zero thickness to a thickness on the order of centimeters or more). The thicknesses are used to vary the depth of corresponding Bragg peaks. For example, the least amount of thickness produces a Bragg peak with the most depth, the greatest amount of thickness produces a Bragg peak with the least depth, and so forth. As shown in FIG. 20 the angles (e.g., 912, 913, etc.) of the various steps also vary, resulting in different circumferential lengths for at least some of, and in some cases all of, the steps. The angle of each step adjusts how much the corresponding Bragg peak subtends within the patient. For example, the Bragg peak with the most intensity (e.g., Bragg peak 900 of FIG. 18) is the one that subtends the most. Accordingly, its corresponding step 914 has the largest angular extent. The Bragg peak with the next most intensity (e.g., Bragg peak 904 of FIG. 18) is the one that subtends the next most. Accordingly, its corresponding step 915 has the next largest angular extent; and so forth.

The modulator wheel may have constant, substantially constant, or variable rotation in order to provide the appropriate Bragg peak spreading for a prescription. In some implementations, the particle therapy system may include more than one modulator wheel of the type shown in FIGS. 27 and 28. The modulator wheels may be switchable into, and out of, the beam path by a modulator wheel control system (1518 of FIG. 15) in order to achieve a desired particle beam dose at a particular patient depth. For example, a first modulator wheel may be used for a first depth or range of depths (e.g., 10 cm to 15 cm); a second modulator wheel may be used for a second depth or range of depths (e.g., 15 cm to 20 cm); a third modulator wheel may be used for a third depth or range of depths (e.g., 20 cm to 25 cm); and so forth. In some implementations, there may be twelve modulator wheels, each of which may be calibrated for a different depth range; however, in other implementations, more or less than twelve modulator wheels may be used. Treatment depth is also dependent upon the particle beam intensity, which is a function of the ion (or particle) source pulse width, as described below.

The modulator wheels may be designed to provide uniform spread-out Bragg peaks from a maximum depth to the surface of a patient (e.g., to the outer layer of the patient's skin). To customize the depth of dosage, Bragg peaks in undesired locations (e.g., in area 917 in FIG. 18) may be “turned-off”. This may be done by turning-off the RF source, turning-off the particle source, or turning-off both at an appropriate time during each rotation of the modulator wheel.

Particle source pulse width also has an effect on spread-out Bragg peak uniformity. As background, the amount of time that a particle source is intermittently (e.g., periodically) activated is varied, thereby providing the plasma column for different periods of time and enabling extraction of different numbers of particles. For example, if the pulse width is increased, the number of particles extracted increases and, if the pulse width decreases, the number of particles extracted decreases. In some implementations, there is a linear relationship between the time that the particle source is on and the intensity of the particle beam. For example, the relationship may be one-to-one plus an offset. In an example implementation, the particle source may be pulsed within a frequency window that occurs during a frequency sweep between a maximum frequency of about 135 MHz and a minimum frequency of about 95 MHz or 90 MHz. For example, the particle source may be pulsed between 132 MHz and 131 MHz for a period of time. In an implementation, this period of time is about 40 us; however, these values may vary or be different in other implementations. Failing to pulse the particle source outside of the frequency window can inhibit extraction of particles from the plasma column.

FIG. 21 is a graph showing the voltage sweep in the resonant cavity over time from a maximum frequency (e.g., 135 MHz) to a minimum frequency (e.g., 90 MHz or 95 MHz). The extraction window 920 occurs, in this example, between 132 MHz and 131 MHz. The width of pulse 921 (the particle source pulse width) may be varied (e.g., by controlling the “on” time of the particle source) to control the intensity of the particle beam output by the particle accelerator.

Particle source pulse widths may be adjustable in order to achieve substantial uniformity in spread-out Bragg peaks. In this regard, various factors, such as particle beam intensity, may contribute to the depth at which Bragg peaks penetrate a patient. A selected modulator wheel can produce different Bragg curves for different depths. For example, FIG. 22 shows Bragg curves for three different depths. Bragg curve 950 is for the nominal (or predefined) depth for a modulator wheel; Bragg curve 951 is for the maximum depth for the modulator wheel; and Bragg curve 952 is for the minimum depth for the modulator wheel. Ideally, the spread-out Bragg peaks should be at about the nominal level regardless of depth.

As shown in FIG. 22, Bragg curves 951 and 952 have spread-out Bragg peaks that are sloped. For Bragg curve 952, the slope is positive; and for Bragg curve 951 the slope is negative. To more closely approximate the nominal Bragg peak level at point b, the intensity of the particle beam is be increased at point a (to raise the Bragg peak at point a to the level at point b), and the intensity of the particle beam is be decreased at point c (to lower the Bragg peak at point c to the level of point b). The intensity of the particle beam is also be adjusted at points preceding a and c to either raise or lower the Bragg peaks at those points so that they coincide, at least to some degree, with the corresponding level of the nominal Bragg peak. The intensity of the particle beam may be changed by changing the particle source pulse width. However, different points along Bragg curves 951 and 952 require different amounts of adjustment in order to approximate the nominal spread-out Bragg peak of curve 950. Accordingly, in each instance, the pulse widths may be varied based on rotation of the modulator wheel. For example, at a point a when the modulator wheel impacts the particle beam, the pulse width may be increased more than at points preceding a along Bragg curve 951. Similarly, at a point c when the modulator wheel impacts the particle beam, the pulse width may be decreased more than at points preceding c along Bragg curve 952. For example, FIG. 23 is a plot showing the relationship between pulse width and rotational angle of the modulator wheel for Bragg curves 950, 951 and 952. Values have been omitted, since they are case specific.

Variations in pulse-width can be determined by obtaining the appropriate pulse widths at the beginning and ending of a Bragg peak, and linearly interpolating between the two to obtain variations in between. Other processes also may be used, as described below. To increase or decrease an overall dose, all pulse widths may be increased or decreased by a specified factor.

The modulator wheels may be switchable into, or out of, the beam path, as noted above. In an example, the modulator wheel control system (1518 of FIG. 15) can include one or more motors and a modulator wheel rack. An example slow I/O module 1510 can send machine instructions to motor controllers 1530 depending on which modulator wheel is appropriate (e.g., based on the translated prescription). Each motor controller 1530 can control a motor. For example, a motor can move the modulator wheel rack side to side until the selected modulator wheel is in position, and another motor can move the modulator wheel into, or out of, the beam path. In other implementations, the modulator wheel rack may be below the beam path, and an appropriate modulator wheel may be positioned proximate the beam path, and thereafter moved into the beam path by another motor.

Referring back to FIG. 15, a fast I/O module 1522 can be used to control components of the particle accelerator that require relatively fast transmission (e.g., the particle source 1524 and the RF voltage source). The fast I/O module can include a microprocessor 1522a for communicating with the real-time operating system 1508a of the MCC 1508, and a field-programmable gate array (FPGA) 1522b for sending and receiving information to/from the particle accelerator components. A modulator wheel communication line can also send information to the FPGA (1522b) pertaining to the modulator wheel. In an example, the modulator wheel communication line 1528 is an optical fiber 1528 that includes a sensor configured to monitor the modulator wheel.

As explained above, the modulator wheels may be configured to provide uniform spread-out Bragg peaks from a maximum depth to the surface of a patient (e.g., to the outer layer of the patient's skin). To affect the dosage, the particle source may be turned on and off at appropriates time during each rotation of the modulator wheel. This process is known as “pulse blanking”.

In some implementations, the particle source has a pulse frequency of about 500 pulses-per-second, with about 10 nano-amperes (nA) of current per-pulse. In other implementations, the number of pulses-per-second, and current per-pulse may be different than these numbers. In some implementations, a modulator wheel rotates such that each step of the modulator wheel (corresponding one of plural different thicknesses) receives multiple pulses on each step during rotation. The dosage for each step corresponds to the number of pulses received by that step.

The number of pulses applied to a target corresponds to the radiation dose at the target, and can have an effect on spread-out Bragg peak uniformity. More specifically, modulator wheels may be calibrated to provide dosage at specific tissue depths. For example, the thicknesses of wheel steps may be calibrated, based on an expected dose, to provide spread-out Bragg peaks over a range of depths, ideally to result in a uniform dose approximating something like that shown in FIG. 18. However, in practice, variations in tissues and materials (for example) may result in Bragg curves (i.e., depth dose distributions) that are non-uniform or that are sloped. FIG. 22, described above, shows examples of Bragg curves that are sloped, which could possibly result from such modulator wheels.

More specifically, as explained above, a selected modulator wheel can produce different Bragg curves for different tissue depths. For example, FIG. 22 shows Bragg curves for three different depths. Bragg curve 950 is for the nominal (or predefined) depth for a modulator wheel; Bragg curve 951 is for the maximum depth for the modulator wheel; and Bragg curve 952 is for the minimum depth for the modulator wheel. Ideally, the spread-out Bragg peaks should be at about the nominal level regardless of depth.

As shown in FIG. 22, Bragg curves 951 and 952 have spread-out Bragg peaks that are sloped. For Bragg curve 952, the slope is positive; and for Bragg curve 951 the slope is negative. To more closely approximate the nominal Bragg peak level at point b, the relative dosage of the particle beam (e.g., the number of pulses) may be increased at point a (to raise the Bragg peak at point a to the level at point b), and the relative dosage (e.g., the number of pulses) of the particle beam may be decreased at point c (to lower the Bragg peak at point c to the level of point b). The relative dosages of the particle beam may also be adjusted at points preceding a and c to either raise or lower the Bragg peaks at those points so that they coincide, at least to some degree, with the corresponding level of the nominal Bragg peak. In this regard, different points along Bragg curves 951 and 952 require different amounts of adjustment in order to approximate the nominal spread-out Bragg peak of curve 950. Accordingly, in each instance, the relative dosage (e.g., the number of pulses) may be varied based on, and corresponding to, rotation of the modulator wheel. For example, at a point a when the modulator wheel impacts the particle beam, the relative dosage (e.g., number of pulses) may be increased more than at points preceding a along Bragg curve 951. Similarly, at a point c when the modulator wheel impacts the particle beam, the relative dosage (e.g., number of pulses) may be decreased more than at points preceding c along Bragg curve 952. The dosage applications are analogous to FIG. 23, which is described above for pulse width variations

Variations in dosage to obtain uniform Bragg curves can be determined by obtaining the dosages at the beginning and ending of a Bragg peak, and linearly interpolating between the two to obtain variations in between. This information may be obtained as part of a calibration process. Other processes also may be used, as described below.

To increase or decrease an overall dose, the particle source and/or other feature(s) of the particle therapy system may be used to control the number of output pulses. For example, the particle source may be turned off to reduce the number of output of pulses to the modulator wheel, and the particle source may be turned on to increase the number of output pulse of the particle beam to the modulator wheel. This control may be performed at a certain step or steps (e.g., sectors) of the modulator wheel to obtain the desired result, e.g., increased or decreased dosage and, therefore, an increase or decrease in the slope of the corresponding Bragg curve. Dosage may also be applied or withheld to correct for holes or spikes in the Bragg curves. Control over the various aspects of the system may be performed by the slow and fast I/O modules described above. In other implementations, different control systems may be used.

As noted, in some implementations, the number of pulses may be varied by turning-on or turning-off the particle source at appropriate times during rotation of the modulator wheel. In some implementations, other features are used to control the number of pulses that are applied to particular sectors of the modulator wheel. For example, the RF voltage sweep may be interrupted intermittently, thereby reducing the number of pulses (since a pulse is typically output per sweep). To increase the number of pulses, the rate of the sweep may be increased. In another example, additional hardware may be used to control the number of pulses. For example, a steering mechanism, such as a kicker magnet, may be used to reduce the output of pulses for particular rotations of the modulator wheel. In some implementations, a kicker magnet (or other structure) may direct a set (e.g., every other, every third, and so forth) of pulses to an absorber material, thereby preventing their output to the irradiation target.

To obtain a flat, or substantially flat, Bragg curve, as explained herein it may be necessary to increase or decrease the relative number of pulses applied to particular sectors of a modulator wheel. The increase or decrease may be relative to amounts of pulses applied to other sectors of the modulator wheel. For example, a decrease in the number of pulses applied to all sectors of a modulator wheel but not to one sector has a similar effect as an increase in the number of pulses applied to that one sector of the modulator wheel. Such relative changes to the applied numbers of pulses may be used to obtain the appropriate increase and decreases to change a Bragg curve. In cases where the numbers of pulses have been decreased to obtain a relative increase in one sector, the overall dose applied may be reduced. In those situations, the particle therapy system may require a longer irradiation time to achieve the required overall dosage for a particular target.

In some implementations, the particle therapy system may include a scanning system to scan the particle beam across a cross-section of an irradiation target. This is done at different depths to treat the entire irradiation target. In implementations that involve scanning, pulse blanking of the type described herein may be used on a spot-by-spot basis. That is, during scanning, a particle beam is applied at a spot, then the particle beam is moved (typically by a magnet) to a next spot on the irradiation target. Pulse blanking may be used to control the number of pulses applied to each spot. Generally, spot scanning involves applying irradiation at discrete spots on an irradiation target and raster scanning involves moving a radiation spot across the radiation target. The concept of spot size therefore applies for both raster and spot scanning.

Referring back to FIG. 19, the example modulator wheel 910 may have multiple markings 916 around its edge. The markings 916 can be any shape and can have any configuration. Particular markings 916 can signify particular modulator wheel 910 positions. In an example, the exact position of the modulator wheel 910 can be determined by identifying the markings 916. In another example, the markings 916 are configured such that the rotational speed of the modulator wheel 910 can be determined by only looking at the markings 916.

A first end of the optical fiber 1528 (e.g., the end that includes the sensor) can be situated in a position where it can detect the markings 916 on the modulator wheel 910. A second end of the optical fiber 1528 can be connected to the FPGA 1522b and be configured to communicate information pertaining to the modulator wheel 910 (e.g., its position and rotational speed).

The FPGA 1522b may also be configured to send and receive information from the particle source 1524 and the RF voltage source 1526. As explained above, the depth of dosage (e.g., based on the translated prescription) can be customized by “turning-off” Bragg peaks in undesired locations (e.g., in area 917 in FIG. 18). This may be done by turning-off the RF source, turning-off the particle source, or turning-off both at an appropriate time during each rotation of the modulator wheel 910. The FPGA 1522b can communicate the information the FPGA 1522b receives from the optical fiber 1528 to the microprocessor 1522a (which in turn communicated with the real-time operating system 1508a of the MCC 1508) and receive instructions from the microprocessor 1522a regarding particle source 1524 and RF voltage source 1526 control. For example, the FPGA 1522b may tell the particle source 1524 and/or the RF voltage source 1526 to turn on/off when the modulator wheel 910 is in a particular position or positions. The FPGA 1522b may also tell the particle source 1524 how long to make the particle source pulse widths based on the rotational position of the modulator wheel.

As mentioned above, the fast I/O module 1522 can also receive information from the particle source 1524 and the RF voltage source 1526. A fast I/O module 1522 is desirable for controlling these components because their operation is time sensitive. Referring back to FIG. 21, the extraction window 920 is created by pulsing the particle source over a particular frequency range. In some examples, this frequency range is very small (e.g., less than a 1 MHz window). The fast I/O module 1522 can also receive information from the RF voltage source 1526 and the particle source 1524 in addition to the information it receives about the modulator wheel 910. The RF voltage source 1526 can continuously communicate its frequency to the fast I/O module 1522. The fast I/O module can then tell the particle source 1524 to turn on when it learns that the RF voltage source is at a particular frequency or the modulator wheel is at a particular location, and to turn off when it learns that the RF voltage source is at a particular frequency or the modulator wheel is at a particular location. The fast I/O module 1522 can also use received information (e.g., the rotational position of the modulator wheel) to tell the particle source 1524 how long to make the particle source pulse widths.

Aspects of the control system are system specific and may vary depending on the type of treatment (e.g., the prescription).

Elements of different implementations described herein may be combined to form other implementations not specifically set forth above. Elements may be left out of the processes, systems, apparatus, etc., described herein without adversely affecting their operation. Various separate elements may be combined into one or more individual elements to perform the functions described herein.

The example implementations described herein are not limited to use with a particle therapy system or to use with the example particle therapy systems described herein. Rather, the example implementations can be used in any appropriate system that directs accelerated particles to an output.

Additional information concerning the design of an example implementation of a particle accelerator that may be used in a system as described herein can be found in U.S. Provisional Application No. 60/760,788, entitled “High-Field Superconducting Synchrocyclotron” and filed Jan. 20, 2006; U.S. patent application Ser. No. 11/463,402, entitled “Magnet Structure For Particle Acceleration” and filed Aug. 9, 2006; and U.S. Provisional Application No. 60/850,565, entitled “Cryogenic Vacuum Break Pneumatic Thermal Coupler” and filed Oct. 10, 2006, all of which are incorporated herein by reference.

The following applications, all of which are filed on the same date as the subject application (entitled “CONTROL SYSTEM FOR A PARTICLE ACCELERATOR” (Application No. 61/707,645)), are incorporated by reference into the subject application: the U.S. Provisional Application entitled “CONTROLLING INTENSITY OF A PARTICLE BEAM” (Application No. 61/707,466 filed on Sep. 29, 2012), the U.S. Provisional Application entitled “ADJUSTING ENERGY OF A PARTICLE BEAM” (Application No. 61/707,515, filed on Sep. 28, 2012), the U.S. Provisional Application entitled “ADJUSTING COIL POSITION” (Application No. 61/707,548, filed on Sep. 28, 2012), the U.S. Provisional Application entitled “FOCUSING A PARTICLE BEAM USING MAGNETIC FIELD FLUTTER” (Application No. 61/707,572, filed on Sep. 28, 2012), the U.S. Provisional Application entitled “MAGNETIC FIELD REGENERATOR” (Application No. 61/707,590, filed on Sep. 28, 2012), the U.S. Provisional Application entitled “FOCUSING A PARTICLE BEAM” (Application No. 61/707,704, filed on Sep. 28, 2012), and the U.S. Provisional Application entitled “CONTROLLING PARTICLE THERAPY (Application No. 61/707,624, filed on Sep. 28, 2012).

The following are also incorporated by reference into the subject application: U.S. Pat. No. 7,728,311 which issued on Jun. 1, 2010, U.S. patent application Ser. No. 11/948,359 which was filed on Nov. 30, 2007, U.S. patent application Ser. No. 12/275,103 which was filed on Nov. 20, 2008, U.S. patent application Ser. No. 11/948,662 which was filed on Nov. 30, 2007, U.S. Provisional Application No. 60/991,454 which was filed on Nov. 30, 2007, U.S. Pat. No. 8,003,964 which issued on Aug. 23, 2011, U.S. Pat. No. 7,208,748 which issued on Apr. 24, 2007, U.S. Pat. No. 7,402,963 which issued on Jul. 22, 2008, U.S. patent application Ser. No. 13/148,000 filed Feb. 9, 2010, U.S. patent application Ser. No. 11/937,573 filed on Nov. 9, 2007, U.S. patent application Ser. No. 11/187,633, titled “A Programmable Radio Frequency Waveform Generator for a Synchrocyclotron,” filed Jul. 21, 2005, U.S. Provisional Application No. 60/590,089, filed on Jul. 21, 2004, U.S. patent application Ser. No. 10/949,734, titled “A Programmable Particle Scatterer for Radiation Therapy Beam Formation”, filed Sep. 24, 2004, and U.S. Provisional Application No. 60/590,088, filed Jul. 21, 2005.

Any features of the subject application may be combined with one or more appropriate features of the following: the U.S. Provisional Application entitled “CONTROLLING INTENSITY OF A PARTICLE BEAM” (Application No. 61/707,466 filed on Sep. 29, 2012), the U.S. Provisional Application entitled “ADJUSTING ENERGY OF A PARTICLE BEAM” (Application No. 61/707,515, filed on Sep. 28, 2012), the U.S. Provisional Application entitled “ADJUSTING COIL POSITION” (Application No. 61/707,548, filed on Sep. 28, 2012), the U.S. Provisional Application entitled “FOCUSING A PARTICLE BEAM USING MAGNETIC FIELD FLUTTER” (Application No. 61/707,572, filed on Sep. 28, 2012), the U.S. Provisional Application entitled “MAGNETIC FIELD REGENERATOR” (Application No. 61/707,590, filed on Sep. 28, 2012), the U.S. Provisional Application entitled “FOCUSING A PARTICLE BEAM” (Application No. 61/707,704, filed on Sep. 28, 2012), the U.S. Provisional Application entitled “CONTROLLING PARTICLE THERAPY (Application No. 61/707,624, filed on Sep. 28, 2012), U.S. Pat. No. 7,728,311 which issued on Jun. 1, 2010, U.S. patent application Ser. No. 11/948,359 which was filed on Nov. 30, 2007, U.S. patent application Ser. No. 12/275,103 which was filed on Nov. 20, 2008, U.S. patent application Ser. No. 11/948,662 which was filed on Nov. 30, 2007, U.S. Provisional Application No. 60/991,454 which was filed on Nov. 30, 2007, U.S. patent application Ser. No. 13/907,601, which was filed on May 31, 2013, U.S. patent application Ser. No. 13/916,401, filed on Jun. 12, 2013, U.S. Pat. No. 8,003,964 which issued on Aug. 23, 2011, U.S. Pat. No. 7,208,748 which issued on Apr. 24, 2007, U.S. Pat. No. 7,402,963 which issued on Jul. 22, 2008, U.S. patent application Ser. No. 13/148,000 filed Feb. 9, 2010, U.S. patent application Ser. No. 11/937,573 filed on Nov. 9, 2007, U.S. patent application Ser. No. 11/187,633, titled “A Programmable Radio Frequency Waveform Generator for a Synchrocyclotron,” filed Jul. 21, 2005, U.S. Provisional Application No. 60/590,089, filed on Jul. 21, 2004, U.S. patent application Ser. No. 10/949,734, titled “A Programmable Particle Scatterer for Radiation Therapy Beam Formation”, filed Sep. 24, 2004, and U.S. Provisional Application No. 60/590,088, filed Jul. 21, 2005.

Except for the provisional application from which this patent application claims priority and the documents incorporated by reference above, no other documents are incorporated by reference into this patent application.

Other implementations not specifically described herein are also within the scope of the following claims.

Gall, Kenneth P., Rosenthal, Stanley, Molzahn, Adam C., Sobczynski, Thomas C.

Patent Priority Assignee Title
Patent Priority Assignee Title
2280606,
2492324,
2615129,
2616042,
2659000,
2701304,
2789222,
2958327,
3175131,
3432721,
3582650,
3679899,
3689847,
3757118,
3868522,
3886367,
3925676,
3955089, Oct 21 1974 Varian Associates Automatic steering of a high velocity beam of charged particles
3958327, May 01 1974 Airco, Inc. Stabilized high-field superconductor
3992625, Dec 27 1973 Jersey Nuclear-Avco Isotopes, Inc. Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient
4038622, Apr 13 1976 The United States of America as represented by the United States Energy Superconducting dipole electromagnet
4047068, Nov 26 1973 Kreidl Chemico Physical K.G. Synchronous plasma packet accelerator
4112306, Dec 06 1976 Varian Associates, Inc. Neutron irradiation therapy machine
4129784, Jan 16 1973 Siemens Medical Systems, Inc Gamma camera
4139777, Nov 19 1975 Cyclotron and neutron therapy installation incorporating such a cyclotron
4197510, Jun 23 1978 The United States of America as represented by the Secretary of the Navy Isochronous cyclotron
4220866, Dec 30 1977 Siemens Aktiengesellschaft Electron applicator
4230129, Jan 24 1974 THERMAL DEVELOPMENTS, INC Radio frequency, electromagnetic radiation device having orbital mount
4256966, Jul 03 1979 Siemens Medical Laboratories, Inc. Radiotherapy apparatus with two light beam localizers
4293772, Mar 31 1980 Siemens Medical Laboratories, Inc. Wobbling device for a charged particle accelerator
4336505, Jul 14 1980 GIGA-TRONICS, INCORPORATED Controlled frequency signal source apparatus including a feedback path for the reduction of phase noise
4342060, May 22 1980 Siemens Medical Laboratories, Inc. Energy interlock system for a linear accelerator
4345210, May 31 1979 C.G.R. MeV Microwave resonant system with dual resonant frequency and a cyclotron fitted with such a system
4353033, Mar 07 1979 Rikagaku Kenkyusho Magnetic pole structure of an isochronous-cyclotron
4425506, Nov 19 1981 VARIAN ASSOCIATES, INC , A CORP OF DE Stepped gap achromatic bending magnet
4490616, Sep 30 1982 Cephalometric shield
4507614, Mar 21 1983 The United States of America as represented by the United States Electrostatic wire for stabilizing a charged particle beam
4507616, Mar 08 1982 Board of Trustees Operating Michigan State University Rotatable superconducting cyclotron adapted for medical use
4589126, Jan 26 1984 Radiotherapy treatment table
4598208, Oct 04 1982 Varian Associates, Inc. Collimation system for electron arc therapy
4628523, May 13 1985 B V OPTISCHE INDUSTRIE DE OUDE DELFT Direction control for radiographic therapy apparatus
4633125, May 09 1985 BOARD OF TRUSTEES, EAST LANSING, MI A CONSTITUTIONAL CORPORATION OF MI Vented 360 degree rotatable vessel for containing liquids
4641057, Jan 23 1985 Board of Trustees Superconducting synchrocyclotron
4641104, Apr 26 1984 BOARD OF TRUSTEES, EAST LANSING, MICHIGAN, A CONSTITUTIONAL CORPORATION OPERATING MICHIGAN Superconducting medical cyclotron
4651007, Sep 13 1984 Technicare Corporation Medical diagnostic mechanical positioner
4680565, Jun 24 1985 Siemens Aktiengesellschaft Magnetic field device for a system for the acceleration and/or storage of electrically charged particles
4705955, Apr 02 1985 Scanditronix AB Radiation therapy for cancer patients
4710722, Mar 08 1985 Siemens Aktiengesellschaft Apparatus generating a magnetic field for a particle accelerator
4726046, Nov 05 1985 VARIAN MEDICAL SYSTEMS TECHNOLOGIES, INC X-ray and electron radiotherapy clinical treatment machine
4734653, Feb 25 1985 Siemens Aktiengesellschaft Magnetic field apparatus for a particle accelerator having a supplemental winding with a hollow groove structure
4737727, Feb 12 1986 Mitsubishi Denki Kabushiki Kaisha Charged beam apparatus
4739173, Apr 11 1986 Board of Trustees Operating Michigan State University Collimator apparatus and method
4745367, Mar 28 1985 Kernforschungszentrum Karlsruhe GmbH; Brown, Boveri & Cie AG Superconducting magnet system for particle accelerators of a synchrotron radiation source
4754147, Apr 11 1986 Michigan State University Variable radiation collimator
4763483, Jul 17 1986 Brooks Automation, Inc Cryopump and method of starting the cryopump
4767930, Mar 31 1987 Siemens Medical Laboratories, Inc. Method and apparatus for enlarging a charged particle beam
4769623, Jan 28 1987 Siemens Aktiengesellschaft Magnetic device with curved superconducting coil windings
4771208, May 10 1985 UNIVERSITE CATHOLIQUE DE LOUVAIN, HALLES UNIVERSITAIRES, PLACE DE 1 UNIVERSITE 1, B-1348 LOUVAIN-LA-NEUVE, BELGIUM Cyclotron
4783634, Feb 27 1986 Mitsubishi Denki Kabushiki Kaisha Superconducting synchrotron orbital radiation apparatus
4808941, Oct 29 1986 Siemens Aktiengesellschaft Synchrotron with radiation absorber
4812658, Jul 23 1987 President and Fellows of Harvard College Beam Redirecting
4843333, Jan 28 1987 Siemens Aktiengesellschaft Synchrotron radiation source having adjustable fixed curved coil windings
4845371, Mar 29 1988 Siemens Medical Laboratories, Inc. Apparatus for generating and transporting a charged particle beam
4865284, Mar 13 1984 Siemens Gammasonics, Inc. Collimator storage device in particular a collimator cart
4868843, Sep 10 1986 VARIAN MEDICAL SYSTEMS TECHNOLOGIES, INC Multileaf collimator and compensator for radiotherapy machines
4868844, Sep 10 1986 VARIAN MEDICAL SYSTEMS TECHNOLOGIES, INC Mutileaf collimator for radiotherapy machines
4870287, Mar 03 1988 Loma Linda University Medical Center Multi-station proton beam therapy system
4880985, Oct 05 1988 Detached collimator apparatus for radiation therapy
4894541, Jul 31 1987 Jeol Ltd Apparatus utilizing charged-particle beam
4896206, Dec 14 1987 Electro Science Industries, Inc. Video detection system
4902993, Feb 19 1987 Kernforschungszentrum Karlsruhe GmbH Magnetic deflection system for charged particles
4904949, Aug 28 1984 OXFORD INSTRUMENTS LIMITED, OSNEY MEAD, OXFORD OX2 ODX UNITED KINGDOM Synchrotron with superconducting coils and arrangement thereof
4905267, Apr 29 1988 Loma Linda University Medical Center Method of assembly and whole body, patient positioning and repositioning support for use in radiation beam therapy systems
4917344, Apr 07 1988 Loma Linda University Medical Center Roller-supported, modular, isocentric gantry and method of assembly
4943781, May 21 1985 Oxford Instruments, Ltd.; Amersham International plc Cyclotron with yokeless superconducting magnet
4945478, Nov 06 1987 VIRGINIA, UNIVERSITY OF, THE Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
4968915, Jan 22 1987 Oxford Instruments Limited Magnetic field generating assembly
4987309, Nov 29 1988 VARIAN INTERNATIONAL AG Radiation therapy unit
4992744, May 30 1988 Shimadzu Corporation Radio frequency linear accelerator control system
4996496, Sep 11 1987 Hitachi, LTD; Nippon Telegraph and Telephone Corporation Bending magnet
5006759, May 09 1988 Siemens Medical Laboratories, Inc. Two piece apparatus for accelerating and transporting a charged particle beam
5010562, Aug 31 1989 Siemens Medical Laboratories, Inc. Apparatus and method for inhibiting the generation of excessive radiation
5012111, Jun 21 1988 Mitsubishi Denki Kabushiki Kaisha Ion beam irradiation apparatus
5017789, Mar 31 1989 Loma Linda University Medical Center Raster scan control system for a charged-particle beam
5017882, Sep 01 1988 AMERSHAM INTERNATIONAL PLC, AMERSHAM PLACE, LITTLE CHALFONT, BUCKINGHAMSHIRE HP7 9NA, ENGLAND; OXFORD INSTRUMENTS LIMITED, OSNEY MEAD, OXFORD, OX2 ODX, ENGLAND Proton source
5036290, Mar 15 1989 Hitachi, Ltd.; Nippon Telegraph and Telephone Corp. Synchrotron radiation generation apparatus
5039057, Apr 07 1988 Loma Linda University Medical Center Roller-supported, modular, isocentric gentry and method of assembly
5039867, Aug 24 1987 Mitsubishi Denki Kabushiki Kaisha Therapeutic apparatus
5046078, Aug 31 1989 SIEMENS MEDICAL LABORATORIES, INC Apparatus and method for inhibiting the generation of excessive radiation
5072123, May 03 1990 VARIAN ASSOCIATES, INC , A CORP OF DE Method of measuring total ionization current in a segmented ionization chamber
5111042, Oct 30 1987 British Technology Group Limited Method and apparatus for generating particle beams
5111173, Mar 27 1990 Mitsubishi Denki Kabushiki Kaisha Deflection electromagnet for a charged particle device
5117194, Aug 26 1988 Mitsubishi Denki Kabushiki Kaisha Device for accelerating and storing charged particles
5117212, Jan 12 1989 Mitsubishi Denki Kabushiki Kaisha Electromagnet for charged-particle apparatus
5117829, Mar 31 1989 Loma Linda University Medical Center; LOMA LINDA UNIVERSITY MEDICAL CENTER, LOMA LINDA, CA 92350 Patient alignment system and procedure for radiation treatment
5148032, Jun 28 1991 Siemens Medical Solutions USA, Inc Radiation emitting device with moveable aperture plate
5166531, Aug 05 1991 Varian Medical Systems, Inc Leaf-end configuration for multileaf collimator
5189687, Dec 02 1988 University of Florida Research Foundation, Incorporated Apparatus for stereotactic radiosurgery
5191706, Jul 15 1991 Delmarva Sash & Door Company of Maryland, Inc. Machine and method for attaching casing to a structural frame assembly
5240218, Oct 23 1991 Loma Linda University Medical Center Retractable support assembly
5260579, Mar 13 1991 Fujitsu Semiconductor Limited Charged particle beam exposure system and charged particle beam exposure method
5260581, Mar 04 1992 Loma Linda University Medical Center Method of treatment room selection verification in a radiation beam therapy system
5278533, Aug 31 1990 Mitsubishi Denki Kabushiki Kaisha Coil for use in charged particle deflecting electromagnet and method of manufacturing the same
5285166, Oct 16 1991 Hitachi, Ltd.; Director General of National Institute of Radiological Sciences Method of extracting charged particles from accelerator, and accelerator capable of carrying out the method, by shifting particle orbit
5317164, Jun 12 1991 Mitsubishi Denki Kabushiki Kaisha Radiotherapy device
5336891, Jun 16 1992 Arch Development Corporation Aberration free lens system for electron microscope
5341104, Feb 05 1993 Siemens Aktiengesellschaft Synchrotron radiation source
5349198, Jul 15 1992 Mitsubishi Denki Kabushiki Kaisha Beam supply device
5365742, Jan 25 1991 Saes Getters S.p.A. Device and process for the removal of hydrogen from a vacuum enclosure at cryogenic temperatures and especially high energy particle accelerators
5374913, Dec 13 1991 Houston Advanced Research Center Twin-bore flux pipe dipole magnet
5382914, May 05 1992 ACCSYS TECHNOLOGY, INC Proton-beam therapy linac
5401973, Dec 04 1992 IOTRON INDUSTRIES CANADA INC Industrial material processing electron linear accelerator
5405235, Jul 26 1991 Barrel grasping device for automatically clamping onto the pole of a barrel trolley
5434420, Dec 04 1992 IOTRON INDUSTRIES CANADA INC Industrial material processing electron linear accelerator
5440133, Jul 02 1993 Loma Linda University Medical Center Charged particle beam scattering system
5451794, Dec 04 1992 IOTRON INDUSTRIES CANADA INC Electron beam current measuring device
5461773, Aug 31 1990 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing coils for use in charged particle deflecting electromagnet
5463291, Dec 23 1993 SIEMENS MEDICAL SOLUTIONS, USA, INC Cyclotron and associated magnet coil and coil fabricating process
5464411, Nov 02 1993 Loma Linda Medical Center Vacuum-assisted fixation apparatus
5492922, Feb 28 1995 Eli Lilly and Company Benzothiophene compounds intermediate compositions and methods for inhibiting aortal smooth muscle proliferation
5511549, Feb 13 1995 Loma Linda University Medical Center Normalizing and calibrating therapeutic radiation delivery systems
5521469, Nov 22 1991 ION BEAM APPLICATIONS S A Compact isochronal cyclotron
5538942, Nov 30 1990 Hitachi, Ltd. Method for producing a superconducting magnet coil
5549616, Nov 02 1993 Loma Linda University Medical Center Vacuum-assisted stereotactic fixation system with patient-activated switch
5561697, Dec 15 1992 Hitachi Medical Microtron electron accelerator
5585642, Feb 15 1995 Loma Linda University Medical Center Beamline control and security system for a radiation treatment facility
5633747, Dec 21 1994 TENCOR INSTRUMENTS, A CORP OF CA Variable spot-size scanning apparatus
5635721, Sep 19 1994 HITESYS S P A Apparatus for the liner acceleration of electrons, particularly for intraoperative radiation therapy
5668371, Jun 06 1995 Wisconsin Alumni Research Foundation Method and apparatus for proton therapy
5672878, Oct 24 1996 Siemens Medical Solutions USA, Inc Ionization chamber having off-passageway measuring electrodes
5691679, Oct 27 1994 General Electric Company Ceramic superconducting lead resistant to moisture and breakage
5726448, Aug 09 1996 ZIMMER, INC Rotating field mass and velocity analyzer
5727554, Sep 19 1996 UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF EDUCATION Apparatus responsive to movement of a patient during treatment/diagnosis
5730745, Nov 02 1993 Loma Linda University Medical Center Vacuum-assisted fixation apparatus
5751781, Oct 07 1995 ELE KKTA AB Apparatus for treating a patient
5778047, Oct 24 1996 Varian Medical Systems, Inc Radiotherapy couch top
5783914, Mar 17 1994 Hitachi, Ltd. Particle beam accelerator, and a method of operation
5784431, Oct 29 1996 UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF EDUCATION Apparatus for matching X-ray images with reference images
5797924, Nov 02 1993 Loma Linda University Medical Center Stereotactic fixation system and calibration phantom
5811944, Jun 25 1996 Lawrence Livermore National Security LLC Enhanced dielectric-wall linear accelerator
5818058, Jan 18 1996 Mitsubishi Denki Kabushiki Kaisha Particle beam irradiation apparatus
5821705, Jun 25 1996 Lawrence Livermore National Security LLC Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators
5825845, Oct 28 1996 Loma Linda University Medical Center Proton beam digital imaging system
5841237, Jul 14 1997 Lockheed Martin Energy Research Corporation Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
5846043, Aug 05 1997 Cart and caddie system for storing and delivering water bottles
5851182, Sep 11 1996 Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology
5866912, Apr 18 1995 Loma Linda University Medical Center System and method for multiple particle therapy
5874811, Aug 19 1994 GE Healthcare Limited Superconducting cyclotron for use in the production of heavy isotopes
5895926, Feb 15 1995 Loma Linda University Medical Center Beamline control and security system for a radiation treatment facility
5920601, Oct 25 1996 Battelle Energy Alliance, LLC System and method for delivery of neutron beams for medical therapy
5929458, May 07 1996 Hitachi, Ltd.; Hitachi Engineering Services Co., Ltd. Radiation shield
5963615, Aug 08 1997 Siemens Medical Solutions USA, Inc Rotational flatness improvement
5993373, Aug 08 1997 Sumitomo Heavy Industries, Ltd. Rotating radiation chamber for radiation therapy
6008499, Dec 03 1996 Hitachi, LTD Synchrotron type accelerator and medical treatment system employing the same
6034377, Nov 12 1997 Mitsubishi Denki Kabushiki Kaisha Charged particle beam irradiation apparatus and method of irradiation with charged particle beam
6057655, Oct 06 1995 Ion Beam Applications, S.A. Method for sweeping charged particles out of an isochronous cyclotron, and device therefor
6061426, Oct 06 1997 U S PHILIPS CORPORATION X-ray examination apparatus including an x-ray filter
6064807, Dec 27 1993 Fujitsu Limited Charged-particle beam exposure system and method
6066851, Nov 21 1996 Mitsubishi Denki Kabushiki Kaisha Radiation deep dose measuring apparatus and corpuscular beam detector
6080992, Aug 07 1997 Sumitomo Heavy Industries, LTD Apparatus for fixing radiation beam irradiation field forming member
6087670, Dec 03 1997 Hitachi, Ltd. Synchrotron type accelerator and medical treatment system employing the same
6094760, Aug 04 1997 Sumitomo Heavy Industries, LTD; OBAYASHI MANUFACTURING CO , LTD Bed system for radiation therapy
6118848, Jan 14 1998 REIFFEL TECHNOLOGIES, LLC System to stabilize an irradiated internal target
6140021, May 08 1998 Mamoru, Nakasuji Charged particle beam transfer method
6144875, Mar 16 1999 MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT Apparatus and method for compensating for respiratory and patient motion during treatment
6158708, Aug 08 1997 Siemens Medical Solutions USA, Inc Rotational flatness improvement
6207952, Aug 11 1997 Sumitomo Heavy Industries, Ltd. Water phantom type dose distribution determining apparatus
6219403, Feb 17 1999 Mitsubishi Denki Kabushiki Kaisha Radiation therapy method and system
6222905, Aug 27 1998 Mitsubishi Denki Kabushiki Kaisha Irradiation dose calculation unit, irradiation dose calculation method and recording medium
6241671, Nov 03 1998 STEREOTAXIS, INC Open field system for magnetic surgery
6246066, Dec 25 1997 Mitsubishi Denki Kabushiki Kaisha Magnetic field generator and charged particle beam irradiator
6256591, Nov 26 1996 Mitsubishi Denki Kabushiki Kaisha Method of forming energy distribution
6265837, Mar 10 1998 Hitachi, Ltd. Charged-particle beam irradiation method and system
6268610, Oct 20 1997 Mitsubishi Denki Kabushiki Kaisha Charged-particle beam irradiation apparatus, charged-particle beam rotary irradiation system, and charged-particle beam irradiation method
6278239, Jun 25 1996 Lawrence Livermore National Security LLC Vacuum-surface flashover switch with cantilever conductors
6279579, Oct 23 1998 Varian Medical Systems, Inc Method and system for positioning patients for medical treatment procedures
6307914, Mar 12 1998 Hokkaido University Moving body pursuit irradiating device and positioning method using this device
6316776, Aug 30 1996 Hitachi, LTD Charged particle beam apparatus and method for operating the same
6366021, Jan 06 2000 Varian Medical Systems, Inc Standing wave particle beam accelerator with switchable beam energy
6369585, Oct 02 1998 Siemens Medical Solutions USA, Inc. System and method for tuning a resonant structure
6380545, Aug 30 1999 Jefferson Science Associates, LLC Uniform raster pattern generating system
6407505, Feb 01 2001 Siemens Medical Solutions USA, Inc Variable energy linear accelerator
6417634, Sep 29 1998 Gems Pet Systems AB Device for RF control
6433336, Dec 21 1998 Ion Beam Applications S.A. Device for varying the energy of a particle beam extracted from an accelerator
6433349, Mar 10 1998 Hitachi, Ltd. Charged-particle beam irradiation method and system
6433494, Apr 22 1999 Inductional undulative EH-accelerator
6441569, Dec 09 1998 Particle accelerator for inducing contained particle collisions
6443349, Jul 22 1999 Device and method for inserting an information carrier
6465957, May 25 2001 Siemens Medical Solutions USA, Inc Standing wave linear accelerator with integral prebunching section
6472834, Jul 27 2000 Hitachi, LTD Accelerator and medical system and operating method of the same
6476403, Apr 01 1999 Gesellschaft fuer Schwerionenforschung mbH Gantry with an ion-optical system
6492922, Dec 14 2000 Xilinx Inc. Anti-aliasing filter with automatic cutoff frequency adaptation
6493424, Mar 05 2001 Siemens Medical Solutions USA, Inc Multi-mode operation of a standing wave linear accelerator
6498444, Apr 10 2000 Siemens Medical Solutions USA, Inc Computer-aided tuning of charged particle accelerators
6501981, Mar 16 1999 MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT Apparatus and method for compensating for respiratory and patient motions during treatment
6519316, Nov 02 2001 Siemens Medical Solutions USA, Inc.. Integrated control of portal imaging device
6593696, Aug 06 2001 Siemens Medical Solutions USA, Inc. Low dark current linear accelerator
6594336, Mar 14 2001 Mitsubishi Denki Kabushiki Kaisha Absorption dose measuring apparatus for intensity modulated radio therapy
6600164, Feb 19 1999 Gesellschaft fuer Schwerionenforschung mbH Method of operating an ion beam therapy system with monitoring of beam position
6617598, Feb 28 2002 Hitachi, Ltd. Charged particle beam irradiation apparatus
6621889, Oct 23 1998 Varian Medical Systems, Inc Method and system for predictive physiological gating of radiation therapy
6639234, Feb 19 1999 Gesellschaft fuer Schwerionenforschung mbH Method for checking beam steering in an ion beam therapy system
6646383, Mar 15 2001 Siemens Medical Solutions USA, Inc. Monolithic structure with asymmetric coupling
6670618, Feb 19 1999 Gesellschaft fuer Schwerionenforschung mbH Method of checking an isocentre and a patient-positioning device of an ion beam therapy system
6683318, Sep 11 1998 Gesellschaft fuer Schwerionenforschung mbH Ion beam therapy system and a method for operating the system
6683426, Jul 13 1999 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
6693283, Feb 06 2001 Gesellschaft fuer Schwerionenforschung mbH Beam scanning system for a heavy ion gantry
6710362, Jul 02 2001 Gesellschaft fuer Schwerionenforschung mbH Device for irradiating a tumor tissue
6713773, Oct 07 1999 MITEC, INC Irradiation system and method
6713976, Oct 17 2002 Mitsubishi Denki Kabushiki Kaisha Beam accelerator
6717162, Dec 24 1998 Ion Beam Applications S.A. Method for treating a target volume with a particle beam and device implementing same
6736831, Feb 19 1999 Gesellschaft fuer Schwerionenforschung mbH Method for operating an ion beam therapy system by monitoring the distribution of the radiation dose
6745072, Feb 19 1999 Gesellschaft fuer Schwerionenforschung mbH Method for checking beam generation and beam acceleration means of an ion beam therapy system
6769806, Oct 30 2001 Loma Linda University Medical Center Method and device for delivering radiotherapy
6774383, Mar 26 2002 Hitachi, Ltd. Particle therapy system
6777689, Nov 16 2001 Ion Beam Application, S.A. Article irradiation system shielding
6777700, Jun 12 2002 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
6780149, Apr 07 2000 Loma Linda University Medical Center Patient motion monitoring system for proton therapy
6799068, Feb 19 1999 Gesellschaft fuer Schwerionenforschung mbH Method for verifying the calculated radiation dose of an ion beam therapy system
6800866, Sep 11 2001 Hitachi, Ltd. Accelerator system and medical accelerator facility
6803591, Sep 30 2002 Hitachi, Ltd.; Hitachi Setsubi Engineering Co., Ltd. Medical particle irradiation apparatus
6814694, Jun 25 1999 PAUL SCHERRER INSTITUT Device for carrying out proton therapy
6822244, Jan 02 2003 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
6853142, Nov 04 2002 Zond, Inc.; ZOND, INC Methods and apparatus for generating high-density plasma
6853703, Jul 20 2001 Siemens Medical Solutions USA, Inc Automated delivery of treatment fields
6864770, Jan 30 2003 Hitachi, Ltd. Super conductive magnet apparatus
6865254, Jul 02 2002 C-Rad Innovation AB Radiation system with inner and outer gantry parts
6873123, Jun 08 2001 ION BEAM APPLICATIONS S A Device and method for regulating intensity of beam extracted from a particle accelerator
6891177, Feb 19 1999 Gesellschaft fuer Schwerionenforschung mbH Ion beam scanner system and operating method
6891924, May 13 1999 Mitsubishi Denki Kabushiki Kaisha Control apparatus for controlling radiotherapy irradiation system
6894300, Dec 20 2002 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Ion beam facility
6897451, Sep 05 2002 MAN Technologie AG; Gesellschaft fuer Schwerionenforschung mit beschraenkter Haftung Isokinetic gantry arrangement for the isocentric guidance of a particle beam and a method for constructing same
6914396, Jul 31 2000 L-3 Communications Corporation Multi-stage cavity cyclotron resonance accelerator
6936832, Mar 26 2002 Hitachi, Ltd. Particle therapy system
6953943, Feb 28 2002 Hitachi, Ltd. Medical charged particle irradiation apparatus
6965116, Jul 23 2004 Applied Materials, Inc Method of determining dose uniformity of a scanning ion implanter
6969194, Jun 09 1999 C-Rad Innovation AB Stable rotatable radiation gantry
6979832, Feb 28 2002 Hitachi, Ltd. Medical charged particle irradiation apparatus
6984835, Apr 23 2003 Mitsubishi Denki Kabushiki Kaisha Irradiation apparatus and irradiation method
6992312, Feb 28 2002 Hitachi, Ltd. Medical charged particle irradiation apparatus
6993112, Mar 12 2002 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Device for performing and verifying a therapeutic treatment and corresponding computer program and control method
7008105, May 13 2002 Siemens Healthcare GmbH Patient support device for radiation therapy
7011447, Oct 30 2001 Loma Linda University Medical Center Method and device for delivering radiotherapy
7012267, Mar 07 2003 Hitachi, Ltd. Particle beam therapy system
7014361, May 11 2005 Adaptive rotator for gantry
7026636, Jun 12 2002 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
7038403, Jul 31 2003 GE MEDICAL TECHNOLOGY SERVICES, INC Method and apparatus for maintaining alignment of a cyclotron dee
7041479, Sep 06 2000 BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE; The Board of Trustees of the Leland Stanford Junior University Enhanced in vitro synthesis of active proteins containing disulfide bonds
7045781, Jan 17 2003 ICT, Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik mbH Charged particle beam apparatus and method for operating the same
7049613, Dec 10 2003 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation field forming apparatus
7053389, Sep 10 2003 Hitachi, Ltd. Charged particle therapy system, range modulation wheel device, and method of installing range modulation wheel device
7054801, Jan 23 2001 Mitsubishi Denki Kabushiki Kaisha Radiation treatment plan making system and method
7060997, Mar 26 2002 Hitachi, Ltd. Particle therapy system
7071479, Jun 12 2002 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
7073508, Jun 25 2004 Loma Linda University Medical Center Method and device for registration and immobilization
7081619, Apr 27 2000 Loma Linda University; Yeda, Ltd. Nanodosimeter based on single ion detection
7084410, Jan 02 2003 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
7091478, Feb 12 2002 Gesellschaft fuer Schwerionenforschung mbH Method and device for controlling a beam extraction raster scan irradiation device for heavy ions or protons
7102144, May 13 2003 Hitachi, Ltd. Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method
7122811, May 11 2004 Hitachi, Ltd. Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method
7122966, Dec 16 2004 General Electric Company Ion source apparatus and method
7122978, Apr 19 2004 Mitsubishi Denki Kabushiki Kaisha Charged-particle beam accelerator, particle beam radiation therapy system using the charged-particle beam accelerator, and method of operating the particle beam radiation therapy system
7135678, Jul 09 2004 DCG Systems, Inc Charged particle guide
7138771, Feb 05 2001 Gesellschaft fuer Schwerionenforschung mbH Apparatus for pre-acceleration of ion beams used in a heavy ion beam application system
7154107, Dec 10 2003 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation field forming apparatus
7154108, Oct 24 2003 Hitachi, Ltd. Particle therapy system
7154991, Oct 17 2003 MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT Patient positioning assembly for therapeutic radiation system
7162005, Jul 19 2002 VAREX IMAGING CORPORATION Radiation sources and compact radiation scanning systems
7173264, Mar 07 2003 Hitachi, Ltd. Particle beam therapy system
7173265, Aug 12 2003 Loma Linda University Medical Center Modular patient support system
7173385, Jan 15 2004 Lawrence Livermore National Security LLC Compact accelerator
7186991, Feb 04 2002 Hitachi, LTD Mixed irradiation evaluation support system
7193227, Jan 24 2005 Board of Regents, The University of Texas System Ion beam therapy system and its couch positioning method
7199382, Aug 12 2003 Loma Linda University Medical Centre Patient alignment system with external measurement and object coordination for radiation therapy system
7208748, Jul 21 2004 LIFE SCIENCES ALTERNATIVE FUNDING LLC Programmable particle scatterer for radiation therapy beam formation
7212608, Mar 05 2003 Hitachi, LTD Patient positioning device and patient positioning method
7212609, Mar 05 2003 Hitachi, Ltd. Patient positioning device and patient positioning method
7221733, Jan 02 2002 Varian Medical Systems, Inc Method and apparatus for irradiating a target
7227161, May 11 2004 Hitachi, Ltd. Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method
7247869, Oct 24 2003 Hitachi, Ltd. Particle therapy system
7257191, Nov 30 2004 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Medical examination and treatment system
7259529, Feb 17 2003 Mitsubishi Denki Kabushiki Kaisha Charged particle accelerator
7262424, Mar 07 2003 Hitachi, Ltd. Particle beam therapy system
7262565, Jul 21 2004 National Institute of Radiological Sciences Spiral orbit charged particle accelerator and its acceleration method
7274018, Jan 17 2003 ICT, Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik mbH Charged particle beam apparatus and method for operating the same
7280633, Aug 12 2003 Loma Linda University Medical Center Path planning and collision avoidance for movement of instruments in a radiation therapy environment
7295649, Oct 13 2005 Varian Medical Systems, Inc Radiation therapy system and method of using the same
7297967, Jun 12 2002 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
7301162, Nov 16 2004 Hitachi, Ltd. Particle beam irradiation system
7307264, May 31 2002 ION BEAM APPLICATIONS S A Apparatus for irradiating a target volume
7318805, Mar 16 1999 MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT Apparatus and method for compensating for respiratory and patient motion during treatment
7319231, Mar 07 2003 Hitachi, Ltd. Particle beam therapy system
7319336, Feb 23 2004 DCG Systems, Inc Charged particle beam device probe operation
7331713, Oct 30 2001 Loma Linda University Medical Center Method and device for delivering radiotherapy
7332880, Mar 15 2005 Mitsubishi Denki Kabushiki Kaisha Particle beam accelerator
7345291, May 03 2002 ION BEAM APPLICATIONS S A Device for irradiation therapy with charged particles
7345292, Mar 07 2003 Hitachi, Ltd. Particle beam therapy system
7348557, Sep 03 2004 Carl Zeiss SMT Limited Scanning particle beam instrument
7348579, Sep 18 2002 PAUL SCHERRER INSTITUT Arrangement for performing proton therapy
7351988, May 19 2004 Gesellschaft fuer Schwerionenforschung mbH Beam allocation apparatus and beam allocation method for medical particle accelerators
7355189, Sep 10 2003 Hitachi, Ltd. Charged particle therapy system, range modulation wheel device, and method of installing range modulation wheel device
7368740, Jan 02 2003 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
7372053, Feb 25 2005 Hitachi, Ltd.; Hitachi Setsubi Engineering Co., Ltd. Rotating gantry of particle beam therapy system
7378672, Apr 13 2005 Mitsubishi Denki Kabushiki Kaisha Particle beam therapeutic apparatus
7381979, Jun 30 2005 Hitachi, LTD Rotating irradiation apparatus
7397054, Jul 28 2004 Hitachi, Ltd. Particle beam therapy system and control system for particle beam therapy
7397901, Feb 28 2007 Varian Medical Systems, Inc Multi-leaf collimator with leaves formed of different materials
7398309, Dec 08 2000 Loma Linda University Medical Center Proton beam therapy control system
7402822, Jun 05 2006 Varian Medical Systems, Inc Particle beam nozzle transport system
7402823, Jun 05 2006 Varian Medical Systems, Inc Particle beam system including exchangeable particle beam nozzle
7402824, Jun 05 2006 Varian Medical Systems, Inc Particle beam nozzle
7402963, Jul 21 2004 LIFE SCIENCES ALTERNATIVE FUNDING LLC Programmable radio frequency waveform generator for a synchrocyclotron
7405407, Jan 24 2005 Hitachi, Ltd.; Board of Regents, The University of Texas System Ion beam therapy system and its couch positioning method
7425717, May 13 2003 Hitachi, Ltd. Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method
7432516, Jan 24 2006 Brookhaven Science Associates, LLC Rapid cycling medical synchrotron and beam delivery system
7439528, Nov 07 2003 Hitachi, Ltd. Particle therapy system and method
7446328, Aug 12 2003 Loma Linda University Medical Centre Patient alignment system with external measurement and object coordination for radiation therapy system
7446490, Nov 25 2002 ION BEAM APPLICATIONS S A Cyclotron
7449701, Apr 14 2003 Hitachi, Ltd. Particle beam irradiation equipment and particle beam irradiation method
7453076, Mar 23 2007 NANOLIFE SCIENCES, INC Bi-polar treatment facility for treating target cells with both positive and negative ions
7465944, Jul 07 2003 Hitachi, Ltd. Charged particle therapy apparatus and charged particle therapy system
7466085, Apr 17 2007 BEST ABT, INC Cyclotron having permanent magnets
7468506, Jan 26 2005 Carl Zeiss AG; Applied Materials Israel, Ltd Spot grid array scanning system
7473913, Aug 05 2005 Siemens Aktiengesellschaft, Munich Gantry system for a particle therapy facility
7476867, May 27 2005 ION BEAM APPLICATIONS, S A ; Istituto Nazionale di Fisica Nucleare; DIPARTIMENTO DI FISICA SPERIMENTALE OF THE UNIVERSITA DEGLI STUDI DI TORNI Device and method for quality assurance and online verification of radiation therapy
7476883, May 26 2006 BEST ABT, INC Biomarker generator system
7482606, Jun 09 2004 Gesellschaft fuer Schwerionenforschung mbH Apparatus and method for compensation of movements of a target volume during ion beam irradiation
7492556, Feb 04 2005 Siemens PLC Quench protection circuit for a superconducting magnet
7507975, Apr 21 2006 Varian Medical Systems, Inc System and method for high resolution radiation field shaping
7525104, Feb 04 2005 Mitsubishi Denki Kabushiki Kaisha Particle beam irradiation method and particle beam irradiation apparatus used for the same
7541905, Jan 19 2006 LIFE SCIENCES ALTERNATIVE FUNDING LLC High-field superconducting synchrocyclotron
7547901, Jun 05 2006 Varian Medical Systems, Inc Multiple beam path particle source
7554096, Oct 16 2003 ALIS Corporation Ion sources, systems and methods
7554097, Oct 16 2003 ALIS Corporation Ion sources, systems and methods
7555103, Feb 28 2007 Varian Medical Systems, Inc Multi-leaf collimator with leaves formed of different materials
7557358, Oct 16 2003 ALIS Corporation Ion sources, systems and methods
7557359, Oct 16 2003 ALIS Corporation Ion sources, systems and methods
7557360, Oct 16 2003 ALIS Corporation Ion sources, systems and methods
7557361, Oct 16 2003 ALIS Corporation Ion sources, systems and methods
7560715, Apr 27 2004 PAUL SCHERRER INSTITUT System for the delivery of proton therapy
7560717, May 13 2003 Hitachi, Ltd. Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method
7567694, Jul 22 2005 Accuray Incorporated Method of placing constraints on a deformation map and system for implementing same
7574251, Jul 22 2005 Accuray Incorporated Method and system for adapting a radiation therapy treatment plan based on a biological model
7576499, Jan 15 2004 Lawrence Livermore National Security, LLC Sequentially pulsed traveling wave accelerator
7579603, Sep 16 2005 Siemens Healthcare GmbH Particle therapy device and method of designing a radiation path
7579610, Aug 12 2005 Siemens Aktiengesellschaft Expanding, monitoring, or adapting a particle energy distribution of a therapeutic particle beam installation
7582866, Oct 03 2007 Shimadzu Corporation Ion trap mass spectrometry
7582885, Apr 13 2005 Hitachi High-Technologies Corp. Charged particle beam apparatus
7582886, May 12 2006 Brookhaven Science Associates, LLC Gantry for medical particle therapy facility
7586112, Dec 26 2003 Hitachi, Ltd. Particle therapy system
7598497, Aug 31 2006 HITACHI HIGH-TECH CORPORATION Charged particle beam scanning method and charged particle beam apparatus
7609009, Jan 10 2007 Mitsubishi Electric Corporation Linear ion accelerator
7609809, Jul 22 2005 Accuray Incorporated System and method of generating contour structures using a dose volume histogram
7609811, Nov 07 2008 SIEMENS HEALTHINEERS INTERNATIONAL AG Method for minimizing the tongue and groove effect in intensity modulated radiation delivery
7615942, Nov 14 2005 Lawrence Livermore National Security, LLC Cast dielectric composite linear accelerator
7626347, Jul 21 2004 LIFE SCIENCES ALTERNATIVE FUNDING LLC Programmable radio frequency waveform generator for a synchrocyclotron
7629598, Feb 04 2005 Mitsubishi Denki Kabushiki Kaisha Particle beam irradiation method using depth and lateral direction irradiation field spread and particle beam irradiation apparatus used for the same
7639853, Jul 22 2005 Accuray Incorporated Method of and system for predicting dose delivery
7639854, Jul 22 2005 Accuray Incorporated Method and system for processing data relating to a radiation therapy treatment plan
7643661, Jul 22 2005 Accuray Incorporated Method and system for evaluating delivered dose
7656258, Jan 19 2006 LIFE SCIENCES ALTERNATIVE FUNDING LLC Magnet structure for particle acceleration
7659521, Mar 09 2005 Paul Scherrer Institute System for taking wide-field beam-eye-view (BEV) x-ray-images simultaneously to the proton therapy delivery
7659528, Feb 20 2007 Minoru, Uematsu; Masayuki, Atsuchi; James Robert, Wong Particle beam irradiation system
7668291, May 18 2007 SIEMENS HEALTHINEERS INTERNATIONAL AG Leaf sequencing
7672429, Mar 10 2006 Hitachi, LTD Radiotherapy device control apparatus and radiation irradiation method
7679073, Feb 16 2007 Hitachi, LTD Medical device
7682078, Oct 12 2006 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Method for determining a range of radiation
7692166, Jun 20 2006 HITACHI HIGH-TECH CORPORATION Charged particle beam exposure apparatus
7692168, Jul 07 2006 Hitachi, Ltd.; Hitachi Information & Control Solutions, Ltd. Device and method for outputting charged particle beam
7696499, Aug 12 2003 Loma Linda University Medical Center Modular patient support system
7696847, Jan 19 2006 LIFE SCIENCES ALTERNATIVE FUNDING LLC High-field synchrocyclotron
7701677, Sep 07 2006 LIFE SCIENCES ALTERNATIVE FUNDING LLC Inductive quench for magnet protection
7709818, Sep 30 2004 Hitachi, Ltd. Particle beam irradiation apparatus and particle beam irradiation method
7710051, Jan 15 2004 Lawrence Livermore National Security, LLC Compact accelerator for medical therapy
7718982, Jul 21 2004 LIFE SCIENCES ALTERNATIVE FUNDING LLC Programmable particle scatterer for radiation therapy beam formation
7728311, Nov 18 2005 LIFE SCIENCES ALTERNATIVE FUNDING LLC Charged particle radiation therapy
7746978, Aug 12 2003 Loma Linda University Medical Center Path planning and collision avoidance for movement of instruments in a radiation therapy environment
7755305, May 14 2008 Hitachi, LTD Charged particle beam extraction system and method
7759642, Apr 30 2008 Applied Materials Israel, Ltd. Pattern invariant focusing of a charged particle beam
7763867, Sep 16 2005 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Particle therapy system, method and device for requesting a particle beam
7767988, Sep 06 2007 SIEMENS HEALTHINEERS AG Particle therapy system
7770231, Aug 02 2007 BRUKER NANO, INC Fast-scanning SPM and method of operating same
7772577, Aug 17 2007 Hitachi, LTD Particle beam therapy system
7773723, Aug 28 2008 SIEMENS HEALTHINEERS INTERNATIONAL AG Radiation treatment trajectory and planning methods
7773788, Jul 22 2005 Accuray Incorporated Method and system for evaluating quality assurance criteria in delivery of a treatment plan
7778488, Mar 23 2007 SIEMENS HEALTHINEERS INTERNATIONAL AG Image deformation using multiple image regions
7783010, Jun 24 2005 VAREX IMAGING CORPORATION X-ray radiation sources with low neutron emissions for radiation scanning
7784127, Sep 04 2007 Accuray Incorporated Patient support device and method of operation
7786451, Oct 16 2003 ALIS Corporation Ion sources, systems and methods
7786452, Oct 16 2003 ALIS Corporation Ion sources, systems and methods
7789560, Oct 30 2001 Loma Linda University Medical Center Method and device for delivering radiotherapy
7791051, Jan 02 2003 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
7796731, Aug 22 2008 SIEMENS HEALTHINEERS INTERNATIONAL AG Leaf sequencing algorithm for moving targets
7801269, Jul 28 2006 Accuray Incorporated Method and apparatus for calibrating a radiation therapy treatment system
7801270, Jun 19 2008 SIEMENS HEALTHINEERS INTERNATIONAL AG Treatment plan optimization method for radiation therapy
7801988, Dec 08 2000 Loma Linda University Medical Center Proton beam therapy control system
7807982, Mar 29 2006 Hitachi, LTD Particle beam irradiation system
7809107, Jun 30 2008 SIEMENS HEALTHINEERS INTERNATIONAL AG Method for controlling modulation strength in radiation therapy
7812319, May 04 2007 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Beam guiding magnet for deflecting a particle beam
7812326, Aug 12 2005 Siemens Healthcare GmbH Treatment station for particle therapy
7816657, May 02 2007 Siemens Healthcare GmbH Particle therapy system
7817778, Aug 29 2008 Varian Medical Systems International AG Interactive treatment plan optimization for radiation therapy
7817836, Jun 05 2006 Varian Medical Systems, Inc Methods for volumetric contouring with expert guidance
7834334, Nov 10 2005 Siemens Aktiengesellschaft Particle therapy system
7834336, May 28 2008 Varian Medical Systems, Inc Treatment of patient tumors by charged particle therapy
7835494, Aug 28 2008 SIEMENS HEALTHINEERS INTERNATIONAL AG Trajectory optimization method
7835502, Feb 11 2009 Accuray Incorporated Target pedestal assembly and method of preserving the target
7839972, Jul 22 2005 Accuray Incorporated System and method of evaluating dose delivered by a radiation therapy system
7839973, Jan 14 2009 SIEMENS HEALTHINEERS INTERNATIONAL AG Treatment planning using modulability and visibility factors
7848488, Sep 10 2007 Varian Medical Systems, Inc Radiation systems having tiltable gantry
7857756, Aug 23 2001 NSCRYPT, INC Architecture tool and methods of use
7860216, Dec 12 2005 ION BEAM APPLICATIONS S A Device and method for positioning a target volume in radiation therapy apparatus
7860550, Apr 06 2004 MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT Patient positioning assembly
7868301, Oct 17 2007 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Deflecting a beam of electrically charged particles onto a curved particle path
7875861, Jan 18 2008 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Positioning device for positioning a patient and method for operating a positioning device
7875868, Dec 21 2007 Hitachi, LTD Charged particle beam irradiation system
7881431, Aug 06 2008 Hitachi, LTD Radiotherapy apparatus and radiation irradiating method
7894574, Sep 22 2009 SIEMENS HEALTHINEERS INTERNATIONAL AG Apparatus and method pertaining to dynamic use of a radiation therapy collimator
7906769, Jun 16 2004 Gesellschaft fuer Schwerionenforschung mbH Particle accelerator for radiotherapy by means of ion beams
7914734, Dec 19 2007 FISK VENTURES, LLC Scanning analyzer for single molecule detection and methods of use
7919765, Mar 20 2008 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Non-continuous particle beam irradiation method and apparatus
7920040, Jan 19 2006 LIFE SCIENCES ALTERNATIVE FUNDING LLC Niobium-tin superconducting coil
7920675, Apr 10 2008 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Producing a radiation treatment plan
7928415, Dec 22 2005 Gesellschaft fur Schwerionenforschung GmbH Device for irradiating tumour tissue in a patient with a particle beam
7934869, Jun 30 2009 Mitsubishi Electric Research Laboratories, Inc Positioning an object based on aligned images of the object
7940881, Dec 10 2002 ION BEAM APPLICATIONS S A Device and method for producing radioisotopes
7943913, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system
7947969, Jun 27 2007 Mitsubishi Electric Corporation Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same
7949096, Aug 12 2003 Loma Linda University Medical Center Path planning and collision avoidance for movement of instruments in a radiation therapy environment
7950587, Sep 22 2006 The Board of Regents of the Nevada System of Higher Education on behalf of the University of Reno, Nevada Devices and methods for storing data
7960710, Jun 22 2005 Siemens Healthcare Limited Particle radiation therapy equipment
7961844, Aug 31 2006 Hitachi, LTD Rotating irradiation therapy apparatus
7977648, Feb 27 2007 Wisconsin Alumni Research Foundation Scanning aperture ion beam modulator
7977656, Sep 07 2005 Hitachi, LTD Charged particle beam irradiation system and method of extracting charged particle beam
7982198, Mar 29 2006 Hitachi, Ltd. Particle beam irradiation system
7982416, Apr 15 2008 Mitsubishi Electric Corporation Circular accelerator
7984715, Jun 25 2004 Loma Linda University Medical Center Method and device for registration and immobilization
7986768, Feb 19 2009 SIEMENS HEALTHINEERS INTERNATIONAL AG Apparatus and method to facilitate generating a treatment plan for irradiating a patient's treatment volume
7987053, May 30 2008 SIEMENS HEALTHINEERS INTERNATIONAL AG Monitor units calculation method for proton fields
7989785, Oct 19 2007 Siemens Healthcare GmbH Gantry, particle therapy system, and method for operating a gantry
7990524, Jun 30 2006 The University of Chicago Stochastic scanning apparatus using multiphoton multifocal source
7997553, Jan 14 2005 Indiana University Research & Technology Corporati Automatic retractable floor system for a rotating gantry
8002466, Mar 13 2006 Gesellschaft fuer Schwerionenforschung mbH Irradiation verification device for radiotherapy installations, and method for handling thereof
8003964, Oct 11 2007 LIFE SCIENCES ALTERNATIVE FUNDING LLC Applying a particle beam to a patient
8009803, Sep 28 2009 SIEMENS HEALTHINEERS INTERNATIONAL AG Treatment plan optimization method for radiosurgery
8009804, Oct 20 2009 SIEMENS HEALTHINEERS INTERNATIONAL AG Dose calculation method for multiple fields
8039822, Mar 14 2008 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Particle therapy apparatus and method for modulating a particle beam generated in an accelerator
8041006, Apr 11 2007 ENTERPRISE SCIENCE FUND, LLC Aspects of compton scattered X-ray visualization, imaging, or information providing
8044364, Sep 08 2006 Mitsubishi Electric Corporation Dosimetry device for charged particle radiation
8049187, Mar 28 2008 Sumitomo Heavy Industries, LTD Charged particle beam irradiating apparatus
8053508, Oct 14 2005 The Trustees of Princeton University Electrospray painted article containing thermally exfoliated graphite oxide and method for their manufacture
8053739, Jun 23 2008 Siemens Healthcare GmbH Particle beam generating system and method with measurement of the beam spot of the particle beam
8053745, Feb 24 2009 MOORE FAMILY PROPERTIES, LLC Device and method for administering particle beam therapy
8053746, Dec 21 2006 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Irradiation device
8067748, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
8069675, Oct 10 2006 LIFE SCIENCES ALTERNATIVE FUNDING LLC Cryogenic vacuum break thermal coupler
8071966, Aug 01 2007 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG Control device for controlling an irradiation procedure, particle therapy unit, and method for irradiating a target volume
8080801, Dec 04 2003 PAUL SCHERRER INSTITUT Inorganic scintillating mixture and a sensor assembly for charged particle dosimetry
8085899, Dec 12 2007 SIEMENS HEALTHINEERS INTERNATIONAL AG Treatment planning system and method for radiotherapy
8089054, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
8093564, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
8093568, Feb 27 2007 Wisconsin Alumni Research Foundation Ion radiation therapy system with rocking gantry motion
8111125, Jan 19 2006 LIFE SCIENCES ALTERNATIVE FUNDING LLC Niobium-tin superconducting coil
8129699, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
8144832, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
8173981, May 12 2006 Brookhaven Science Associates, LLC Gantry for medical particle therapy facility
8188688, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
8198607, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
8222613, Oct 15 2008 Shizuoka Prefecture Scanning irradiation device of charged particle beam
8227768, Jun 25 2008 Axcelis Technologies, Inc. Low-inertia multi-axis multi-directional mechanically scanned ion implantation system
8232536, May 27 2010 Hitachi, LTD Particle beam irradiation system and method for controlling the particle beam irradiation system
8288742, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Charged particle cancer therapy patient positioning method and apparatus
8291717, May 02 2008 LIFE SCIENCES ALTERNATIVE FUNDING LLC Cryogenic vacuum break thermal coupler with cross-axial actuation
8294127, Aug 26 2010 Sumitomo Heavy Industries, Ltd. Charged-particle beam irradiation device, charged-particle beam irradiation method, and computer readable medium
8304725, Mar 23 2006 HITACHI HIGH-TECH CORPORATION Charged particle beam system
8304750, Dec 17 2007 Carl Zeiss NTS GmbH Scanning charged particle beams
8309941, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Charged particle cancer therapy and patient breath monitoring method and apparatus
8330132, Aug 27 2008 Varian Medical Systems, Inc Energy modulator for modulating an energy of a particle beam
8334520, Oct 24 2008 HITACHI HIGH-TECH CORPORATION Charged particle beam apparatus
8335397, May 22 2007 HITACHI HIGH-TECH CORPORATION Charged particle beam apparatus
8344340, Nov 18 2005 LIFE SCIENCES ALTERNATIVE FUNDING LLC Inner gantry
8350214, Jan 15 2009 HITACHI HIGH-TECH CORPORATION Charged particle beam applied apparatus
8368038, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
8368043, Dec 31 2008 ION BEAM APPLICATIONS S A Gantry rolling floor
8373143, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
8373145, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Charged particle cancer therapy system magnet control method and apparatus
8378299, Mar 10 2010 ICT Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik mbH Twin beam charged particle column and method of operating thereof
8378321, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Charged particle cancer therapy and patient positioning method and apparatus
8382943, Oct 23 2009 Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source of electromagnetic radiation
8389949, Jun 09 2009 Mitsubishi Electric Corporation Particle beam therapy system and adjustment method for particle beam therapy system
8399866, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Charged particle extraction apparatus and method of use thereof
8405042, Jan 28 2010 Hitachi, LTD Particle beam therapy system
8405056, Dec 28 2006 ADVANCED ONCOTHERAPY PLC Ion acceleration system for medical and/or other applications
8415643, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
8416918, Aug 20 2010 Varian Medical Systems International AG Apparatus and method pertaining to radiation-treatment planning optimization
8421041, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Intensity control of a charged particle beam extracted from a synchrotron
8426833, May 12 2006 Brookhaven Science Associates, LLC Gantry for medical particle therapy facility
8436323, Sep 12 2007 Kabushiki Kaisha Toshiba Particle beam irradiation apparatus and particle beam irradiation method
8440987, Sep 03 2010 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG System and method for automated cyclotron procedures
8445872, Sep 03 2010 VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG System and method for layer-wise proton beam current variation
8466441, Feb 17 2011 Mitsubishi Electric Corporation Particle beam therapy system
8472583, Sep 29 2010 VAREX IMAGING CORPORATION Radiation scanning of objects for contraband
8483357, Oct 20 2009 Varian Medical Systems International AG Dose calculation method for multiple fields
8487278, May 22 2008 X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
8552406, Nov 07 2005 Fibics Incorporated Apparatus and method for surface modification using charged particle beams
8552408, Feb 10 2010 TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION Particle beam irradiation apparatus and control method of the particle beam irradiation apparatus
8569717, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Intensity modulated three-dimensional radiation scanning method and apparatus
8581215, May 22 2008 BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH Charged particle cancer therapy patient positioning method and apparatus
8581523, Nov 30 2007 LIFE SCIENCES ALTERNATIVE FUNDING LLC Interrupted particle source
8581525, Mar 23 2012 Massachusetts Institute of Technology Compensated precessional beam extraction for cyclotrons
8653314, May 22 2011 FINA TECHNOLOGY, INC, Method for providing a co-feed in the coupling of toluene with a carbon source
8653473, Jul 28 2010 Sumitomo Heavy Industries, Ltd. Charged particle beam irradiation device
20020172317,
20030048080,
20030125622,
20030136924,
20030152197,
20030163015,
20030183779,
20030234369,
20040000650,
20040017888,
20040056212,
20040061077,
20040061078,
20040085023,
20040098445,
20040111134,
20040118081,
20040149934,
20040159795,
20040173763,
20040174958,
20040183033,
20040183035,
20040200982,
20040200983,
20040213381,
20040227104,
20040232356,
20040240626,
20050058245,
20050089141,
20050161618,
20050184686,
20050228255,
20050234327,
20050247890,
20060017015,
20060067468,
20060126792,
20060145088,
20060175991,
20060273264,
20060284562,
20070001128,
20070013273,
20070014654,
20070023699,
20070029510,
20070051904,
20070061937,
20070092812,
20070114945,
20070145916,
20070171015,
20070181519,
20070252093,
20070284548,
20080067452,
20080093567,
20080218102,
20090096179,
20090140671,
20090140672,
20090200483,
20100045213,
20100230617,
20100308235,
20110240874,
20110299919,
20120081041,
20130053616,
20130127375,
20130131424,
20130237425,
20140028220,
20140042934,
20140097920,
20150099917,
20150099918,
CA2629333,
CN101061759,
CN101932361,
CN101933405,
CN101933406,
CN1377521,
CN1537657,
CN1816243,
DE2753397,
DE3148100,
DE3530446,
DE4101094CI,
DE4411171,
EP194728,
EP208163,
EP221987,
EP222786,
EP277521,
EP306966,
EP388123,
EP465597,
EP499253,
EP776595,
EP864337,
EP911064,
EP1069809,
EP1153398,
EP1294445,
EP1348465,
EP1358908,
EP1371390,
EP1402923,
EP1430932,
EP1454653,
EP1454654,
EP1454655,
EP1454656,
EP1454657,
EP1477206,
EP1605742,
EP1738798,
EP1826778,
EP1949404,
EP2183753,
EP2227295,
EP2232961,
EP2232962,
EP2363170,
EP2363171,
EP2394498,
FR2560421,
FR2911843,
GB957342,
GB2015821,
GB2361523,
JP10071213,
JP11102800,
JP11243295,
JP1147287,
JP1276797,
JP1302700,
JP2000243309,
JP2000294399,
JP2001009050,
JP2001129103,
JP2001346893,
JP20016900,
JP2002164686,
JP2003504628,
JP2003517755,
JP2004031115,
JP2005526578,
JP2006032282,
JP2008507826,
JP2009515671,
JP2009516905,
JP2010536130,
JP2011505191,
JP2011505670,
JP2011507151,
JP4128717,
JP4129768,
JP4273409,
JP4323267,
JP4337300,
JP48108098,
JP494198,
JP5046928,
JP5341352,
JP57162527,
JP58141000,
JP6036893,
JP61225798,
JP6180800,
JP62150804,
JP62186500,
JP6233831,
JP63149344,
JP63218200,
JP63226899,
JP6489621,
JP7260939,
JP7263196,
JP8173890,
JP8264298,
JP9162585,
SU300137,
SU569635,
TW200930160,
TW200934682,
TW200939908,
TW200940120,
WO40064,
WO49624,
WO126230,
WO126569,
WO207817,
WO3039212,
WO3092812,
WO2004026401,
WO2004101070,
WO2006012467,
WO2007061937,
WO2007084701,
WO2007130164,
WO2007145906,
WO2008030911,
WO2008081480,
WO2009048745,
WO2009070173,
WO2009070588,
WO2009073480,
WO2014018706,
WO2014018876,
WO2014052721,
WO8607229,
WO9012413,
WO9203028,
WO9302536,
WO9817342,
WO9939385,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 27 2013Mevion Medical Systems, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Nov 17 20184 years fee payment window open
May 17 20196 months grace period start (w surcharge)
Nov 17 2019patent expiry (for year 4)
Nov 17 20212 years to revive unintentionally abandoned end. (for year 4)
Nov 17 20228 years fee payment window open
May 17 20236 months grace period start (w surcharge)
Nov 17 2023patent expiry (for year 8)
Nov 17 20252 years to revive unintentionally abandoned end. (for year 8)
Nov 17 202612 years fee payment window open
May 17 20276 months grace period start (w surcharge)
Nov 17 2027patent expiry (for year 12)
Nov 17 20292 years to revive unintentionally abandoned end. (for year 12)