The frequency of high-frequency voltage which is output by a variable high frequency power source included in a power transmitting device is controlled in accordance with the value of electric power received by a power receiving device. That is to say, the frequency of the high-frequency voltage is controlled in accordance with data directly relating to power supply. Thus, electric power is accurately supplied with high transmission efficiency in the power supply system.
|
13. A method for driving a power supply system comprising:
detecting a first value of electric power received by a power receiving device in a state where a power source in a power transmitting device outputs a high-frequency voltage with a first frequency, the first value of electric power being received by a magnetic resonance method;
detecting a second value of electric power received by the power receiving device in a state where the power source outputs the high-frequency voltage with a second frequency higher than the first frequency, the second value of electric power being received by the magnetic resonance method; and
setting a frequency of the high-frequency voltage to be output by the power source to the first frequency when the first value of electric power is larger than the second value of electric power, and to the second frequency when the first value of electric power is smaller than or equal to the second value of electric power,
wherein detecting the second value of electric power is performed after detecting the first value of electric power is performed,
wherein detecting the first value of electric power, detecting the second value of electric power, and setting the frequency of the high-frequency voltage to be output by the power source are repeatedly performed with the frequency of the high-frequency voltage to be output by the power source being the first frequency, until the first value of electric power becomes larger than the second value of electric power, so that the first frequency and the second frequency are increased in a step-by-step manner, and
wherein the first frequency at the time when the first value of electric power is larger than the second value of electric power is held for a certain period as an optimal frequency.
7. A method for driving a power supply system comprising:
detecting a first value of electric power received by a power receiving device in a state where a power source in a power transmitting device outputs a high-frequency voltage with a first frequency, the first value of electric power being received by a magnetic resonance method;
detecting a second value of electric power received by the power receiving device in a state where the power source outputs the high-frequency voltage with a second frequency higher than the first frequency, the second value of electric power being received by the magnetic resonance method; and
setting a frequency of the high-frequency voltage to be output by the power source to the first frequency when the first value of electric power is larger than or equal to the second value of electric power, and to the second frequency when the first value of electric power is smaller than the second value of electric power,
wherein detecting the first value of electric power is performed after detecting the second value of electric power is performed,
wherein detecting the first value of electric power, detecting the second value of electric power, and setting the frequency of the high-frequency voltage to be output by the power source are repeatedly performed with the frequency of the high-frequency voltage to be output by the power source being the second frequency, until the first value of electric power becomes smaller than the second value of electric power, so that the first frequency and the second frequency are decreased in a step-by-step manner, and
wherein the second frequency at the time when the first value of electric power is smaller than the second value of electric power is held for a certain period as an optimal frequency.
1. A method for driving a power supply system comprising:
detecting a first value of electric power received by a power receiving device in a state where a power source in a power transmitting device outputs a high-frequency voltage with a first frequency, the first value of electric power being received by a magnetic resonance method;
detecting a second value of electric power received by the power receiving device in a state where the power source outputs the high-frequency voltage with a second frequency higher than the first frequency, the second value of electric power being received by the magnetic resonance method; and
setting a frequency of the high-frequency voltage to be output by the power source to the first frequency when the first value of electric power is larger than or equal to the second value of electric power, and to the second frequency when the first value of electric power is smaller than the second value of electric power,
wherein detecting the second value of electric power is performed after detecting the first value of electric power is performed,
wherein detecting the first value of electric power, detecting the second value of electric power, and setting the frequency of the high-frequency voltage to be output by the power source are repeatedly performed with the frequency of the high-frequency voltage to be output by the power source being the first frequency, until the first value of electric power becomes larger than or equal to the second value of electric power, so that the first frequency and the second frequency are increased in a step-by-step manner, and
wherein the first frequency at the time when the first value of electric power is larger than or equal to the second value of electric power is held for a certain period as an optimal frequency.
19. A method for driving a power supply system comprising:
detecting a first value of electric power received by a power receiving device in a state where a power source in a power transmitting device outputs a high-frequency voltage with a first frequency, the first value of electric power being received by a magnetic resonance method;
detecting a second value of electric power received by the power receiving device in a state where the power source outputs the high-frequency voltage with a second frequency higher than the first frequency, the second value of electric power being received by the magnetic resonance method; and
setting a frequency of the high-frequency voltage to be output by the power source to the first frequency when the first value of electric power is larger than the second value of electric power, and to the second frequency when the first value of electric power is smaller than or equal to the second value of electric power,
wherein detecting the first value of electric power is performed after detecting the second value of electric power is performed,
wherein detecting first value of electric power, detecting the second value of electric power, and setting the frequency of the high-frequency voltage to be output by the power source are repeatedly performed with the frequency of the high-frequency voltage to be output by the power source being the second frequency, until the first value of electric power becomes smaller than or equal to the second value of electric power, so that the first frequency and the second frequency are decreased in a step-by-step manner, and
wherein the second frequency at the time when the first value of electric power is smaller than or equal to the second value of electric power is held for a certain period as an optimal frequency.
2. The method for driving the power supply system according to
wherein a sensor is provided in the power supply system, and
wherein the certain period is terminated when the sensor detects a change of a power supply environment.
3. The method for driving the power supply system according to
wherein a value of electric power in a temporal frequency which is set in setting the frequency of the high-frequency voltage to be output by the power source step performed plural times is held until at least setting the frequency of the high-frequency voltage to be output by the power source step performed next time, so that detecting the first value of electric power is not performed in subsequent times.
4. The method for driving the power supply system according to
wherein detecting the first value of electric power is performed in the power transmitting device.
5. The method for driving the power supply system according to
wherein detecting the second value of electric power is performed in the power transmitting device.
6. The method for driving the power supply system according to
wherein supply of electric power from the power transmitting device to the power receiving device and transmission and reception of a signal between the power transmitting device and the power receiving device are performed through a resonance coil included in the power transmitting device and a resonance coil included in the power receiving device.
8. The method for driving the power supply system according to
wherein a sensor is provided in the power supply system, and
wherein the certain period is terminated when the sensor detects a change of a power supply environment.
9. The method for driving the power supply system according to
wherein a value of electric power in a temporal frequency which is set in setting the frequency of the high-frequency voltage to be output by the power source step performed plural times is held until at least setting the frequency of the high-frequency voltage to be output by the power source step performed next time, so that detecting the second value of electric power is not performed in subsequent times.
10. The method for driving the power supply system according to
wherein detecting the first value of electric power is performed in the power transmitting device.
11. The method for driving the power supply system according to
wherein detecting the second value of electric power is performed in the power transmitting device.
12. The method for driving the power supply system according to
wherein supply of electric power from the power transmitting device to the power receiving device and transmission and reception of a signal between the power transmitting device and the power receiving device are performed through a resonance coil included in the power transmitting device and a resonance coil included in the power receiving device.
14. The method for driving the power supply system according to
wherein a sensor is provided in the power supply system, and
wherein the certain period is terminated when the sensor detects a change of a power supply environment.
15. The method for driving the power supply system according to
wherein a value of electric power in a temporal frequency which is set in setting the frequency of the high-frequency voltage to be output by the power source step performed plural times is held until at least setting the frequency of the high-frequency voltage to be output by the power source step performed next time, so that detecting the first value of electric power is not performed in subsequent times.
16. The method for driving the power supply system according to
wherein detecting the first value of electric power is performed in the power transmitting device.
17. The method for driving the power supply system according to
wherein detecting the second value of electric power is performed in the power transmitting device.
18. The method for driving the power supply system according to
wherein supply of electric power from the power transmitting device to the power receiving device and transmission and reception of a signal between the power transmitting device and the power receiving device are performed through a resonance coil included in the power transmitting device and a resonance coil included in the power receiving device.
20. The method for driving the power supply system according to
wherein a sensor is provided in the power supply system, and
wherein the certain period is terminated when the sensor detects a change of a power supply environment.
21. The method for driving the power supply system according to
wherein a value of electric power in a temporal frequency which is set in setting the frequency of the high-frequency voltage to be output by the power source step performed plural times is held until at least setting the frequency of the high-frequency voltage to be output by the power source step performed next time, so that detecting the second value of electric power is not performed in subsequent times.
22. The method for driving the power supply system according to
wherein detecting the first value of electric power is performed in the power transmitting device.
23. The method for driving the power supply system according to
wherein detecting the second value of electric power is performed in the power transmitting device.
24. The method for driving the power supply system according to
wherein supply of electric power from the power transmitting device to the power receiving device and transmission and reception of a signal between the power transmitting device and the power receiving device are performed through a resonance coil included in the power transmitting device and a resonance coil included in the power receiving device.
|
1. Field of the Invention
The present invention relates to a method for driving a power supply system. In particular, the present invention relates to a method for driving a power supply system to which electric power is supplied by a magnetic resonance method.
2. Description of the Related Art
A method called a magnetic resonance method attracts attention as a method for supplying electric power to an object (hereinafter, also referred to as a power receiving device) in a state where contact with a power supply source (hereinafter, also referred to as a power transmitting device) is not made (such a method is also referred to as contactless power supply, wireless power supply, or the like). The magnetic resonance method is a method for forming an energy propagation path by making resonance coils provided in a power transmitting device and a power receiving device magnetically resonate with each other. The magnetic resonance method has a longer power transmittable distance than other methods (e.g., an electromagnetic induction method and an electric field induction method). For example, Non Patent Document 1 discloses that in the magnetic resonance method, transmission efficiency is approximately 90% when the distance between a pair of resonance coils is 1 m and that the transmission efficiency is approximately 45% when the distance between the pair of resonance coils is 2 m.
Note that short distance between the pair of resonance coils does not mean high transmission efficiency in the magnetic resonance method. Further, the transmission efficiency is changed by various factors such as the self resonant frequency of the resonance coil and the frequency of high-frequency voltage induced by the resonance coil. Therefore, when electric power is supplied by the magnetic resonance method, these factors are preferably optimized. For example, Patent Document 1 discloses a method for driving a power supply system in which the frequency of high-frequency voltage output from a high frequency power source is changed in accordance with an estimated distance between a pair of resonance coils.
In the method for driving a power supply system disclosed in Patent Document 1, the distance between a pair of resonance coils is estimated on the basis of a S11 parameter. The S11 parameter indicates a reflected, component of electromagnetic wave emitted by a resonance coil included in a power transmitting device. The S11 parameter is changed in accordance with a distance between the resonance coil included in the power transmitting device and a resonance coil included in a power receiving device. Note that the S11 parameter is changed in accordance with, not, only the distance but also other factors (e.g., an obstacle to electromagnetic wave propagation). Accordingly, it might be difficult to perform appropriate supply of electric power by the method for driving a power supply system disclosed in Patent Document 1.
In view of the above problems, it is an object of one embodiment of the present invention to provide a method for driving a power supply system by which electric power is appropriately supplied.
An object of one embodiment of the present invention is to control the frequency of high-frequency voltage, which is output from a variable high frequency power source included in the power transmitting device, in accordance with the value of electric power received by the power receiving device.
Specifically, one embodiment of the present invention is a method for driving a power supply system that supplies high-frequency voltage output by a variable high frequency power source included in a power transmitting device to a power receiving device by a magnetic resonance method. The method includes a first step in which the power transmitting device detects a first value of electric power received by the power receiving device in a state where the variable high frequency power source outputs high-frequency voltage with a first frequency; a second step in which the power transmitting device detects a second value of electric power received by the power receiving device in a state where the variable high frequency power source outputs high-frequency voltage with a second frequency higher than the first frequency; and a third step in which after the first step and the second step, a frequency of the high-frequency voltage to be output by the variable high frequency power source is set to the first frequency when the first value of the electric power is larger than or equal to the second value of the electric power, and a frequency of the high-frequency voltage to be output by the variable high frequency power source is set to the second frequency when the first value of the electric power is smaller than the second value of the electric power.
Another embodiment of the present invention is a method for driving a power supply system in which the method for driving the power supply system in which the second step is performed after the first step, is performed plural times. The operation is repeatedly performed until the first value of electric power becomes larger than or equal to the second value of electric power, so that the first frequency and the second frequency in the operation which is performed plural times are increased in a step-by-step manner; then, the first frequency at the time when the first value of electric power is larger than or equal to the second value of electric power in the operation is held for a certain period as a frequency of high-frequency voltage output by the variable high frequency power source.
Another embodiment of the present invention is a method for driving a power supply system in which the method for driving the power supply system in which the first step is performed after the second step, is performed plural times. The operation is repeatedly performed until the first value of electric power becomes smaller than the second value of electric power, so that the first frequency and the second frequency in the operation which is performed plural times are decreased in a step-by-step manner; then, the second frequency at the time when the first value of electric power is smaller than the second value of electric power in the operation is held for a certain period as a frequency of high frequency voltage output by the variable high frequency power source.
Another embodiment of the present invention is a method for driving a power supply system in which the method for driving the power supply system is performed plural times. A sensor is provided in the power supply system, and the certain period is terminated when the sensor detects a change of a power supply environment.
Another embodiment of the present invention is a method for driving a power supply system in which the method for driving the power supply system is performed plural times. The value of electric power in a frequency which is selected in the third step of the operation performed plural times is held until at least the third step of the operation performed next time, so that the first step and the second step are not performed in the operation performed subsequent times.
Another embodiment of the present invention is a method for driving a power supply system. Supply of electric power from the power transmitting, device to the power receiving device and transmission and reception of a signal between the power transmitting device and the power receiving device are performed through a resonance coil included in the power transmitting device and a resonance coil included in the power receiving device.
In a method for driving a power supply system in one embodiment of the present invention, the frequency of high-frequency voltage which is output by a variable high frequency power source included in a power transmitting device is controlled in accordance with the value of electric power received by a power receiving device. That is to say, the frequency of the high-frequency voltage is controller in accordance with data directly relating to power supply. Thus, electric power is accurately supplied with high transmission efficiency in the power supply system.
In a method for driving a power supply system in one embodiment of the present invention, the frequency of the high-frequency voltage is dynamically controlled in accordance with the value of electric power received by the power receiving device. Thus, even when a power supply condition is changed over time (e.g., the case where impedance is changed over time by charging of a battery included in the power receiving device), electric power is accurately and regularly supplied with high transmission efficiency in the power supply system.
In a method for driving a power supply system in one embodiment of the present invention, a system for transmitting and receiving signals and a system for supplying electric power are not separately provided. Data transmission and reception and supply of electric power are both performed through a resonance coil in the power transmitting device and a resonance coil in the power receiving device. Accordingly, the power transmitting device and the power receiving device can be downsized.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the following description, and it is easily understood by those skilled in the art that a variety of changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the present invention should not be limited to the descriptions of the embodiment below.
First, a configuration example and an operation example of a power supply system according to one embodiment of the present invention will be described with reference to
<Structure Example of Power Supply System>
The power transmitting device 100 includes a controller 10, a variable high frequency power source 11 for outputting high-frequency voltage with frequency controlled by the controller 10, a modulation circuit 12 for modulating the high-frequency voltage in accordance with signals generated by the controller 10, a coil 13 to which the high-frequency voltage modulated by the modulation circuit 12 is applied, a resonance coil 14 in which high-frequency voltage is induced by electromagnetic induction with the coil 13, and a demodulation circuit 15 for demodulating the signal from the high-frequency voltage induced by the coil 13. Further, in the resonance coil 14, stray capacitance 16 exists between wirings.
Note that the variable high frequency power source 11 may have any configuration as long as the frequency of high-frequency voltage output therefrom is controlled by the controller 10. Specifically, for the variable high frequency power source 11, a circuit in which analog voltage control is performed through a D/A converter can be used. For example, to the variable high frequency power source 11, a circuit in which a Colpitts oscillating circuit or a Hartley oscillating circuit is combined with a variable capacitance diode, a circuit in which a VCO (a voltage controlled oscillator) is combined with a PLL (a phase locked loop), or the like can be applied.
The configuration of the modulation circuit 12 may be any circuit as long as a signal can be superposed (e.g., amplitude modulation can be performed) with the use of high-frequency voltage as a carrier wave.
In
The demodulation circuit 15 may be any circuit as long as it can identify a signal superposed on high-frequency voltage (e.g., a signal superposed on high-frequency voltage by amplitude modulation) and can output the signal as a digital signal.
Further, in the power transmitting device illustrated in
The power receiving device 200 includes a resonance coil 20 in which high-frequency voltage is induced by magnetic resonance with the resonance coil 14 in the power transmitting device 100, a coil 21 in which high-frequency voltage is induced by electromagnetic induction with the resonance coil 20, a load 22 to which electric power is supplied in accordance with high-frequency voltage induced by the coil 21, a demodulation circuit 23 for demodulating the signal from the high-frequency voltage induced by the coil 21, a controller 24 for detecting the value of electric power supplied to the load 22 and obtaining the signal demodulated by the demodulation circuit 23, and a response unit 25 whose operation is controlled by the controller 24. Further, in the resonance coil 20, stray capacitance 26 exists between wirings.
In
The load 22 can have any configuration as long as the value of electric power supplied thereto is detected by the controller 24. For example, the load 22 can include an AC-DC converter, a DC-DC converter, a battery, or the like. In particular, the load 22 preferably includes a battery on which charging is performed on the basis of high-frequency voltage induced in the coil 21. This is because in the case where magnetic resonance is utilized, electric power can be supplied with high efficiency even in a middle and long distance.
In addition, as illustrated in
The demodulation circuit 23 may be any circuit as long as it can identify a signal superposed on high-frequency voltage (e.g., a signal superposed on high-frequency voltage by amplitude modulation) and can output the signal as a digital signal.
The configuration of the response unit 25 may be any configuration as long as it can respond to the external power transmitting device. For example, a resistor and a switch which are provided between the one end and the other end of the coil 21 and are connected in series can be used as the response unit 25. In that case, the response unit 25 can respond to the external power transmitting device by control of switching of the switch with the controller 24. As the switch, it is preferable to use a mechanical switch (e.g., a mechanical relay or a MEMS switch) for controlling whether a contact exists. This is because the high-frequency voltage might be applied to the switch.
Further, in
<Operation Example of Power Supply System>
<Step 1 (S1)>
First, the value of electric power which the load 22 receives is detected while electric power is supplied to the load 22 with a predetermined frequency f1 by the variable high frequency power source 11. For example, the modulation circuit 12 performs load modulation on high-frequency voltage so that the power transmitting device 100 transmits a command signal for detecting the value of electric power received by the load 22. In accordance with the command signal demodulated by the demodulation circuit 23, the controller 24 detects the value of electric power received by the load 22 and replies the value of the electric power to the power transmitting device with the use of the response unit 25. The value of the electric power is temporarily stored in the controller 10. Note that the frequency f1 indicates a frequency at which the value of electric power is detected in <Step 1> and does not means the particular frequency.
<Step 2 (S2)>
Next, the controller 10 changes a frequency of the high-frequency voltage output by the variable high frequency power source 11 from the frequency f1 to a frequency f2 (here, the frequency f1<the frequency f2).
<Step 3 (S3)>
Then, the value of electric power received by the load 22 is detected while electric power is supplied to the load 22 with the frequency 12 by the variable high frequency power source 11. Specifically, an operation similar to the operation in <Step 1> is performed. Note that the frequency f2 indicates a frequency at which the value of electric power is detected in <Step 3> and does not means the particular frequency.
<Steps 4 (S4), 5-1 (S5-1), and 5-2 (S5-2)>
Next, in the controller 10, the value of electric power obtained in <Step 1> is compared with the value of electric power obtained in <Step 3>. When the latter is higher than or equal to the former, the controller 10 keeps the frequency f2 of the high-frequency voltage output by the variable high frequency power source 11. When the latter is lower than the former, the controller 10 changes the frequency of high-frequency voltage output by the variable high frequency power source 11 from the frequency f2 to the frequency f1. According to the above, the frequency f2 is selected when the former is equal to the latter. In this case, however, the frequency f1 can be selected. In other words, the following configuration can also be used: the frequency f2 of the high-frequency voltage output by the variable high frequency power source 11 is kept when the latter is higher than the former; on the other hand, the frequency of high-frequency voltage output by the variable high frequency power source 11 is changed from the frequency f2 to the frequency 11 when the latter is lower than or equal to the former.
By such an operation, the frequency of the high-frequency voltage output by the variable high frequency power source can be controlled so that the transmission efficiency of the power supply system is high.
Further, the operation shown in
Furthermore, the operation shown in
Note that in the case of performing the above operation plural times, <Step 1> is not necessarily performed in the operation performed at the second time or more. This is because if the value of electric power detected at the former time is stored, detection of the value of electric power (<Step 1>) is not needed. Specifically, in the operation shown in
Further, a frequency is increased in <Step 2> (f1<f2) in the operation example shown in
Further, in the power supply system, a mechanism for transmitting and receiving signals and a mechanism for supplying electric power are not separately provided, but signal transmission and reception and power supply are both performed through the resonance coils 14 and 20 and the coils 13 and 21. Thus, the power transmitting device and the power receiving device can be downsized.
In this example, applications of the above power supply system are described. Note that as applications of a power supply system according to one embodiment of the present invention, portable electronic devices such as a digital video camera, a portable information terminal (e.g., a mobile computer, a cellular phone, a portable game machine, or an e-book reader), and an image reproducing device including a recording medium (specifically a digital versatile disc (DVD) reproducing device) can be given. In addition, an electric propulsion vehicle that is powered by electric power, such as an electric car, can be given. Examples of such electronic devices are described below with reference to
This application is based on Japanese Patent Application serial no. 2011-047374 filed with Japan Patent Office on Mar. 4, 2011, the entire contents of which are hereby incorporated by reference.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5124699, | Jun 30 1989 | N V NEDERLANDSCHE APPARATENFABRIEK NEDAP | Electromagnetic identification system for identifying a plurality of coded responders simultaneously present in an interrogation field |
5428521, | Oct 21 1992 | ALPS ELECTRIC CO , LTD ; KIGAWA ELECTRONIC ENGINEERING LABORATORY, INC | Non-contact power supply apparatus |
5652423, | Jun 21 1994 | Sony Chemicals Corporation | Non-contacting RF-ID card for wide voltage range input |
5790946, | Jul 15 1993 | Round Rock Research, LLC | Wake up device for a communications system |
6509217, | Oct 22 1999 | Inexpensive, reliable, planar RFID tag structure and method for making same | |
6737302, | Oct 31 2001 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method for field-effect transistor |
6837438, | Oct 30 1998 | Hitachi Maxell, Ltd | Non-contact information medium and communication system utilizing the same |
7180421, | Nov 15 2004 | TAGARRAY, INC | Radio frequency tag and reader with asymmetric communication bandwidth |
7209771, | May 14 2002 | GOOGLE LLC | Battery powered wireless transceiver having LPRF component and second wake up receiver |
7301830, | Mar 15 2002 | Renesas Electronics Corporation | Semiconductor memory device and semiconductor device and semiconductor memory device control method |
7394382, | Jul 01 2004 | POWERID LTD | Battery-assisted backscatter RFID transponder |
7675358, | Oct 07 2004 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Semiconductor device |
7907902, | Oct 18 2006 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
8217535, | Mar 31 2009 | Fujitsu Limited | Wireless power supply apparatus |
20020049714, | |||
20030017804, | |||
20030104848, | |||
20040077383, | |||
20040128246, | |||
20040131897, | |||
20040145454, | |||
20050020321, | |||
20050215119, | |||
20050254183, | |||
20060009251, | |||
20070216348, | |||
20070229228, | |||
20070229271, | |||
20070229279, | |||
20070229281, | |||
20070278998, | |||
20070285246, | |||
20100052431, | |||
20100244577, | |||
20100244839, | |||
20100259109, | |||
20100289449, | |||
20110049995, | |||
20110080053, | |||
20110095619, | |||
20110101791, | |||
20110169337, | |||
20110231029, | |||
20110241440, | |||
20110248572, | |||
20110270462, | |||
20120032521, | |||
JP10285087, | |||
JP11088243, | |||
JP2002259921, | |||
JP2003085506, | |||
JP2005063123, | |||
JP2006180073, | |||
JP2007183790, | |||
JP2010068657, | |||
JP2010119246, | |||
JP2010193598, | |||
JP2010239690, | |||
JP2010252446, | |||
JP2010252468, | |||
JP2010252497, | |||
JP2010268665, | |||
JP2010284006, | |||
JP2010284066, | |||
JP2011120410, | |||
JP2011121456, | |||
JP2011125184, | |||
JP2011130614, | |||
JP2011135717, | |||
JP2011142769, | |||
JP6006272, | |||
WO2010055381, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 06 2012 | Semiconductor Energy Laboratory Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Dec 01 2018 | 4 years fee payment window open |
Jun 01 2019 | 6 months grace period start (w surcharge) |
Dec 01 2019 | patent expiry (for year 4) |
Dec 01 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 01 2022 | 8 years fee payment window open |
Jun 01 2023 | 6 months grace period start (w surcharge) |
Dec 01 2023 | patent expiry (for year 8) |
Dec 01 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 01 2026 | 12 years fee payment window open |
Jun 01 2027 | 6 months grace period start (w surcharge) |
Dec 01 2027 | patent expiry (for year 12) |
Dec 01 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |