A convertible lighting fixture includes a first housing defining a first compartment and a second housing defining a second compartment and movably attached to the first housing. The lighting fixture further includes a mounting plate attached to the second housing, a light source attached to the mounting plate and electrically connected to a power source disposed within the first compartment, and a cover substantially surrounding the light source. In at least one embodiment, the lighting fixture includes a wire harness configured to electrically connect the power source with the light source, wherein the wire harness includes a plurality of wires, a harness jacket surrounding the plurality of wires, and a sealant disposed within the harness jacket, wherein the sealant at least partially fills voids within the harness jacket and prevents liquids from translating through the wire harness.

Patent
   9206964
Priority
Jun 08 2012
Filed
Jan 20 2015
Issued
Dec 08 2015
Expiry
Jun 07 2033
Assg.orig
Entity
Small
44
6
currently ok
1. A lighting fixture, the lighting fixture comprising:
a first housing and a second housing, the first housing movably attached to the second housing, the second housing including a surface adjacent the first housing, wherein the first housing and the surface define a compartment;
a first plate attached to the second housing opposite the surface to define a volume; and
a light source attached to the first plate, the first plate configured to accept the light source and further configured to enable attachment of different types of light sources, wherein the light source is insulated from the compartment by the volume.
14. A fixture, the fixture comprising:
a first housing defining a first compartment;
a second housing defining a second compartment and movable and removably attached to the first housing, the second housing having a surface adjacent the first compartment;
a cover reversibly attached to the second housing opposite the first housing, the cover generally defining a third compartment thermally insulated from the first compartment by the second compartment;
a light source disposed within the third compartment;
a power source disposed within the first compartment; and
a wire harness electrically connecting the power source with the light source, the wire harness comprised of a plurality of wires within a jacket and a sealant disposed within the jacket.
18. A lighting fixture, the lighting fixture comprising:
a light source, the light source attached to a mounting plate;
a power source, the power source attached to an offset plate and electrically connected to the light source;
a housing defining an insulating compartment and having a surface defining a side of the compartment, wherein the offset plate is attached to the surface such that the power source is opposite the compartment, and wherein the mounting plate is attached to the housing opposite the surface such that the light source is opposite the compartment;
a lid defining a driver compartment and movably attached to the housing, the lid enclosing the power source within the driver compartment; and
a harness including a plurality of conductors surrounded by a jacket and including a sealant capable of filling voids within the jacket as to prevent liquid from translating through the wire harness, wherein wire harness connects the power source and the light source.
2. The lighting fixture of claim 1, the lighting fixture further comprising:
a second plate disposed in the compartment and attached to the surface of the second housing, the second plate including a portion offset from the surface such that a gap is formed therebetween;
a power controller attached to the second plate opposite the surface, the power controller electrically connected to the light source; and
a cover attached to the second housing, wherein the cover encloses the light source, wherein the first and second housings are configured to enable the power controller within the compartment to be replaced without separating the cover from the second housing.
3. The lighting fixture of claim 2, wherein the light source is a fluorescent induction tube including at least one induction coil, and the power controller is a ballast.
4. The lighting fixture of claim 2, wherein the light source is at least one light-emitting diode module, and the power controller is a light-emitting diode driver.
5. The lighting fixture of claim 2, the lighting fixture further comprising a wire harness configured to electrically connect the power controller with the light source, wherein the wire harness comprises:
a plurality of wires, each electrically insulated by a wire jacket;
a harness jacket surrounding the plurality of wires; and
a sealant disposed within the harness jacket, wherein the sealant at least partially fills voids within the harness jacket and prevents liquids from translating through the wire harness.
6. The lighting fixture of claim 5, wherein the sealant comprises a cured resin.
7. The lighting fixture of claim 5, wherein the voids filled are between each of the plurality of wires and its associated wire jacket and/or between each wire jacket and the harness jacket.
8. The lighting fixture of claim 5, wherein the surface of the second housing includes a first opening therethrough, the wire harness extending from the light source to the power controller through the first opening, and
wherein the wire harness further comprises a first seal disposed within the first opening, the first seal configured to prevent liquid from passing between the harness jacket and the first seal and between the first seal and the second housing.
9. The lighting fixture of claim 8, wherein the first seal is a cable gland.
10. The lighting fixture of claim 5, the lighting fixture further comprising a sensor, the sensor capable of detecting motion or light at or near the lighting fixture, wherein the wire harness is further configured to electrically connect the power controller to the sensor.
11. The lighting fixture of claim 10, wherein the sensor is a passive infrared motion device.
12. The lighting fixture of claim 10, wherein the wire harness electrically connects the power controller to the light source via the sensor.
13. The lighting fixture of claim 12, wherein the second plate includes a second opening therethrough, and wherein at least a portion of the wire harness further extends from the power controller to the sensor through the second opening.
15. The fixture of claim 14, wherein each of the plurality of wires is surrounded by an insulator and the sealant is disposed between each insulator and the jacket.
16. The fixture of claim 15, wherein the sealant is further disposed within each insulator.
17. The fixture of claim 14, wherein the sealant is a resin.
19. The lighting fixture of claim 18, wherein the sealant is a cured resin.
20. The lighting fixture of claim 18, wherein the harness includes a seal surrounding a portion of the harness and disposed at least partially within an opening in the housing.

This U.S. utility patent application is a continuation-in-part application of U.S. patent application Ser. No. 13/913,030, filed Jun. 7, 2013, which is related to and claims the priority benefit of U.S. Provisional Patent Application Ser. No. 61/657,490, filed Jun. 8, 2012, both of which are incorporated herein by reference in their entireties.

The present disclosure generally relates to wide area lighting fixtures and, more specifically, to convertible lighting fixtures.

Wide area lighting fixtures are commonly used for both indoor and outdoor applications. Indoor lighting such as those used in arenas, gymnasiums, aircraft hangers, and other large spaces use wide area lighting. Outdoor lighting fixtures, such as those used for street lighting, parking structures, loading dock areas, and other exterior lighting applications, also use wide area lighting and may be known in such applications as canopy lights. These wide area fixtures typically involve a light source, such as a bulb, lamp, or other illumination source, a transformer for converting a power supply to the light source's power requirements, and a reflector and/or lens system to direct the light output from the light source into a desired illumination pattern. When the fixtures are elevated and their light output directed downward, a wide area can be illuminated by strategic placement of the fixtures.

The types of wide area lighting fixtures vary depending upon the particular application and lighting requirements, as do the light sources employed. High Intensity Discharge (“HID”) fixtures, for example, are one of the most prevalent outdoor lighting fixtures in use today and may include metal halide, high pressure sodium, and low pressure sodium light sources. As an example, metal halide lamps produce approximately 70-115 lumens per Watt with operating life expectancies approximately in the 5,000-20,000 hour range. By comparison, high pressure sodium lamps produce about 50-140 lumens per Watt on average with an operating life expectancy of approximately 24,000-40,000 hours. Maintaining these types of fixtures can be expensive due to the cost of the replacement light sources themselves and the labor and equipment (e.g., boom trucks, lane flashers to rear, caution area markers, etc.) needed to reach the fixtures, which are often in difficult to reach locations, and to disassemble them to replace the proper component.

Another type of light source used for wide area lighting is induction lighting. Induction lighting is similar to fluorescent lighting in that induction lighting uses the excitation of a contained gas or gases, which react with phosphors inside a lamp to produce white light. However, induction lamps excite the gases using a magnetic field, as opposed to electrodes as in fluorescent lighting. Induction lamps are rated up to 100,000 hours operating life and, consequently, are typically employed where maintenance of the lamp is problematic. Moreover, induction lamps are energy efficient, typically operating at greater than 85 lumens per Watt. Further, induction lamps exhibit high lumen maintenance over the entire life and provide instant on and instant restrike capability, such that there is virtually no warm up time.

Yet another type of light source used for wide area lighting is the light-emitting diode (“LED”) array. The efficacy of LEDs, as measured in lumens per Watt, is rapidly evolving, and more powerful LEDs are being released every 6-12 months. Currently, LEDs are approaching efficacies of 130 lumens per Watt with a rated operating life of 50,000-100,000 hours. However, individual, discrete LEDs do not produce sufficient light output to illuminate a wide area. As a result, to produce sufficient illumination in most applications, prior art solid-state lighting systems utilize many LEDs, such as clusters of LEDs arranged in arrays on printed circuit boards. However, these clusters create significant heat that can build up and damage the LEDs unless the heat is controlled and dissipated. Consequently, most LED lighting manufacturers mount the LEDs to large, heavy heat sinks. If an individual LED malfunctions it is not efficiently replaceable and cannot be simply unscrewed and replaced as with other types of light sources. Furthermore, as newer, brighter, higher efficacy LEDs come on the market, the entire prior art LED array requires replacement, and likely a complete heat sink redesign, because the supporting heat sink system is most often constructed as a single integrated unit. Today, few modularized lighting systems are available that allow for upgrades to the newest LED technology without completely developing new components for the entire system. Consequently, there is significant expense in both materials and labor to either replace a non-LED fixture with one incorporating LEDs or to upgrade a current LED fixture to the latest technology, as it will generally require an entirely new LED array and heat sink system designed to handle a new and more powerful LED.

Accordingly, a need exists for a modular convertible lighting fixture that can be easily and effectively converted to use one of multiple high-efficiency light sources by replacing only the light source and associated electronics without the need to completely remove the fixture from its mounted location. Further, there is a need for a convertible lighting fixture that is easily and cost-effectively maintained and upgraded to the latest high-efficiency lighting technology without replacing the entire fixture.

According to one aspect of the present disclosure, a convertible lighting fixture is disclosed. In at least one embodiment, a lighting fixture includes a first housing a first housing and a second housing, the first housing movably attached to the second housing, the second housing including a surface adjacent the first housing, wherein the first housing and the surface define a compartment; a first plate attached to the second housing opposite the surface to define a volume; and a light source attached to the first plate, the first plate configured to accept the light source and further configured to enable attachment of different types of light sources, wherein the light source is insulated from the compartment by the volume. In certain embodiments, the lighting fixture may further include a second plate disposed in the compartment and attached to the surface of the second housing, the second plate including a portion offset from the surface such that a gap is formed therebetween; a power controller attached to the second plate opposite the surface, the power controller electrically connected to the light source; and a cover attached to the second housing, wherein the cover encloses the light source, wherein the first and second housings are configured to enable the power controller within the compartment to be replaced without separating the cover from the second housing. In at least one embodiment, the light source is a fluorescent induction tube including at least one induction coil, and the power controller is a ballast. In alternative embodiments, the light source is at least one light-emitting diode module, and the power controller is a light-emitting diode driver.

In another aspect of the present disclosure, the lighting fixture may further include a wire harness configured to electrically connect the power controller with the light source, wherein the wire harness includes a plurality of wires, each electrically insulated by a wire jacket, a harness jacket surrounding the plurality of wires, and a sealant disposed within the harness jacket, wherein the sealant at least partially fills voids within the harness jacket and prevents liquids from translating through the wire harness. In a refinement, the sealant may be a cured resin. In a further refinement, the voids filled are between each of the plurality of wires and its associated wire jacket and/or between each wire jacket and the harness jacket. In yet another refinement, the surface of the second housing includes a first opening therethrough, the wire harness extending from the light source to the power controller through the first opening, and wherein the wire harness further comprises a first seal disposed within the first opening, the first seal configured to prevent liquid from passing between the harness jacket and the first seal and between the first seal and the second housing. In at least one embodiment, the first seal is a cable gland.

In at least one embodiment, the lighting fixture includes a sensor, the sensor capable of detecting motion or light at or near the lighting fixture, wherein the wire harness is further configured to electrically connect the power controller to the sensor. In a refinement, the sensor is a passive infrared motion device. In another refinement, the wire harness electrically connects the power controller to the light source via the sensor. In yet another refinement, the second plate includes a second opening therethrough, and wherein at least a portion of the wire harness further extends from the power controller to the sensor through the second opening.

According to another aspect of the present disclosure, a convertible lighting fixture includes a first housing defining a first compartment; a second housing defining a second compartment and movable and removably attached to the first housing, the second housing having a surface adjacent the first compartment; a cover reversibly attached to the second housing opposite the first housing, the cover generally defining a third compartment thermally insulated from the first compartment by the second compartment; a light source disposed within the third compartment; a power source disposed within the first compartment; and a wire harness electrically connecting the power source with the light source, the wire harness comprised of a plurality of wires within a jacket and a sealant disposed within the jacket. In at least one embodiment, each of the plurality of wires is surrounded by an insulator and the sealant is disposed between each insulator and the jacket. In a refinement, the sealant is further disposed within each insulator. In certain embodiments, the sealant is a resin.

According to another aspect of the present disclosure, a lighting fixture includes a light source, the light source attached to a mounting plate; a power source, the power source attached to an offset plate and electrically connected to the light source; a housing defining an insulating compartment and having a surface defining a side of the compartment, wherein the offset plate is attached to the surface such that the power source is opposite the compartment, and wherein the mounting plate is attached to the housing opposite the surface such that the light source is opposite the compartment; a lid defining a driver compartment and movably attached to the housing, the lid enclosing the power source within the driver compartment; and a harness including a plurality of conductors surrounded by a jacket and including a sealant capable of filling voids within the jacket as to prevent liquid from translating through the wire harness, wherein wire harness connects the power source and the light source. In at least one embodiment, the harness includes a seal surrounding a portion of the harness and disposed at least partially within an opening in the housing.

The described embodiments and other features, advantages and disclosures contained herein, and the manner of attaining them, will become apparent and the present disclosure will be better understood by reference to the following description of various exemplary embodiments of the present disclosure taken in conjunction with the accompanying drawings, wherein:

FIG. 1 shows a perspective view of a convertible lighting fixture according to an embodiment of the present disclosure;

FIG. 2 shows an exploded perspective view of a convertible lighting fixture according to an embodiment of the present disclosure;

FIG. 3 shows a cross-sectional view of a convertible lighting fixture according to an embodiment of the present disclosure taken through the centerline at section line 3-3 as shown in FIG. 1;

FIG. 4 shows a partial top view of a convertible lighting fixture according to an embodiment of the present disclosure with the upper housing in the open configuration;

FIG. 5 shows a perspective view of a convertible lighting fixture according to an embodiment of the present disclosure;

FIG. 6 shows an exploded perspective view of a convertible lighting fixture according to an embodiment of the present disclosure;

FIG. 7 shows a cross-sectional view of a convertible lighting fixture according to an embodiment of the present disclosure taken through the centerline at section line 7-7 as shown in FIG. 5;

FIG. 8 shows a partial top view of a convertible lighting fixture according to an embodiment of the present disclosure with the upper housing in the open configuration;

FIG. 9 shows a perspective view of a convertible lighting fixture according to an embodiment of the present disclosure;

FIG. 10 shows a cross-sectional view of a convertible lighting fixture according to an embodiment of the present disclosure taken at section line 10-10 as shown in FIG. 9;

FIG. 11 shows an embodiment of a passive infrared device according to an embodiment of the present disclosure; and

FIG. 12 shows a detail view of a portion of a convertible lighting fixture according to an embodiment of the present disclosure.

Like reference numerals indicate the same or similar parts throughout the several figures.

An overview of the features, functions and configuration of the components depicted in the various figures will now be presented. It should be appreciated that not all of the features of the components of the figures are necessarily described. Some of these non-discussed features, such as various fasteners, etc., as well as discussed features are inherent from the figures. Other non-discussed features may be inherent in component geometry or configuration.

For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended.

The disclosure of the present application provides a convertible lighting fixture for multiple light sources. The convertible lighting fixture of the present disclosure provides a modular light fixture that can be converted to use one of multiple high-efficiency light sources by simply replacing only the light source and its associated power electronics and without the need to completely remove the fixture from its mounting location, thereby facilitating both conversion and servicing of the fixture. Further, the convertible lighting fixture of the present disclosure enables the light source to be upgraded without replacing the entire fixture. These features of the convertible lighting fixture are enabled by a three-compartment configuration that provides advantages over conventional lighting fixtures, including of ease of maintenance, thermal isolation of the ballast or driver electronics from the light source, and prevention of foreign material intrusion into the light source compartment. Further advantages of the convertible lighting fixture are disclosed herein.

A convertible lighting fixture according to at least one embodiment of the present disclosure is shown in FIGS. 1-3. As shown in FIG. 1, a convertible lighting fixture 100 includes a lens cover 160 reversibly attached to a lower housing 120, which is movably attached to an upper housing 110. As shown in FIGS. 2-3, the upper housing 110 includes a top surface 112 with upper walls 114 extending in one direction from the edges of the top surface 112. The top surface 112 and upper walls 114 define a ballast compartment 111 therebetween. The upper housing 110 may further include an upper flange 118 extending from the periphery of the upper walls 114 opposite the top surface 112.

The lower housing 120 includes a mounting surface 122 with lower walls 124 extending in one direction from the edges of the mounting surface 122. The mounting surface 122 and lower walls 114 define an insulating compartment 121 therebetween. The mounting surface 122 may be sized such that a perimeter of the mounting surface 122 is smaller than an inner perimeter of the upper flange 118 wherein, when assembled, the mounting surface 122 fits within the inner perimeter of the upper flange 118. The lower housing 120 may further include a lower flange 128 extending from the periphery of the lower walls 124 opposite the mounting surface 122. Moreover, the upper and lower housings 110, 120 may be movably attached to one another by at least one hinge 136 or other suitable means disposed along an edge of the mounting surface 122 and an adjacent edge of the upper flange 118. Aside from the hinge 136, the upper and lower housings 110, 120 may be reversibly secured together by a latch 138 or other suitable means when assembled. The latch 138 may include a locking feature to prevent unwanted opening or vandalism of the fixture 100. Such locking feature may include a locking draw bolt, a loop configured for a padlock, security wire, or zip tie, or another suitable locking feature that prevents the unlatching of the latch 138.

The at least one hinge 136 may be a slip hinge, which enables the upper and lower housings 110, 120 to be disassembled from one another easily. As shown in FIG. 4, the lower housing 120 may have a channel 125 formed therein adjacent to each hinge 136 to provide clearance for one half of the hinge 136 to slide relative to the other half, thereby easily separating the upper housing 110 from the lower housing 120. To prevent tampering or accidentally disassembly of the hinge 136, a lock screw 135 may be attached to the lower housing 120 within the channel 125 to block the hinge from sliding and disengaging. Alternatively, the channel 125 may be formed in, and the lock screw 135 attached to, the upper housing 110 with the same effect. The channel 125 and lock screw 135 may be configured such that, when fully engaged, the lock screw 135 is flush with the surface of the channel 125, and thus the halves of hinge 136 may slide freely past one another and disengage. Moreover, by partially backing out the lock screw 135, it may interfere with the sliding halves of the hinge 136, thereby preventing its disassembly. Further, the lock screw 135 may be a security fastener with a tamper-resistant head requiring special tools to engage and disengage the lock screw 135.

Consequently, the at least one slip hinge 136 enables installation and maintenance of the upper housing 110 separate from the lower housing 120 with subsequent assembly of the housings 110, 120. For example, a single person may first secure the upper housing 110 in the desired location for the fixture 100. With the upper housing 110 prepositioned, power connections may be made to the fixture 100 before the lower housing 120, including the remaining components of the fixture 100, is attached to the prepositioned upper housing 110. Conventional lighting fixtures require a two-man installation and maintenance process with one person making connections while the other supports the weight of the fixture. Such a two-man process may be particularly difficult in wide area lighting applications where the fixtures are located high off the ground or in other difficult to reach locations.

The lens cover 160 may form a bowl-like shape with a lens flange 168 at the brim, which corresponds to the shape of the lower flange 128, a lens wall 164 forming the sides of the bowl-like shape, and a lens bottom 162 that extends between and caps the lens wall 164 to form the bottom of the bowl-like shape. The lens bottom 162 and lens wall 164 define a lamp compartment 141. The lens flange 168 is formed to engage the lower housing 120 and may be reversibly attached to the lower housing 120 by any suitable means, including but not limited to screws 131. The lens flange 168 may engage the lower housing 120 within the perimeter of the lower flange 128, thereby protecting the interface therebetween from direct exposure to the environment and minimizing potential intrusion into the fixture 100. Further, the lens wall 164 and lens bottom 162 may include a plurality of optical elements 166 formed therein that distribute the light output from a light source 140 into a desired light pattern. Alternatively, the lens cover 160 may include a surface treatment, such as frosted or stippling, to provide diffusion of the light emitted from the light source 140. To enable the desired light distribution, the lens cover 160 may be made of a substantially optically transparent or at least translucent material, including but not limited to glass, cyclic olefin copolymer (COC), polymethylmethacrolate (PMMA), polycarbonate (PC), PC/PMMA composite, silicones, fluorocarbon polymers, and polyetherimide (PEI), or other suitable material.

In addition to enabling the desired light distribution, the lens cover 160 further protects the lamp compartment 141 from intrusion of foreign material into the lamp compartment 141. Moreover, a seal 130 may be disposed between the lens cover 160 and the lower housing 120 such that, when assembled, the seal 130 prevents the intrusion of dirt, water, insects, or other foreign matter into the lamp compartment 141. The seal 130 may be made of any suitably resilient material capable of maintaining a seal between the lens cover 160 and the lower housing 120, preferably for the life of the convertible light fixture 100.

In at least one embodiment according to the present disclosure, the convertible lighting fixture 100 includes an induction fluorescent light source 140 disposed within the lamp compartment 141. The fluorescent light source 140 may be an electrodeless tube filled with a mixture of inert gas and mercury vapor. Such fluorescent lighting technology is well-known in the art, and examples include ICETRON® products from Osram-Sylvania. The light source 140 includes at least one induction coil 142 surrounding a portion of the light source 140. One or more mounting bands 144 surround the at least one induction coil 142 and attach the light source 140 to a mounting plate 132, which in turn is attached to the lower housing 120. The mounting plate 132 may include a reflective surface on the side facing the light source 140 capable of reflecting incident light from the light source 140.

In at least one embodiment according to the present disclosure, the convertible lighting fixture 100 includes an isolation plate 134 and a ballast 150 mounted within the ballast compartment 111 as shown in FIG. 3. The isolation plate 134 includes a flat portion 134a, upon which the ballast 150 is attached, and at least two base portions 134b offset at distance from the flat portion 134a. The base portions 134b may be attached to the mounting surface 122 of the lower housing 120 such that an insulating air gap exists between the flat portion 134a where the ballast 150 may be attached and the mounting surface 122. Thus, the isolation plate 134 serves to thermally isolate the ballast from the lower housing 120 and thereby the light source 140. The isolation plate 134 and the ballast 150 may be attached by any suitable means including but not limited to screws 131.

The ballast 150 includes solid state electronic circuitry to provide the proper starting and operating voltages to power the light source 140. The ballast 150 may include various power regulation functions as is well-known in the art, including changing the frequency of the power from the standard main frequency of 50-60 Hertz (Hz) to some higher frequency, such as 20,000 Hz, stepping the voltage supplied to the light source 140 from startup to steady state operation, and surge protection for the light source 140. However, a by-product of the ballast function is heat generated by the electronics during operation. The ballast 150 is electrically connected to a power supply line (not shown) and to the at least one induction coil 142 of the light source 140 via a wiring harness (not shown), which passes from the ballast compartment 111 through an opening 123 in the mounting surface 122 of the lower housing 120 and further through an opening 133 in the mounting plate 132 to the at least one induction coil 142.

In operation, the convertible lighting fixture 100 may be mounted in a desired location by attaching the upper housing 110 at top surface 112 by any suitable means, such as screws, to a ceiling, wall, or other desired surface and connecting an electrical power supply line to the input of the ballast 150. Power to the fixture 100 may be controlled, for example, manually via a wall switch or automatically via a sensor located on the fixture 100 or a centrally-located sensor that controls a bank of fixtures 100 as described further herein.

Replacement of the ballast 150 is the most common maintenance issue for induction fluorescent lighting fixtures generally. Should the fixture 100 require service, such as maintenance or repair, the ballast compartment 111 may be easily opened by unfastening the latch 138 on the lower housing 120, thereby enabling access to the ballast 150 and associated power connections located on the moving and accessible lower housing 120. Accordingly, the fixture 100 may be serviced without disturbing or affecting the lamp compartment 141. Consequently, servicing the fixture 100 is easier than conventional lighting fixtures that include ballast electronics. Moreover, because the electronics and electrical connections of the fixture 100 can serviced without disturbing or affecting the lamp compartment 141, the integrity of the seal 130 and the lamp compartment 141 is not compromised, which avoids the intrusion of foreign matter and other potential light source problems associated with the maintenance of conventional lighting fixtures in which the light source must be exposed to service the electronics. Similarly, in a situation where the light source 140 must be replaced, the lamp compartment 141 may be serviced without disturbing the ballast 150 and electrical connections in the ballast compartment 111.

Thermal energy generated by induction fluorescent light fixtures may potentially reduce the rated life of the components, as is common in conventional lighting fixtures. However, the convertible lighting fixture 100 includes features that improve the thermal energy management of the fixture in service. Because the ballast compartment 111 is separate from the lamp compartment 141, the light source 140 is effectively thermally insulated from the heat generated by the normal operation of the ballast 150. Heat transfer between the ballast and lamp compartments 111, 141 is further inhibited by the isolation plate 134, which enables the formation of an insulating layer of air between ballast 150 and the lower housing 120. Likewise, the mounting plate 132 enables further thermal isolation of the light source 140 from the heat generated by the ballast 150. In assembly, the mounting plate 132 and lower housing 120 define the insulating compartment 121, in which the air filling the insulating compartment 121 is effectively stagnant. Consequently, the insulating compartment 121, isolated from the lamp compartment 141 by the mounting plate 132, further insulates the ballast 150 from the light source 140.

In addition, the fixture 100 is constructed to conduct heat away from the light source and transfer that heat to the ambient environment. First, the upper and lower housings 110, 120, the mounting plate 132, and the isolation plate 134 are each made of thermally conductive material that readily conducts heat, such as steel, copper, aluminum, or other suitably conductive material, and may be manufactured by casting, forging, molding, machining, or other suitable process. Second, the upper and lower housings 110, 120, the mounting plate 132, and the isolation plate 134 are each attached to one another such that there is a continuous thermal path from the light source 140 to the exterior surface of the fixture 100. Third, as shown in FIG. 3, the upper walls 114 of the upper housing 110 include vertical cooling fins 116 formed therein that increase the surface area of the upper housing 110, thereby facilitating convective and radiative heat transfer from the upper housing 110 to the ambient environment. Similarly, the lower walls 124 of the lower housing 120 include vertical cooling fins 126 formed therein that increase the surface area of the lower housing 120, thereby further facilitating convective and radiative heat transfer from the lower housing 120 to the ambient environment. Fourth, the total mass of the fixture 100 represents a significant thermal capacitance that can absorb and sink a considerable amount of thermal energy, thereby retarding increased temperatures at the light source 140. As a result, the fixture 100 is capable of dissipating the heat generated by the light source 140 and the ballast 150, which consequently can be maintained within appropriate operating temperatures in service.

The convertible lighting fixture 100 may be converted from using one type of light source to another easily and reliably by simply replacing certain components of the fixture assembly. Where the fixture 100 is depicted with an induction fluorescent light source 140 and associated ballast electronics 150 in FIGS. 1-3, a convertible lighting fixture may be converted to use a light-emitting diode (“LED”) light source. A convertible lighting fixture 200 according to at least one embodiment of the present disclosure is shown in FIGS. 5-7. As shown in FIG. 5, a convertible lighting fixture 200 includes a lens cover 260 reversibly attached to a lower housing 220, which is movably attached to an upper housing 210. As shown in FIGS. 6-7, the upper housing 210 includes a top surface 212 with upper walls 214 extending in one direction from the edges of the top surface 212. The top surface 212 and upper walls 214 define a driver compartment 211 therebetween. The upper housing 210 may further include an upper flange 218 extending from the periphery of the upper walls 214 opposite the top surface 212.

The lower housing 220 includes a mounting surface 222 with lower walls 224 extending in one direction from the edges of the mounting surface 222. The mounting surface 222 and lower walls 214 define an insulating compartment 221 therebetween. The mounting surface 222 may be sized such that a perimeter of the mounting surface 222 is smaller than an inner perimeter of the upper flange 218 wherein, when assembled, the mounting surface 222 fits within the inner perimeter of the upper flange 218. The lower housing 220 may further include a lower flange 228 extending from the periphery of the lower walls 224 opposite the mounting surface 222. Moreover, the upper and lower housings 210, 220 may be movably attached to one another by at least one hinge 236 or other suitable means disposed along an edge of the mounting surface 222 and an adjacent edge of the upper flange 218. Aside from the hinge 236, the upper and lower housings 210, 220 may be reversibly secured together by a latch 238 or other suitable means when assembled. The latch 238 may include a locking feature to prevent unwanted opening or vandalism of the fixture 200. Such locking feature may include a locking drawbolt, a loop configured for a padlock, security wire, or zip tie, or another suitable locking feature that prevents the unlatching of the latch 238.

The at least one hinge 236 may be a slip hinge, which enables the upper and lower housings 210, 220 to be disassembled from one another easily. As shown in FIG. 8, the lower housing 220 may have a channel 225 formed therein adjacent to each hinge 236 to provide clearance for one half of the hinge 236 to slide relative to the other half, thereby easily separating the upper housing 210 from the lower housing 220. To prevent tampering or accidentally disassembly of the hinge 236, a lock screw 235 may be attached to the lower housing 220 within the channel 225 to block the hinge from sliding and disengaging. Alternatively, the channel 225 may be formed in, and the lock screw 235 attached to, the upper housing 210 with the same effect. The channel 225 and lock screw 235 may be configured such that, when fully engaged, the lock screw 235 is flush with the surface of the channel 225, and thus the halves of hinge 236 may slide freely past one another and disengage. Moreover, by partially backing out the lock screw 235, it may interfere with the sliding halves of the hinge 236, thereby preventing its disassembly. Further, the lock screw 235 may be a security fastener with a tamper-resistant head requiring special tools to engage and disengage the lock screw 235.

Consequently, the at least one slip hinge 236 enables easy installation and maintenance of the upper housing 210 separate from the lower housing 220 with easy subsequent assembly of the housings 210, 220. For example, a single person may first secure the upper housing 210 in the desired location for the fixture 200. With the upper housing 210 prepositioned, power connections may be made to the fixture 200 before the lower housing 220, including the remaining components of the fixture 200, is attached to the prepositioned upper housing 210. Conventional lighting fixtures require a two-man installation and maintenance process with one person making connections while the other supports the weight of the fixture. Such a two-man process may be particularly difficult in wide area lighting applications where the fixtures are located high off the ground or in other difficult to reach locations.

The lens cover 260 may form a bowl-like shape with a lens flange 268 at the brim, which corresponds to the shape of the lower flange 228, a lens wall 264 forming the sides of the bowl-like shape, and a lens bottom 262 that extends between and caps the lens wall 264 to form the bottom of the bowl-like shape. The lens bottom 262 and the lens wall 264 define a lamp compartment 241. The lens flange 268 is formed to engage the lower housing 220 and may be reversibly attached to the lower housing 220 by any suitable means, including but not limited to screws 231. The lens flange 268 may engage the lower housing 220 within the perimeter of the lower flange 228, thereby protecting the interface therebetween from direct exposure to the environment and minimizing potential intrusion into the fixture 200. Further, the lens wall 264 and lens bottom 262 may include a plurality of optical elements (not shown) formed therein that distribute the light output from a light source 240 into a desired light pattern. Alternatively, the lens wall 264 and lens bottom 262 may not include any optical elements formed therein, and the light output from a light source, such as a LED module 240, may be directed into a desired light pattern solely by a LED module lens 246 as described further herein. As a further alternative, the lens cover 260 may include a surface treatment, such as frosted or stippling, to provide diffusion of the light emitted from the light source 240. To enable the desired light distribution, the lens cover 260 may be made of a substantially optically transparent or at least translucent material, including but not limited to glass, cyclic olefin copolymer (COC), polymethylmethacrolate (PMMA), polycarbonate (PC), PC/PMMA composite, silicones, fluorocarbon polymers, and polyetherimide (PEI), or other suitable optical grade material.

In addition to enabling the desired light distribution, the lens cover 260 further protects the lamp compartment 241 from intrusion. Moreover, a seal 230 may be disposed between the lens cover 260 and the lower housing 220 such that, when assembled, the seal 230 prevents the intrusion of dirt, water, insects, or other foreign matter into the lamp compartment 241. The seal 230 may be made of any suitably resilient material capable of maintaining a seal between the lens cover 260 and the lower housing 220, preferably for the life of the convertible light fixture 200.

In at least one embodiment according to the present disclosure, the convertible lighting fixture 200 includes at least one LED module 240 as a light source disposed within the lamp compartment 241 and reversibly attached to a mounting plate 232, which in turn is attached to the lower housing 220. The mounting plate 232 may include a reflective surface on the side facing the LED module 240 capable of effectively reflecting incident light from the LED module 240.

Referring to FIG. 7, the at least one LED module 240 may include a heat sink 244 and at least one LED 242 mechanically and thermally attached to a distal end of the heat sink 244. The LED module 240 may further include a lens 246 attached to the heat sink 244 at or near the same end as the LED 242. The heat sink 244 functions to transfer heat away from the at least one LED 242 to the remainder of the fixture 200 and to the ambient environment. The heat sink 244 may include a channel 245 formed therethrough from end to end that enables a means of electrical connection 248 to pass from the LED 242 to the opposite end of the heat sink 244. The means of electrical connection 248 may include stranded copper wires soldered or otherwise electrically connected to the LED 242 at one end and capped with terminals (not shown) and a connector 249 at the other. The connector 249 may be a type that is either sealed (i.e., waterproof) or unsealed. The heat sink 244 may further include a threaded quarter-turn attachment formed at an opposite, proximal end that enables the heat sink 244 to be reversibly attached to the mounting plate 232 with only a 90° rotation of the heat sink 244 relative to the mounting plate 232. Alternatively, the heat sink 244 may enable attachment to the mounting plate with a 90°-360° rotation. Further, the heat sink 244 is made of a material that readily conducts heat, such as steel, copper, aluminum, or other suitably conductive material, and may be manufactured by casting, forging, molding, machining, or other suitable process. In at least one embodiment, the heat sink 244 may also include a plurality of grooves around its periphery to define cooling fins therebetween, thereby improving heat transfer between the heat sink 244 and the lamp compartment 241.

In at least one embodiment of the present disclosure, the at least one LED 242 includes a semiconductor chip in thermal and electrical contact with a circuit board (not shown), the chip having a light emitting p-n junction for generating light, an electrically isolated metal base or slug, a bottom surface that may be in contact with, or coated with, a reflective material to reflect generated light upward, and a means of electrical connection to the circuit board. In at least one embodiment of the present disclosure, the at least one LED 242 is a high-output white light LED, such as the XP-G LED manufactured by Cree, Inc.® However, many possible LED light sources are operable in the system, including, but not limited to, Cree® CXA and MLE products. The at least one LED 242 is in thermal contact with the heat sink 244, to which the LED 242 is fixed by any suitable means of attachment, such as at least one machine screw, a thermally conductive adhesive, or similar means.

The lens 246 may be formed in two halves joined together with a plurality of optical elements 247 formed therein. The lens 246 may be further configured to enable the two halves to be the same part with an indexing feature to ensure proper alignment of the halves. Consequently, the lens halves may be molded or cast in the same mold or, alternatively, manufactured using the same process. The halves of the lens 246 may be secured together and held securely to the heat sink 244 by a retainer (not shown), which ensures proper positioning the optical elements 247 of the lens 246 relative to the at least one LED 242 to maximize the optical efficiency of the module 240. The retainer may be any suitable means for securing each half of the lens 246 together and to the heat sink 244, such as a metal spring-loaded clip or a plastic pull-tie. Further, the lens 246 is made of a substantially optically transparent, or at least translucent material, including but not limited to glass, cyclic olefin copolymer (COC), polymethylmethacrolate (PMMA), polycarbonate (PC), PC/PMMA composite, silicones, fluorocarbon polymers, and polyetherimide (PEI), having an index of refraction ranging from between about 1.35 to about 1.7. In at least one embodiment, the index of refraction may be about 1.53 but may be higher or lower based on the material selected for a given embodiment. The volume of space within the lens 246 is composed of ambient air, having an index of refraction of approximately 1.0003.

In at least one embodiment according to the present disclosure, the convertible lighting fixture 200 includes an isolation plate 234 and an LED driver 250 mounted within the driver compartment 211 as shown in FIG. 7. The isolation plate 234 includes a flat portion 234a, upon which the driver 250 is attached, and at least two base portions 234b offset at a distance from the flat portion 234a. The base portions 234b may be attached to the mounting surface 222 of the lower housing 220 such that an insulating air gap exists between the flat portion 234a where the driver 250 may be attached and the mounting surface 222. Thus, the isolation plate 234 serves to thermally isolate the driver 250 from the lower housing 220 and thereby the LED module 240. The isolation plate 234 and the driver 250 may be attached by any suitable means including but not limited to screws 231.

The LED driver 250 includes solid state electronic circuitry to provide the proper operating current to power the at least one LED module 240. The driver 250 may include a power transformer function to convert the main power supply input from high voltage alternating current to low voltage direct current and a current regulator function to ensure the at least one LED module 240 is supplied with a constant source current. However, a by-product of the driver function is heat generated by the electronics during operation. The driver 250 is electrically connected to a power supply line (not shown) and to the at least one connector 249 of the at least one LED module 240 via a wiring harness (not shown), which passes from the driver compartment 211 through an opening 223 in the mounting surface 222 of the lower housing 220 into the insulating compartment 221 where the at least one connector 249 is disposed.

In operation, the convertible lighting fixture 200, like the fixture 100, may be mounted in a desired location by attaching the upper housing 210 at top surface 212 by any suitable means, such as screws, to a ceiling, wall, or other desired surface and connecting an electrical power supply line to the input of the driver 250. Power to the fixture 200 may be controlled manually via a wall switch or automatically via a sensor located on the fixture 200 or a centrally-located sensor that controls a bank of fixtures 200 as described further herein.

Servicing the fixture 200, whether for maintenance or replacement of individual components, proceeds as described herein relative to the fixture 100 and provides the same accompanying benefits. As with the fixture 100, the separate driver and lamp compartments 211, 241 of the fixture 200 enable ease of maintenance and robust reliability against the intrusion of foreign matter into the lamp compartment 241.

Thermal management of the heat generated by the at least one LED 242 and the LED driver 250 is critical in the fixture 200. LEDs are highly sensitive to heat and can be damaged by operating near or above the rated maximum junction temperature of the LED 242. Consequently, by its construction, the fixture 200 includes the same thermal management features and accompanying benefits as described relative to the fixture 100, including separation of the lamp, insulating, and driver compartments 241, 221, and 211, respectively. Moreover, the thermal connection between the mounting plate 232 and the lower housing 220 may be enhanced with the addition of a thermally conductive tape (not shown) to reduce the thermal resistance at the mating interface between the mounting plate 232 and the lower housing 220. Further, as noted herein, each LED module 240 has its own heat sink 244 in thermal connection with the mounting plate 232 to provide a direct thermal path away from the LED 242. In at least one embodiment, the mounting plate 232 may be thicker than the mounting plate 132, may include a greater thermal capacitance, and thus provide greater thermal management for the more heat sensitive LED module 240.

Otherwise, the fixture 200 is constructed, as the fixture 100, to conduct heat away from the light source and transfer that heat to the ambient environment via thermally conductive component materials, a continuous thermal path from the LED 242 to the exterior surface of the fixture 200, the inclusion of vertical cooling fins 216 formed in the upper housing 210 and similar vertical cooling fins 226 formed in the lower housing 220, and a total mass of the fixture 200 with a significant thermal capacitance to absorb and sink a considerable amount of thermal energy, thereby retarding increased temperatures at the LED 242. As a result, the fixture 200 is capable of dissipating the heat generated by the at least one LED 242 and the driver 250, which can then be maintained within appropriate operating temperatures in service.

According to at least one embodiment of the present disclosure, the convertible light fixture 100 may be easily converted into the fixture 200 by replacing a few components of the fixture 100 for corresponding components of the fixture 200. For example, the ballast 150 may be replaced by the LED driver 250. Likewise, the fluorescent light source 240 may be replaced by one or more LED modules 240. Moreover, because the fluorescent light source 240 inherently produces a different light distribution than the at least one LED module 240 and because each LED module 240 includes a separate lens 246 with the plurality optical elements 247, the lens cover 160 may be replaced by the lens cover 260. Alternatively, the lens cover 160 may be configured to enable a desired light distribution regardless of whether the light source 140 or the LED module 240 is used, whereby the lens cover 160 need not be replaced to convert to fixture 200. Further, the mounting plate 132 may be replaced by the mounting plate 232. Alternatively, the mounting plate 132 may be configured to enable attachment of either light source 140 or LED module 240 such that the mounting plate 132 need not be replaced to convert to fixture 200. Nonetheless, the remaining components of fixture 100, including the upper housing 110, the isolation plate 134, the lower housing 120, the seal 130 and all means of attachments, such as screws 131, need not be replaced when converting from fixture 100 to fixture 200. As a result, the fixture 100 may be converted into the fixture 200 without removing the fixture 100 from its mounting location, thereby facilitating maintenance, retrofitting, or upgrade of the convertible lighting fixtures 100, 200 and lowering the total life-cycle cost of operation.

A further advantage of the convertible lighting fixture 200 is the ability to replace individual LED modules 240 without the need to replace an entire array of LEDs. The singular replaceability of the LED module 240 is enabled by the threaded quarter-turn attachment with the mounting plate 232 and by the easily disengaged and re-engaged connector 249. Consequently, should a LED module 240 need to be replaced for any reason, that particular LED module 240 may be easily removed from the fixture 200 and a new one installed in its place as simply as changing a conventional incandescent light bulb. Besides replacing a failed LED module 240, the ease of replacement enables a given fixture 200 to be easily and cost-effectively upgraded to the latest LED technology. As described herein, the efficacy of LEDs is continually improving, as measured by light output per Watt of electrical power input. Consequently, an operator may wish to replace an older LED module 240 with one using a newer more efficient LED 242 even though the original LED module 240 has not failed. Thus, the singular replaceability of the LED module 240 enables an operator to continually upgrade the fixture 200 to the latest LED technology without the cost and labor of replacing the entire fixture 200.

In at least one embodiment according to the present disclosure, a convertible lighting fixture may include one or more sensors capable of facilitating power control of the convertible lighting fixture. A convertible lighting fixture 300 according to at least one embodiment of the present disclosure is shown in FIGS. 9 and 10. As shown in FIG. 9, the convertible lighting fixture 300 may include a lens cover 360 reversibly attached to a lower housing 320, which is movably attached to an upper housing 310. The lens cover 360, lower housing 320, and upper housing 310 of the convertible lighting fixture 300 may be substantially the same as the lens cover 260, lower housing 220, and upper housing 210 of the convertible lighting fixture 200 (shown in FIGS. 5-7) except as described herein.

As shown in FIG. 10, the convertible lighting fixture 300 may further include a mounting plate 332 attached to the lower housing 320, and to which a light source 340 may be attached. The convertible lighting fixture 300 further may include an isolation plate 334 attached to the lower housing 320 opposite the mounting plate 332. The isolation plate 334 includes a flat portion 334a, upon which a power controller 350 may be attached, and at least two base portions 334b offset at a distance from the flat portion 334a. The base portions 334b may be attached to the lower housing 320 such that an insulating air gap exists between the flat portion 334a, upon which the power controller 350 may be attached, and the lower housing 320. Thus, the isolation plate 334 serves to thermally isolate the power controller 350 from the lower housing 320 and, thereby, the light source 340.

The upper housing 310 and lower housing 320 define a controller compartment 311 analogous in at least some respects to the driver compartment 211, shown in FIG. 7, and in which the power controller 350 and the isolation plate 334 are disposed. The lower housing 320 and mounting plate 332 define an insulating compartment 321 analogous in at least some respects to the insulating compartment 221. Further, the lens cover 360 and mounting plate 332 generally define a lamp compartment 341 analogous in at least some respects to the lamp compartment 241.

The convertible lighting fixture 300 may further include a sensor 370 capable of facilitating power control of the convertible lighting fixture 300 as shown in FIGS. 9 and 10. In certain embodiments, the sensor 370 may be a motion detecting sensor or a light sensing photosensor capable of activating the convertible lighting fixture 300. In at least one embodiment, the sensor 370 may be a passive infrared (“PIR”) sensor capable of detecting motion, such as a PIR device 700 shown in FIG. 11. In certain embodiments, the sensor 370 may be disposed largely within the lamp compartment 341 and protruding outside the lamp compartment 341 through an aperture 374. In such an embodiment, the sensor 370 may include a sensor lens 372 generally disposed outside the lamp compartment 341 to direct and focus signals to the sensor 370. Alternatively, the sensor 370 may be disposed fully within the lamp compartment 341 or within some other portion of the convertible lighting fixture 300.

As shown in FIG. 11, the PIR device 700 may include a PIR sensor 710, a light sensor 712, and a detection indictor 714. The PIR sensor 710 may be constructed of a thin-film, pyroelectric material, such as, for instance, gallium nitride or caesium nitrate, capable of generating a change in voltage output when a radiant flux of infrared energy incident upon the PIR sensor 710 changes. Accordingly, the PIR sensor 710 may generate a change in output voltage when a person, animal, or an object passes the through the field of view of the PIR sensor 710 against a background having a lower temperature. The resultant change in voltage due to such motion triggers detection. Upon detection, the PIR device 700 may raise or switch on power to a light source within the convertible lighting fixture 300. The PIR device 700 may further lower or switch off power to a light source when motion is not detected or after some time period since motion had been detected.

The PIR device 700 may temporarily activate the detection indicator 714 when motion is detected. In such an embodiment, the detection indicator 714 may be an LED or other illuminating device, which may be lit upon detection. The light sensor 712 may be used to prevent the PIR device 700 from energizing the convertible lighting fixture 300 when the ambient light level exceeds a prescribed value (e.g., daylight). The PIR device 700 may further include an IR receiver 716 and an IR transmitter 718. In such an embodiment, the IR receiver 716 and IR transmitter 718 may enable communication between the PIR device 700 and a remote controller (not shown), thereby enabling the PIR device 700 to be remotely programmed to adjust its settings and functions. Consequently, the PIR device 700 enables automatic control of a light source.

In at least one embodiment of the present disclosure as shown in FIGS. 10 and 12, the convertible lighting fixture 300 may include a wire harness 380, which electrically connects the PIR device 700 to a power controller 350. The wire harness 380 may further electrically connect the PIR device 700 to a light source 340 and/or connect the power controller 350 to the light source 340. In certain embodiments, the light source 340 may be a fluorescent induction light source like the fluorescent light source 140 shown in FIG. 2. In embodiments where the light source 340 is a fluorescent induction light source, the power controller 350 may be a ballast, such as the ballast 150. In alternative embodiments, the light source 340 may be an LED or LED module, such as the LED module 240 shown in FIG. 6. In such embodiments, power controller 350 may be an LED driver like the driver 250.

In the art, the wire harness 380 may be referred to as a cable harness, wire bundle, wiring assembly, or multicore. As shown in FIG. 12, the wire harness 380 may include a plurality of wires 382, each including a conductor 383 surrounded by a wire jacket 384 to electrical insulate the conductors 383 and wires 382 from one another. Each conductor 383 may be comprised of multiple strands of relatively thin conductors or a single, solid core of conductive material, such as copper, aluminum, and brass, among others. The wire jacket 384 may be any suitable insulating material, including without limitation polyvinyl chloride, polyethylene, and rubber. The wire harness 380 may further include a harness jacket 386 surrounding the plurality of wires 382 and enabling the plurality of wires 382 to be more easily routed from the PIR sensor 700. The harness jacket 386 may further improve the reliability of the wire harness 380 by preventing damage from environmental exposure and mechanical abrasion.

Because it is comprised of multiple, separate wires 382, the wire harness 380 may include gaps, spaces, voids, and/or paths therethrough between the individual wires 382 and between the wires 382 and the harness jacket 386. Moreover, each wire 382 may include relatively small scale pores, gaps, spaces, voids, and/or paths therethrough between strands of the conductor 383 and between the conductor 383 and its respective wire jacket 384. Such pores, gaps, spaces, voids, and/or paths may enable liquid contaminants such as water to wick or travel through the wire harness 380, potentially causing corrosion within the wire harness 380 and damage to electrical components connected to the wire harness 380, such as the power controller 350 and the light source 340.

Consequently, the wire harness 380 may further include a sealant 398 disposed in the pores, gaps, spaces, voids, and/or paths within the wire harness 380 to prevent contaminants from translating therethrough. The sealant 398 may be disposed substantially along the entire length or only at each end of the wire harness 380 and may at least partially fill the gaps within each wire jacket 384 of the plurality of wires 382 and/or within the harness jacket 386. The sealant 398 may be any suitable material capable of penetrating and remaining within the gaps such that liquid contaminants cannot translate through the wire harness 380. The sealant 398 may further be flexible, resilient, and durable to allow the wire harness 380 to flex as needed to be routed within the convertible lighting fixture 300 while allowing for thermal expansion. Such a sealant 398 further may be thermally and chemically stable to withstand contact with solvents and relative high operating temperatures. In certain embodiments, the sealant 398 may be a thermoset polymeric resin having a low viscosity, including without limitation methacrylate, dimethacrylate ester, and epoxy. In such an embodiment, the sealant 398 may be cured by the application of heat or anaerobically (i.e., by removing oxygen/air).

In at least one embodiment, the sealant 398 may be introduced into the wire harness 380 by vacuum, pressure, or a combination of vacuum and pressure. Vacuum may be used to deaerate the gaps within the wire harness 380 and to draw the sealant 398 into the gaps. Subsequently, pressure may be applied to further facilitate penetration of the sealant 398 into the gaps. Anaerobically cured resins may cure once introduced into the deaerated gaps within the wire harness 380, whereas thermally cured resins may require that the wire harness 380 be placed in an oven after the resin is introduced.

Referring to FIG. 10, the wire harness 380 may be routed from the sensor 370 and/or light source 340 to the power controller 350 through an opening 376 in the mounting plate 332 and through another opening 378 in the lower housing 320. In embodiments where the opening 378 is located beneath the isolation plate 334, the isolation plate 334 may include an opening 388 to enable the wire harness 380 to pass therethrough and connect with the power controller 350. To environmentally isolate the compartments 311, 321, 341 of the convertible lighting fixture 300 from one another, the wire harness 380 may include seals positioned where the wire harness 380 intersects the mounting plate 332 and the isolation plate 334. In certain embodiments, the wire harness 380 may include a first seal 392 disposed within the opening 376 of the mounting plate 332. The wire harness 380 may further include a second seal 390 disposed within the opening 378 of the isolation plate 334. The first and second seals 392, 390 may be any suitable type of resilient and durable seal, including without limitation sealed connectors or sealant material, such as room temperature vulcanization (RTV) silicone.

In at least one embodiment, as shown in FIG. 10, the first seal 392 may be a rubber O-ring grommet disposed at least partially within the opening 376 and having a center portion with a central channel configured to seal against the harness jacket 386 of the wire harness 380, the center portion connected to two generally toroidal portions to seal against the opposite sides of the mounting plate 332 at the opening 376. The second seal 390 may be a similar rubber O-ring grommet. Alternatively, as shown in FIG. 10, the second seal 390 may be a cable gland disposed at least partially within the opening 378 and having a partially threaded body 395 and mating locking nut 396 to secure the body 395 to the lower housing 320 at the opening 378. In such an embodiment, the second seal 390 may further include one or more auxiliary seals 394 disposed on opposite sides of the opening 378 of the lower housing 320 between the body 395 and the lower housing 320 and between the body 395 and the harness jacket 386 of the wire harness 380. Accordingly, the first seal 392 and the second seal 390 may both environmentally seal the wire harness 380 to intersecting portions of the convertible lighting fixture 300 (i.e., the openings 376, 378) and provide strain relief for the wire harness 380.

While various embodiments of a convertible lighting fixture have been described in considerable detail herein, the embodiments are merely offered by way of non-limiting examples of the disclosure described herein. For example, though various components of a convertible lighting fixture have been depicted to be generally square-shaped in the plan view, these components could have other general shapes such as circular, hexagonal, or other suitable or desire shape. As another example, the light sources disclosed with respect to the convertible lighting fixture include induction fluorescent and LED lamps. Nonetheless, the convertible lighting fixture may be configured to convert to any lighting system that uses a light source and associated power electronics. It will therefore be understood that various changes and modifications may be made, and equivalents may be substituted for elements thereof, without departing from the scope of the disclosure and are intended to encompass any later appended claims. Indeed, this disclosure is not intended to be exhaustive or to limit the scope of the disclosure.

Further, in describing representative embodiments, the disclosure may have presented a method and/or process as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. Other sequences of steps may be possible. Therefore, the particular order of the steps disclosed herein should not be construed as limitations of the present disclosure. Such sequences may be varied and still remain within the scope of the present disclosure.

Nagengast, William E., Marsh, Joe R., Packard, David J., Mellinger, James S., Nagengast, Judy

Patent Priority Assignee Title
10024526, Aug 14 2013 Elemental LED, Inc. Connector for light-emitting diode strip
10028345, Jun 02 2016 Elemental LED, Inc.; ELEMENTAL LED, INC Linear lighting with distributed onboard power conversion and filtering
10041636, Jun 02 2016 Elemental LED, Inc. Linear lighting with distributed onboard power conversion
10215911, Apr 17 2013 FEIT ELECTRIC COMPANY, INC Lighting assembly
10342082, Jun 02 2016 Elemental LED, Inc. Linear lighting with distributed power conversion and reduced flicker
10352544, Apr 17 2013 FEIT ELECTRIC COMPANY, INC Field-serviceable flat panel lighting device
10364974, May 17 2011 EPISTAR CORPORATION Flat panel lighting device and driving circuitry
10386023, Apr 17 2013 EPISTAR CORPORATION LED light fixture and assembly method therefor
10422518, May 17 2011 EPISTAR CORPORATION Flat panel lighting device
10512140, Feb 26 2017 FEIT ELECTRIC COMPANY, INC Lighting system
10591114, Sep 19 2019 Elemental LED, Inc. Connectors for linear lighting
10779384, Feb 26 2017 FEIT ELECTRIC COMPANY, INC Lighting system
10826202, Jun 24 2020 ELEMENTAL LED, INC Connectors for linear lighting
10920971, Dec 15 2015 WANGS ALLIANCE CORPORATION LED lighting methods and apparatus
10928045, Dec 15 2015 WANGS ALLIANCE CORPORATION LED lighting methods and apparatus
10941924, Dec 15 2015 WANGS ALLIANCE CORPORATION LED lighting methods and apparatus
10962209, Dec 15 2015 WANGS ALLIANCE CORPORATION LED lighting methods and apparatus
11162651, Dec 31 2019 LUMIEN ENTERPRISE, INC Lamp module group
11408597, Dec 15 2015 WANGS ALLIANCE CORPORATION LED lighting methods and apparatus
11421837, Apr 23 2020 LUMIEN ENTERPRISE, INC Spotlight structure
11466821, Dec 31 2019 LUMIEN ENTERPRISE, INC Lamp module group
11598517, Dec 31 2019 LUMIEN ENTERPRISE, INC Electronic module group
11686459, Dec 15 2015 WANGS ALLIANCE CORPORATION LED lighting methods and apparatus
11719422, Dec 15 2015 WANGS ALLIANCE CORPORATION LED lighting methods and apparatus
11802682, Aug 29 2022 WANGS ALLIANCE CORPORATION Modular articulating lighting
11812525, Jun 27 2017 WANGS ALLIANCE CORPORATION Methods and apparatus for controlling the current supplied to light emitting diodes
11892150, Dec 15 2015 WANGS ALLIANCE CORPORATION LED lighting methods and apparatus
9423113, May 17 2011 UNITY OPTO TECHNOLOGY CO , LTD Flat panel lighting device and driving circuitry
9441801, May 17 2011 FEIT ELECTRIC COMPANY, INC Flat panel lighting device and driving circuitry
9447954, May 17 2011 UNITY OPTO TECHNOLOGY CO , LTD Light fixture having a central wire-way
9453616, May 17 2011 FEIT ELECTRIC COMPANY, INC Flat panel lighting device
9476552, Apr 17 2013 FEIT ELECTRIC COMPANY, INC LED light fixture and assembly method therefor
9500328, Apr 17 2013 FEIT ELECTRIC COMPANY, INC Lighting assembly
9523487, May 17 2011 UNITY OPTO TECHNOLOGY CO , LTD Flat panel lighting device and driving circuitry
9546781, Apr 17 2013 FEIT ELECTRIC COMPANY, INC Field-serviceable flat panel lighting device
9557022, Apr 30 2015 FEIT ELECTRIC COMPANY, INC Non-round retrofit recessed LED lighting fixture
9562678, May 17 2011 FEIT ELECTRIC COMPANY, INC Flat panel lighting device
9583903, Mar 31 2016 Elemental LED, Inc. Adapter for LED strip light
9601866, Jul 11 2016 Elemental LED, Inc. Strain relief and joint support
9620889, Mar 31 2016 Elemental LED, Inc. Power connectors for linear lighting
9647349, Jun 02 2016 Elemental LED, Inc. Through-insulation strip light connector
9664365, May 17 2011 FEIT ELECTRIC COMPANY, INC Flat panel lighting device
9909743, Aug 14 2013 ELEMENTAL LED, INC Connector for light-emitting diode strip
9976732, May 17 2011 FEIT ELECTRIC COMPANY, INC Flat panel lighting device and driving circuitry
Patent Priority Assignee Title
20050259416,
20090213588,
20090303711,
20100002452,
20100127637,
20100182786,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 20 2015ECO Lighting Solutions, LLC(assignment on the face of the patent)
Jun 02 2015PACKARD, DAVID J ECO Lighting Solutions, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0361510596 pdf
Jun 21 2015MELLINGER, JAMES S ECO Lighting Solutions, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0361510596 pdf
Jun 22 2015NAGENGAST, WILLIAM E ECO Lighting Solutions, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0361510596 pdf
Jun 22 2015NAGENGAST, JUDYECO Lighting Solutions, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0361510596 pdf
Jun 22 2015MARSH, JOSEPH R ECO Lighting Solutions, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0361510596 pdf
Date Maintenance Fee Events
Jun 10 2019M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
May 30 2023M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.


Date Maintenance Schedule
Dec 08 20184 years fee payment window open
Jun 08 20196 months grace period start (w surcharge)
Dec 08 2019patent expiry (for year 4)
Dec 08 20212 years to revive unintentionally abandoned end. (for year 4)
Dec 08 20228 years fee payment window open
Jun 08 20236 months grace period start (w surcharge)
Dec 08 2023patent expiry (for year 8)
Dec 08 20252 years to revive unintentionally abandoned end. (for year 8)
Dec 08 202612 years fee payment window open
Jun 08 20276 months grace period start (w surcharge)
Dec 08 2027patent expiry (for year 12)
Dec 08 20292 years to revive unintentionally abandoned end. (for year 12)