A technique for controlling an electrically actuable parking brake of a motor vehicle in the event of failure of a first signal indicating a speed of the motor vehicle comprises the steps of continuously closing the parking brake as long as a second signal indicating a driver request to close the parking brake is detected, and opening the parking brake, provided that the parking brake is in a partially open state, as long as an absence of the second signal is detected.
|
15. A method of controlling an electrically actuable parking brake of a motor vehicle comprising the steps of:
closing continuously the parking brake as long as a signal indicating a driver request to close the parking brake is detected; and
opening the parking brake if an absence of the signal is detected, provided that the parking brake is in a partially open state; wherein
the parking brake upon detecting the signal is continuously closed until a closing force reaches a maximum closing force; wherein
the parking brake is maintained in the fully closed state, provided that the parking brake in the absence of the signal is in the fully closed state; and wherein
the continuous closing comprises a continuous closing at a limited closing speed.
1. A method of controlling an electrically actuable parking brake of a motor vehicle comprising the steps of:
determining an absence of a first signal indicating a speed of the motor vehicle;
closing continuously the parking brake as long as a second signal indicating a driver request to close the parking brake is detected; and
opening the parking brake if an absence of the second signal is detected, provided that the parking brake is in a partially open state;
wherein the parking brake upon detecting the second signal is continuously closed until a closing force reaches a maximum closing force;
wherein the parking brake is maintained in the fully closed state, provided that the parking brake in the absence of the second signal is in the fully closed state; and
wherein the absence of the first signal is determined if no first signal is available or the first signal is implausible or undefined.
16. A method of controlling an electrically actuable parking brake of a motor vehicle comprising the steps of:
closing continuously the parking brake as long as a signal indicating a driver request to close the parking brake is detected; and
opening the parking brake if an absence of the signal is detected, provided that the parking brake is in a partially open state; wherein
the parking brake upon detecting the signal is continuously closed until a closing force reaches a maximum closing force; wherein
the parking brake is maintained in the fully closed state, provided that the parking brake in the absence of the signal is in the fully closed state; and wherein
the parking brake comprises a plurality of groups of actuators, wherein the closing of the parking brake comprises increasing the brake force of the actuators of at least a first group and maintaining the brake force of the actuators of at least a second group.
12. A device for controlling an electrically actuable parking brake of a motor vehicle in the event of an absence of a first signal indicating a speed of the motor vehicle, comprising:
a first determination device for determining an absence of a first signal indicating a speed of the motor vehicle;
a detection device for detecting a second signal indicating a driver request to close the parking brake;
a second determination device for determining a partially open state of the parking brake;
a closing device for continuously closing the parking brake as long as the second signal is detected; and
an opening device for opening the parking brake if the second signal is absent, provided that the parking brake is in a partially open state;
wherein the closing device is adapted upon detection of the second signal to continuously close the parking brake until a closing force reaches a maximum closing force; and to maintain the parking brake in the fully closed state, provided that the parking brake in the absence of the second signal is in the fully closed state; and
wherein the absence of the first signal is determined if no first signal is available or the first signal is implausible or undefined.
2. The method according to
3. The method according to
6. The method according to
7. The method according to
8. The method according to
9. The method according to
10. A computer program product having program code means for executing a method according to
11. The computer program product according to
13. The device according to
14. The device according to
|
This application is a national stage of International Application No. PCT/EP2008/010542 filed Dec. 11, 2008, the disclosures of which are incorporated herein by reference in entirety, and which claimed priority to German Patent Application No. 10 2008 012 387.0 filed Mar. 4, 2008, the disclosures of which are incorporated herein by reference in entirety.
The invention relates generally to motor vehicle brake systems. In particular the invention relates to control of a parking brake in the event of failure of a speed signal.
Modern motor vehicles have a plurality of mutually independent brake systems. A first brake system is conventionally designed as a service brake and may comprise additional systems that improve driving stability of the motor vehicle during a braking operation, for example ABS, ESP or anti-spin control. A second brake system is normally designed primarily for parking-brake operations, i.e. keeping the motor vehicle in a stationary state. For safety reasons, it is a requirement that a parking brake also has to be usable for bringing a moving motor vehicle to a standstill, for example if the service brake has failed or is functional only to a limited extent. Electrically actuable parking brake systems may moreover assist a driver when stopping or starting the motor vehicle on an ascending or descending gradient.
In order to drive an electrically actuable parking brake in different ways depending on whether the moving motor vehicle is to be braked in a “dynamic mode” of the parking brake or the stationary motor vehicle is to be kept in a stationary state in a “static mode” of the parking brake, a signal indicating a speed of the motor vehicle is processed. On the basis of this signal a driver-controlled signal to open and/or close the parking brake may then be converted in a manner appropriate to the situation into a corresponding driving of actuators of the parking brake. For safety reasons, it is a requirement that a parking brake even in the event of failure of such a speed signal still has to be usable to brake the motor vehicle and keep it in a stationary state.
For this purpose, in the European patent EP 1 610 991 B1, and corresponding U.S. Pat. No. 7,341,319 B2, both of which are incorporated by reference herein in entirety, it is proposed that an electric parking brake in the event of failure of the speed signal and activation by a driver is brought in a first step into a partially closed state. After a predetermined time has elapsed, the parking brake in a second step is then transferred suddenly from the partially closed state to a fully closed state. The proposed procedure is based on the assumption that the motor vehicle, if it was in motion during the first step, has come to a standstill before the second step.
In some situations, however, this assumption is incorrect, for example when braking from high speed or during prolonged downhill travel, and the directional stability of the vehicle may be jeopardized by the sudden full closing of the parking brake. If the parking brake of the still moving motor vehicle is namely suddenly fully closed, it is then possible for one or more of the wheels of the motor vehicle to lock, leading to an impairment of the driving stability of the motor vehicle.
The underlying feature of the invention is to eliminate the previously indicated drawbacks in the event of failure of a speed signal during a parking-brake operation.
According to a first aspect, a method for controlling an electrically actuable parking brake of a motor vehicle in the event of failure of a first signal indicating a speed of the motor vehicle is provided, which comprises the steps of continuously closing of the parking brake as long as a second signal indicating a driver request to close the parking brake is detected, and opening the parking brake if an absence of the second signal is detected, provided that the parking brake is in a partially opened state.
The first signal may be for example a wheel speed signal or a signal formed from a plurality of wheel speed signals; alternatively or in addition thereto, the first signal may be formed for example also on the basis of a signal of a gyrator or navigation system. The second signal may be for example an electrical signal that the driver of the motor vehicle generates by means of an electric pushbutton or switch.
The method may comprise fully opening the parking brake if the second signal is not detected (once more) during opening. In this way the driver, by not generating the second signal, may fully release the parking brake, or he may in the course of release generate the second signal afresh and therefore close the parking brake. A second signal generated and not generated in rapid succession by the driver may keep the parking brake in an associated range of an opening state.
The continuous closing comprises no sudden changes that impair the driving stability and may comprise a continuous closing at a limited closing speed. In a variant, the limited closing speed lies below a maximum closing speed achievable by the control unit. The continuous closing may also comprise not maintaining a partially open state of the parking brake for a specific period, i.e. not inserting a pause during the closing operation.
The closing speed may be constant. In this case, a linear closing of the parking brake may occur. The closing speed characteristic may however for example also vary linearly, for example rise linearly or fall linearly. In this case, a closing of the parking brake may occur progressively or inversely progressively. A closing speed may be expressed for example in the form of a characteristic of a closing travel, a closing force or a closing pressure over time.
The method may further comprise a keeping of the parking brake in a fully closed state, provided the parking brake in the absence of the second signal is in the fully closed state. In this way, the parking brake may be brought into a closed, locked state, in which for example it prevents a stationary motor vehicle from unintentionally rolling away.
The method may further comprise opening the parking brake situated in a fully closed state if the presence of a third signal indicating a driver request to open the parking brake is given. This third signal may be identical to the second signal or be derived therefrom.
The parking brake may comprise a plurality of groups of actuators, and the closing of the parking brake may comprise increasing the brake force of the actuators of at least a first group and maintaining the brake force of the actuators of at least a second group. Thus, if a maximum of a μ-slip curve is exceeded by one or more wheels, the wheel or wheels, of which the actuators were not further closed, still transmit lateral guiding forces. Each of the groups may comprise one or more actuators. In an embodiment, the first group comprises a plurality of actuators that are associated with a front axle of the motor vehicle, and the second group comprises a plurality of actuators that are associated with a rear axle of the motor vehicle. In a further embodiment, each group comprises in each case actuators that are associated with diagonally opposite wheels of the motor vehicle.
The method may further comprise determining a state of motion of the motor vehicle on the basis of the first signal. The state of motion may comprise a speed and/or a direction of motion of the motor vehicle. The direction of motion may designate a forward/reverse motion of the motor vehicle and/or an absolute direction of motion of the motor vehicle. In particular, the state of motion may indicate a stationary state of the motor vehicle.
If the motor vehicle is stationary, the method may further comprise full closing of the parking brake if at least temporarily the second signal is detected. Thus, the driver may for example by briefly actuating a pushbutton or switch that generates the second signal ensure that the parking brake is closed and the motor vehicle is kept in the stationary state.
If the motor vehicle is in motion, the method may further comprise bringing the parking brake into a partially closed state if the second signal is detected, and opening the parking brake in the absence of the second signal. The partially closed state may be defined for example by a closing travel, a closing time, a closing force or a closing pressure. If a movement of the motor vehicle has been reliably detected, this allows a predetermined brake force to be exerted for example by means of the parking brake on the motor vehicle so long as the driver keeps a pushbutton pressed. If he lets go of the pushbutton while the motor vehicle is still moving, then the parking brake is released.
According to a second aspect, a computer program product having program code means is provided for executing the previously described method when the computer program product is running at a processing module. Such a processing module may be a control unit on or in the motor vehicle. The processing module may also control further functions of the motor vehicle, for example braking functions such as ABS, ESP or hill hold assistance.
The computer program product may be stored on a computer-readable data carrier. For example, the computer program product may be stored on a mobile data carrier, such as for example a diskette, a hard disk, a CD, a WORM or a DVD, or on a fixed data carrier, such as for example a semiconductor memory (for instance a RAM, ROM, EPROM, EEPROM, NOVRAM or Flash).
According to a third aspect, a control device for an electrically actuable parking brake of a motor vehicle in the event of failure of a first signal indicating a speed of the motor vehicle is provided, which comprises a first determination device for determining a failure of a first signal indicating a speed of the motor vehicle, a detection device for detecting a second signal indicating a driver request to close the parking brake, a second determination device for determining a partially open state of the parking brake, a closing device for continuously closing the parking brake as long as the second signal is present, and an opening device for opening the parking brake in the absence of the second signal, provided the parking brake is in a partially open state.
The first determination device may determine a loss of the first signal on the basis of a processing of one or more sensor signals. Alternatively or in addition thereto, a loss may be determined given a lack of plausibility of sensor signals or combinations thereof. The detection device may comprise for example a switch or a pushbutton. The second determination device may comprise for example a sensor arranged in connection with an actuator. Such a sensor may for example a travel, time, force or pressure that indicates an opening state of the actuator. The closing device may comprise a drive circuit for the electrically actuable parking brake. In particular, it may comprise a drive circuit for one or more actuators. The opening device may be of an analogous construction to the closing device or be integrated therewith.
The control device may comprise a third determination device for determining a state of motion of the motor vehicle. The third determination device may for example be connected to the same signal sources as the first determination device.
The parking brake may comprise a plurality of groups of actuators and the opening- and closing devices of the control device may be configured to actuate the actuators of at least two groups independently of one another. Each of the groups may comprise one or more actuators and each actuator may comprise a locking device for maintaining a state.
Other advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiments, when read in light of the accompanying drawings.
In the figures, corresponding elements bear identical reference characters.
In the embodiment represented in
In a departure from the described embodiment, the teaching described here may also be implemented in a motor vehicle that has only one rear axle. In such a case, two of the actuators would then be associated with the front axle and the other two actuators with the rear axle. According to a further variant, only two actuators are provided and are associated with the (for example single) rear axle. This variant corresponds to the conventional layout of a passenger car parking brake system, which acts exclusively upon the rear axle.
The processing module 120 is configured to open, close or maintain in groups a state of the actuators 130 to 160 represented in
The determination unit 220 is configured to detect a closing signal 280 and to signal to the microcomputer 210 that a driver request to close the parking brake is present. In a corresponding fashion, the determination unit 230 detects an opening signal 290 and signals to the microcomputer 210 that a driver request to open the parking brake is present. Each of the signals 280 and 290 may be generated by means of a dedicated pushbutton or switch (not shown). Alternatively, the opening signal 280 and the closing signal 290 may be present in a combined form as opening-closing signal 110. In this case, the opening/closing signal 110 may be generated for example by means of a single pushbutton (not shown). Pressing the pushbutton or switch then generates (alternately and/or in a situation-related manner) an opening signal or a closing signal. The determination devices 220 and 230 in this case may take the form of an integrated unit.
In an alternative embodiment, a three-position switch (not shown) may be used to generate the signals 280 and 290 which for example generates in a first position the opening signal (290), in a second position no signal at all, and in a third position the closing signal (290). In this way, the opening signal and the closing signal may be mutually exclusive.
The determination units 240 and 250 are configured to evaluate the speed signal 170. The determination unit 240 signals a failure of the speed signal 170 to the microcomputer 210, while the determination unit 250 on the basis of the speed signal 170 (and any further signals, which are not shown) determines a moving state of the motor vehicle and supplies this to the microcomputer 210.
The microcomputer 210 by means of the driver device 260 controls the actuators 130-160 in such a way that they are opened, closed or maintained in their state. For the sake of clarity, only one driver device 290 and one of the actuators 130-160 are illustrated representatively in
The determination device 270 evaluates an opening signal 295 of one of the actuators 130 to 160 and signals to the microcomputer 210 an opening state of the actuator. The opening signal may be for example a rotary signal of an electric motor or a time-, travel-, pressure- or force signal. In other embodiments, the determination device 280 may determine the opening state for example also from a time characteristic of a current or a voltage, wherein corresponding values may be sampled for example across the actuator or across the driver device 290.
Proceeding from an initial state 305, in a first step 310 it is determined whether or not a speed signal (v-signal) 170 is present. An absence of the speed signal 170 may be also determined if a signal indicating a speed of the motor vehicle is identified as implausible or undefined. If in step 310 an absence of the speed signal 170 is determined, then in a step 315 it is checked whether the driven actuator 130 is fully closed. If this is not the case, in a step 320 it is checked whether or not the closing signal 280 is present. As mentioned above, the closing signal 280 may be identical with the opening signal 290 and be present as a combined opening/closing signal 110. If the closing signal 280 is present, then in a following step 325 the actuator 130 is continuously closed (i.e. without sudden changes in the brake force that impair the directional stability) as long as the closing signal 280 is detected. This operation is described more precisely further below with reference to
If on the other hand it is established in step 320 that the closing signal 280 is not present, then in a step 335 it is checked whether the actuator 130 is fully open. If this is the case, the method is once again in the state 330 (or 305). Otherwise the actuator 130 is opened in a step 340.
By means of the steps 305 to 340 hitherto described the motor vehicle, even in the absence of a speed signal 170, may be braked by the driver by means of the parking brake 100 without risking an unstable driving state as a result of instantaneous full closing of the parking brake 100. The drive may nevertheless bring about a fully closed, locked state of the parking brake 100 for keeping the motor vehicle in a stationary state.
If in step 315 it is found that the parking brake 100 is already fully closed, then in a step 345 the presence of the opening signal 290 is checked. If no opening signal 290 is present, then the method enters the state 330 (or 305). Otherwise the parking brake 100 is first opened in the steps 335 and 340, as mentioned above, if it is not yet fully open, before the method assumes the state 330 (or 305).
The steps 350 to 370 of the method 300 that are described below relate to the control of the parking brake 100 if the presence of the speed signal 170 is given.
If in step 310 it is found that the speed signal 170 is present, then in a step 350 it is queried whether the motor vehicle is in a stationary state. If the motor vehicle is stationary, the parking brake 100 is operated in a static mode, in which it is first determined in a step 355 whether a closing signal 280 is present. If the closing signal 280 is present, then in a step 360 the parking brake 100 is fully closed and the static mode is terminated before the method is back in the state 330 (or 305). If in step 355 it is found that no closing signal 280 is present, then the method enters the state 330 (or 305). It should be noted that in step 360 a closing of the parking brake 100 occurs not only as long as the closing signal 280 is present but that also in the case of an only temporary presence of the closing signal 280 the parking brake 100 in step 360 is fully closed.
If in step 350 it is determined that the motor vehicle is not stationary, the parking brake 100 is operated in a dynamic mode. In this mode it is first determined in a step 365 analogous to the step 355 whether the closing signal 280 is present. If it is present, then in a step 370 the parking brake 100 is partially closed (for example so long as the closing signal 280 is detected). After the step 370 the dynamic mode is terminated and the method enters the state 330 (or 305). If in step 365 it is determined that the closing signal 280 is not (or no longer) present, an opening of the parking brake 100 occurs in the steps 335 and 340, as described above.
In
At the time t2b the parking brake 100 is therefore fully closed and is subsequently kept in the fully closed state even when the opening/closing signal 110 later falls away. The closing force 460 in this case remains constant at just above the maximum closing force 410. The reason for the slight “overshooting” of the maximum closing force 410 by the closing force 460 may be for example an after-run of an electric motor that drives the actuator. From the time t3b the opening/closing signal 110 falls away.
In contrast to the situation in
The alternative characteristics 470 and 480 of the closing force plotted between the times t1 and t2b in
In
In accordance with the provisions of the patent statutes, the principle and mode of operation of this invention have been explained and illustrated in its preferred embodiments. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
Patent | Priority | Assignee | Title |
10343666, | Dec 14 2016 | Robert Bosch GmbH | Method for actuating a parking brake in a vehicle |
10801620, | Apr 26 2018 | Toyota Jidosha Kabushiki Kaisha | Vehicle brake control apparatus |
Patent | Priority | Assignee | Title |
4561527, | Jan 31 1983 | Mazda Motor Corporation | Electric parking brake system for a vehicle |
5111901, | Aug 08 1989 | BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION AS AGENCY | All wheel steering system |
6019436, | Aug 14 1996 | Bayerische Motoren Werke Aktiengesellschaft | Motor vehicle with a parking brake system |
6049736, | Sep 03 1997 | Medtronic, Inc | Implantable medical device with electrode lead having improved surface characteristics |
6053171, | Sep 03 1997 | Medtronic, Inc. | Plasma treated tubing |
6101973, | Sep 03 1997 | Medtronic, Inc. | Apparatus for reducing friction on polymeric surfaces |
6382741, | Oct 24 1998 | Meritor Heavy Vehicle Systems, LLC | Parking-braking in vehicles |
6406102, | Feb 24 1999 | ORSCHELN MANAGEMENT CO | Electrically operated parking brake control system |
6626271, | Jun 16 1998 | Continental Teves AG & Co., oHG | Electrically controlled braking system and associated control method |
6702405, | Mar 31 1998 | CONTINENTAL TEVES AG & CO OHG | Electric parking brake |
6802401, | Jun 01 1999 | Continental Teves AG & Co., oHG | Device and method for controlling an electrically actuated parking brake |
6854570, | May 14 2003 | Westinghouse Air Brake Technologies Corporation | Brake cylinder parking brake system |
6997521, | Sep 06 2002 | Caterpillar Inc. | Parking and service brake control system for a vehicle |
7341319, | Apr 08 2003 | CONTINENTAL TEVES AG & CO , OHG | Device and method for operating a motor-vehicle parking brake |
7358864, | Jun 02 2004 | Advics Co., Ltd. | Parking assist control apparatus |
7373855, | Feb 01 2003 | WABCO GMBH & CO OHG | Switching device for a parking brake |
7377364, | Jun 28 2004 | Kone Corporation | Elevator arrangement |
7677371, | Nov 23 2005 | Parker Intangibles, LLC | Mower with automatic parking brake |
7699751, | Apr 25 2006 | Jaguar Land Rover Limited | Electric park brake system |
8086384, | Jan 06 2006 | Subaru Corporation | Stop determination apparatus, inclination determination apparatus, and electric parking brake controller |
8366211, | Feb 01 2007 | Toyota Jidosha Kabushiki Kaisha | Electric parking brake control apparatus, electric parking brake system, and method for controlling electric parking brake system |
8412408, | Dec 11 2006 | RENAULT S A S | Parking brake system with electric control |
20030045977, | |||
20040016612, | |||
20040055832, | |||
20040070271, | |||
20040140710, | |||
20050029859, | |||
20050270177, | |||
20060049691, | |||
20060152076, | |||
20070068746, | |||
20070199775, | |||
20070298930, | |||
20080061624, | |||
20080087509, | |||
20090132143, | |||
20090200124, | |||
DE102007029632, | |||
DE10336611, | |||
DE10343131, | |||
DE10345485, | |||
DE10351589, | |||
DE19838886, | |||
DE19839996, | |||
DE19908062, | |||
DE19962556, | |||
DE3909907, | |||
EP1053149, | |||
EP1595763, | |||
EP1610991, | |||
EP1997700, | |||
WO73114, | |||
WO2004000618, | |||
WO2004089711, | |||
WO2006000618, | |||
WO2006053888, | |||
WO2008000769, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 11 2008 | Lucas Automotive GmbH | (assignment on the face of the patent) | / | |||
Sep 10 2010 | KINDER, RALF | Lucas Automotive GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025027 | /0240 | |
Sep 10 2010 | MULLER, ANDREAS | Lucas Automotive GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025027 | /0240 |
Date | Maintenance Fee Events |
Jul 01 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 14 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 29 2018 | 4 years fee payment window open |
Jun 29 2019 | 6 months grace period start (w surcharge) |
Dec 29 2019 | patent expiry (for year 4) |
Dec 29 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 29 2022 | 8 years fee payment window open |
Jun 29 2023 | 6 months grace period start (w surcharge) |
Dec 29 2023 | patent expiry (for year 8) |
Dec 29 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 29 2026 | 12 years fee payment window open |
Jun 29 2027 | 6 months grace period start (w surcharge) |
Dec 29 2027 | patent expiry (for year 12) |
Dec 29 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |