disposable ampoule for use in an aerosol generating device, comprising: a medicament container that contains a medicament and is formed of a container body (10) and a container bottom (11), and a predetermined break point (12) that at least partly surrounds the container bottom, characterized by a collar (15) that surrounds the predetermined break point (12) at its outside and extends the container body (10) over and beyond the container bottom (11).
|
1. A disposable ampoule for use in an aerosol generating device, comprising:
a medicament container that contains a medicament and is formed of a container body and a circular container bottom, wherein the container body and the circular container bottom are integrally formed,
a predetermined break line that at least partly surrounds the container bottom, that is annular, and that is located between the container bottom and the container body, the predetermined break line having a reduced material thickness compared to the container bottom, and
a collar that surrounds the predetermined break line at its outside and extends the container body over and beyond the container bottom, an open end of the collar being spaced from the container bottom, the collar and the container body being disposed on opposite sides of the container bottom, the collar being integrally formed with the container body and being configured to position and guide a hollow piercing member during opening of the medicament container at the predetermined break line, the container bottom being configured to seal the medicament in the container body until pierced by the hollow piercing member, the hollow piercing member having a cutting edge, the medicament container being configured to be pierced by the cutting edge of the hollow piercing member at the predetermined break line so that the container bottom is folded to one side at the predetermined break line, being configured to supply the medicament to the aerosol generating device through the hollow piercing member and being configured to be opened at only one end, at the container bottom, wherein an inner surface of the collar is engageable with the hollow piercing member and wherein the collar is configured to create a seal between the collar and the hollow piercing member.
21. An aerosol generating assembly comprising:
an aerosol generating device including a hollow piercing member configured to receive a medicament; and
a disposable ampoule configured to provide the medicament to the aerosol generating device, the disposable ampoule including:
a medicament container that contains the medicament and is formed of a container body and a container bottom, wherein the container body and the container bottom are integrally formed,
a predetermined break line that at least partly surrounds the container bottom, that is annular, and that is located between the container bottom and the container body, the predetermined break line having a reduced material thickness compared to the container bottom, and
a collar that surrounds the predetermined break line at its outside and extends the container body over and beyond the container bottom, an open end of the collar being spaced from the container bottom, the collar and the container body being disposed on opposite sides of the container bottom, the collar being integrally formed with the container body and being configured to position and guide the hollow piercing member during opening of the medicament container at the predetermined break line, the container bottom being configured to seal the medicament in the container body until pierced by the hollow piercing member, the hollow piercing member having a cutting edge, the medicament container being configured to be pierced by the cutting edge of the hollow piercing member at the predetermined break line so that the container bottom is folded to one side at the predetermined break line, being configured to supply the medicament to the aerosol generating device through the hollow piercing member and being configured to be opened at only one end, at the container bottom, wherein an inner surface of the collar is engageable with the hollow piercing member and wherein the collar is configured to create a seal between the collar and the hollow piercing member.
2. The ampoule according to
3. The ampoule according to
4. The ampoule according to
5. The ampoule according to
6. The ampoule according to
7. The ampoule according to
9. The ampoule according to
10. The ampoule according to
11. The ampoule according to
12. The ampoule according to
14. The ampoule according to
15. The ampoule according to
16. The ampoule according to
17. The ampoule according to
18. The use of an ampoule according to
19. The ampoule according to
20. The ampoule according to
|
The present invention relates to a disposable ampoule for use in a device that can be used to generate aerosols for topical application to the skin or body cavities such as, for example, the nose and lungs in order to diagnose, prevent or treat illnesses in humans and animals. It substantially relates to a disposable ampoule that is filled with a liquid medicament and is first opened in the device so as to supply the liquid medicament to an aerosol generator that can be designed such that an aerosol is generated and released in a continuous, timed or respiration-controlled manner so as to diagnose, prevent or treat illnesses therewith.
Such a disposable cartridge is known from DE 10 2005 038 619 A1. The disposable ampoule described therein comprises a medicament container that contains a medicament and is composed of a container body and a container bottom as well as a predetermined break point surrounding the container bottom. By means of a needle that is generally provided in the aerosol generating device, the bottom of the container is pierced along the predetermined break point in order to open the disposable ampoule and to supply the liquid medicament to the aerosol generator.
The object of the present invention is now to further develop this known disposable ampoule such that it can be handled and inserted in the aerosol generating device easily and without the risk of damage, such that no medicament can escape during the opening process of the ampoule when it is inserted and such that also when the aerosol is being generated, the interface between the aerosol generating device and the ampoule is sealed so that contamination or an unintentional escape of the medicament is prevented.
This object is solved according to the present invention by means of a disposable ampoule having the features of patent claim 1. Advantageous further developments of the present invention are mentioned in the dependent patent claims.
The idea forming the basis for the present invention is to encircle the bottom of the container as well as the predetermined break point that at least partly surrounds the container bottom with a protective collar so that an unintentional opening or breaking open of the ampoule outside of the aerosol generating device owing to damage to the predetermined break point can be prevented. In addition to this function, it has also been proven in an advantageous manner that the collar can be used for sealing during and optionally also after the opening process as well as for guiding the ampoule during this process.
Accordingly, the disposable ampoule for use in an aerosol generating device according to the present invention comprises a medicament container that contains a medicament, in particular a liquid medicament, and is formed of a container body and a container bottom as well as a predetermined breaking point that at least partly surrounds the bottom of the container. The disposable ampoule according to the invention is characterised by a collar that surrounds the predetermined break point at its outside and extends the container body over and beyond the bottom of the container. The bottom of the container and the predetermined breaking point that surrounds it are thus rearwardly displaced at a distance to the front end of the disposable ampoule and are therefore protected by the collar. In addition to protection, this displacement has the further advantage that during the opening process of the disposable ampoule in the aerosol generating device, for example on a needle, an inner surface of the collar can be engaged with a sealing element, for example an o-ring or a sealing edge surrounding the needle, when the disposable ampoule is not yet opened such that sealing is also ensured during the opening process. Furthermore, owing to its design, the collar also has a guiding function and thus facilitates a neat positioning of the ampoule during the opening process.
The inner surface of the collar advantageously expands in a conical manner starting from the bottom of the container. The entire collar can be designed in the form of a hollow truncated cone for this purpose. This design advantageously supports the guiding function of the collar and the engagement with a possible additional sealing element on the piercing member (needle) of the aerosol generating device.
It is furthermore preferred to divide the container body into two functional areas so that the ampoule has a modular construction. It has proven to be particularly advantageous here for a first functional area comprising the container bottom to be geometrically designed with respect to the no-load behaviour of the ampoule and for it to stay the same at least in the case of all ampoules intended for the same aerosol generating device, regardless of the size and filling amount, whereas the second functional area, on the other hand, is configured in a substantially cylindrical manner and, so as to adapt to different filling amounts, is accordingly designed with different lengths. This in particular enables the use of the same aerosol generating device with substantially the same ampoules that differ solely as regards their length, which is advantageous for both reasons of production technology and from the point of view of user-friendliness. The first functional area of the ampoule, which faces the aerosol generating device and thus comprises the container bottom, is thereby designed such that the medicament can be supplied to the aerosol generator with a reproducible dosage accuracy, whereby inter alia the different holding angles of the aerosol generating device during therapy are to be taken into consideration. It has thereby proven to be advantageous if, at least inside the ampoule, this first functional area extends in a conical manner, i.e. in a funnel shape, in the direction of the container bottom, with the angle between the bottom of the container and the funnel-shaped side wall preferably being in the range of approximately 105° to 125° and preferably being 110°. Furthermore, the ampoule and in particular this first functional area can be designed in various manners also in the case of ampoules that are intended for different aerosol generating devices, namely such that in each case only the ampoule intended for the respective aerosol generating device can be inserted in such a device and/or the aerosol generating device is only capable of functioning with a predetermined ampoule. This type of identification or coding can be realised, for example, by means of one or more coding elements. These can consist, for example, of one or more projections that extend from the ampoule body. These projections, which fit into corresponding grooves in the aerosol generating device intended therefor, allow insertion of the ampoule or prevent insertion if the combination is not correct. The one or more projections can also be used to activate an electric switch in order to close a circuit in the aerosol generating device. Only when the circuit is closed could, for example, power be supplied to the aerosol generator or aerosol producer. Alternatively, the coding elements can be designed such that they prevent operation of the aerosol generating device unless they are correctly recognised by the aerosol generating device. For example, the container body can comprise a readable pattern such as, for instance, a barcode, a magnetic pattern or the like, which must be read out and confirmed by the aerosol generating device before operation is permitted.
So that the ampoule can be securely inserted in the aerosol generating device and the empty ampoule can be easily removed again, a fixing groove that preferably extends in a circular manner around the ampoule is provided centrally or closer to the bottom of the container in the longitudinal direction of the ampoule. Its position in the centre of the ampoule or closer to the container bottom thereby has the advantage that the forces required to open the ampoule, which arise when breaking the predetermined break point by means of the piercing member (needle), can be absorbed as close as possible to the region where the force is introduced. If the ampoule, as described above, is divided into two functional areas, it has proven to be advantageous if the fixing groove divides the ampoule into the two functional areas.
In order to additionally strengthen the ampoule and to counteract deformation during the opening process, at least one reinforcing rib is provided on the container body. Preferably two diametrically opposed reinforcing ribs are provided. It is preferred for these ribs to extend from the front end of the ampoule, i.e. over at least a partial area of the collar, over and beyond the bottom of the container and over a partial area of the container body. If the ampoule is divided into two functional areas, it is thereby particularly preferred for the reinforcing ribs to be provided only in the first functional area or if a fixing groove is provided, on the side of the fixing groove comprising the bottom of the container.
It is furthermore necessary to visibly label the ampoule such that medicament, batch number and expiry date are apparent. This is solved according to the invention in that opposite the container bottom, a lug is provided on the container body, which preferably extends away from the container body in the opposite direction to the collar. This lug comprises two opposite planar sides, on which the necessary information can be provided. This lug can be additionally used to facilitate the removal of the ampoule, i.e. it can form a grip tab which the user can grip to push or pull the ampoule out of the aerosol generating device. This is particularly useful in the case of short ampoules for small filling amounts (see modular construction). For this purpose, the aerosol generating device is preferably designed such that the lug for removing the ampoule is exposed. It is thereby also particularly preferred for the lug to protrude out of the aerosol generating device when the ampoule is inserted in the aerosol generating device such that the aforementioned information remains visible in this case as well.
According to one embodiment of the present invention, the ampoule is formed in an integral manner and is preferably a blow-fill-seal ampoule, which means that the ampoule is produced by the so-called blow-fill-seal process. This technique is known, for example, from DE 38 33 036, DE 38 23 428 and U.S. Pat. Nos. 4,671,763, 3,919,374 and 4,995,511, and thus the person skilled in the art is referred to these documents as regards the technique as such. The ampoule is preferably made of polyethylene, polypropylene or a thermoplastic copolymer.
Finally, the integral or also multi-piece ampoule may have or can be provided with an additional element, with this additional element being a separate sealing element that is inserted in the collar in order to bring about a seal between the inner surface of the collar and the piercing member (for example a needle) when inserting the ampoule into the aerosol generating device and in particular during the opening process.
In order to avoid the formation of air bubbles during the outflow of the medicament, it is furthermore preferred that the opening diameter of the ampoule, which consists of the diameter of the container bottom and the diameter and at least a part of the predetermined break point, is greater than approximately 8 mm and is preferably in a range of between approximately 8 mm and approximately 15 mm. According to a particularly preferred embodiment, the opening diameter is approximately 10 mm. It is accordingly preferred for the piercing member of the aerosol generating device, for example a needle, to have an internal diameter of at least approximately 8 mm.
The medicament container of the ampoule described above preferably contains up to 10 ml, most preferably between 0.25 and 5 ml of medicament. Within this volume range, it is possible by way of the dimensioning and design in particular of the second functional area, as explained above, to precisely dose volumes with an accuracy of ±25% to ±5% of the target volume.
According to a preferred embodiment, the medicament contained in the ampoule comprises at least one active agent and preferably at least one auxiliary agent in dissolved or suspended form. The medicament is preferably a medicament for the diagnosis, prophylaxis or treatment of illnesses in humans and animals in nebulised form, with it being possible, in combination with a perforated oscillating membrane, to nebulise the medicament into droplets having a mean diameter of <6 μm or to nebulise it as a pulsating aerosol having such a mean mass diameter. As regards the medicaments and the additives and auxiliary agents that can possibly be used, reference is made to the following description.
Accordingly, the present invention furthermore relates to the use of an ampoule according to the invention in an aerosol generator, with the medicament thereof being nebulised by an aerosol generator and used for local, nasal or pulmonary application.
Further advantages and features of the present invention become apparent from the following description of a preferred embodiment, which takes place with reference to the accompanying drawings.
As is shown in
Starting from the container bottom, the collar 15 is thereby designed such that the cross-section of its inner contour becomes bigger, i.e. it is configured in a conical manner, with it expanding starting from the container bottom 11 (the diameter of the annular cross-section becomes bigger starting from the container bottom 11).
As is indicated in
The ampoule according to the invention furthermore comprises two diametrically opposed reinforcing ribs in the first functional area 21. These provide dimensional stability to the ampoule in particular during the opening process in which the ampoule is pushed onto a needle (see below) in order to pierce the bottom 11 of the container along the predetermined break point 12. In the embodiment shown in
A lug 16 is furthermore provided at the end of the container body 10 that is opposite the bottom 11 of the container. This lug, which has a substantially flat design with two opposite surface areas, enables the attachment of a labeling field 17, which can contain information about the accommodated medicament. The batch number 18 and the date of expiry can be provided on the opposite surface.
As is apparent from
The element 32 furthermore comprises catches 33, with which the fixing groove 13 of the ampoule according to the invention can engage in order to fix the ampoule in the element 32.
The aerosol generating device furthermore comprises a needle 34 that is formed as a hollow cylinder and comprises a cutting edge 35 at its one end. The inner diameter of the needle 34 is greater than 8 mm in order to counteract the formation of air bubbles during the outflow of the medicament, which could impede the subsequent flow of the medicament. The aerosol generator, which is preferably a piezoelectrically actuated membrane, is located at the opposite end of the needle 34. A through-hole 37 is preferably also formed in the element 32 concentric to the hole 31 of the lid 30, through which the ampoule protrudes out of the aerosol generating device in the inserted state.
A further sealing element in the form of an o-ring 38 is additionally provided in the upper region of the needle 34.
The use of an ampoule according to the invention is explained in the following with reference to
If an ampoule is to be inserted in the aerosol generating device, the lid 30 is removed from the body of the aerosol generating device, for example is unscrewed. The element 32 thereby moves upwards in a translational manner through the hole 31 of the lid 30. Once the lid has been removed, the ampoule is inserted into the element 32 from the side opposite the hole 37 of the element 32, with the lug 16 and part of the container body 10 being guided through the hole 37 of the element 32. The fixing projections 33 of the element 32 thereby engage with the fixing groove 13 of the ampoule and retain it in their longitudinal direction. The lid 30 is then placed back onto the body of the aerosol generating device. Owing to the twisting of the lid 30 and the engagement of the projections of the lid 30 with the thread grooves of the element 32, the element 32 is moved in a translational manner in the hole 31 of the lid 30. Since the ampoule is connected to the element 32, the ampoule is also moved in a translational manner. An inner surface of the collar 15 thereby first of all engages, as is shown in
As a result of a further rotational movement of the lid 30 and the associated further translational movement of the element 32, and thus of the ampoule, the container bottom, as shown in
In the completely inserted state, the holes 37 of the element 31, 32 of the lid 30 are arranged substantially in one plane. However, the lug 16 protrudes through the hole 37 of the element 32 and out of the aerosol generating device in this position as well such that the labeling field 17 as well as the batch number 18 and the not shown expiry details are also still visible in the inserted state.
In order to remove the ampoule, the lid 30 is turned in the opposite direction, as a result of which the element 32 is moved in a translational manner in the opposite direction to when opening the ampoule, and the ampoule pulls away from the needle 34 again. The seal between the ampoule (collar) and the needle (o-ring) thereby remains until the ampoule can actually be removed from the needle 34 with the lid 30 and thus contamination of the device by medicament residues can also be prevented in this manner. In order to remove the ampoule from the lid 30, the user can grip the lug 16 and push the ampoule (downwards in the figures) out of engagement with the projections 33 such that it can be removed. The user must thereby not touch the area of the ampoule that is possible wetted by a medicament, which is additionally covered by the collar 15. Pushing out of the ampoule can also be facilitated in the case of a particularly short second functional area 20 owing to the at least protruding lug 16.
In summary, the present invention thus offers a plurality of advantages as compared to the ampoule of the prior art. It is, however, obvious that the described embodiment is only one possibility for carrying out the present invention and that the invention is defined by the following patent claims.
The active agent classes and/or substances listed in the following can be contained in the ampoule according to the invention, however this list is not conclusive:
The active compounds include, for example, substances selected from the group consisting of anti-inflammatory compounds, glucocorticoids, anti-allergy medicaments, antioxidants, vitamins, leukotrine antagonists, anti-infective agents, antibiotics, anti-fungicides, antiviral agents, mucolytic agents, decongestants, antiseptics, cytostatic agents, immunomodulators, vaccines, wound-healing agents, local anaesthetics, oligonucleotides, peptides, proteins and plant extracts.
Examples of potentially useful anti-inflammatory compounds are glucocorticoids and non-steroidal anti-inflammatory agents such as, for example, betamethasone, beclomethasone, budesonide, ciclesonide, dexamethasone, desoxymethasone, fluoconolone acetonide, flucinonide, flunisolide, fluticasone, icomethasone, rofleponide, triamcinolone acetonide, fluocortinbutyl, hydrocortisone, hydroxycortisone-17-butyrate, prednicarbate, 6-methylprednisolone aceponate, mometasone furoate, dehydroepiandrosterone sulphate (DHEAS), elastane, prostaglandin, leukotriene, bradykinin antagonists, non-steroidal anti-inflammatory medicaments (NSAIDs), such as ibuprofen, including any pharmaceutically acceptable salts, esters, isomers, stereoisomers, diastereomers, epimers, solvates or other hydrates thereof, prodrugs, derivates or any other chemical or physical forms of active compounds comprising the respective active residues.
Examples of anti-infective agents whose class or therapeutic category is understood herein as including compounds that are effective against bacterial, fungal and viral infections, i.e. including the classes of microbicides, antibiotics, fungicides, antiseptics and anti-viral agents, are
Examples of potentially useful mucolytic agents are DNase, P2Y2-agonists (denufosol), medicaments that affect the penetration of chlorine and sodium, such as, for example, N-(3,5-diamino-6-chloropyrazine-2-carbonyl)-N′-{4-[4-(2,3-dihydroxypropoxy)-phenyl]butyl}guanidine-methane sulfonate (PARION 552-02) heparinoids, guaifenesine, acetylcysteine, carbocysteine, ambroxol, bromhexine, tyloxapol, lecithine, myrtol and recombinant surfactant proteins.
Examples of potentially useful vasoconstrictors and decongestants that may be useful for reducing swelling of the mucous membrane are phenylephrine, naphazoline, tramazoline, tetryzoline, oxymetazoline, fenoxazoline, xylometazoline, epinephrine, isoprenaline, hexoprenaline and ephedrine.
Examples of potentially useful local anaesthetics include benzocaine, tetracaine, procaine, lidocaine and bupivacaine.
Examples of potentially useful anti-allergy agents include the aforementioned glucocorticoids, cromolyn sodium, nedocromil, cetrizine, loratidine, montelukast, roflumilast, ziluton, omalizumab, heparinoids and other antihistamines, including azelastine, cetirizine, desloratadine, ebastine, fexofenadine, levocetirizine, loratadine.
Antisense oligonucleotides are short synthetic strands of DNA (or analogues) which are complementary or opposite to the target sequence (DNA, RNA) and which are designed such that they stop a biological process such as transcription, translation or splicing. The inhibition of gene expression hereby caused makes oligonucleotides useful for the treatment of many illnesses, depending on their composition, and numerous compounds are currently being clinically tested, such as, for example, ALN-RSV01 for the treatment of respiratory syncytial virus, AVE-7279 for the treatment of asthma and allergies, TPI-ASMS for the treatment of allergic asthma and 1018-ISS for the treatment of cancer.
Examples of potentially useful peptides and proteins include amino acids, such as, for example, L-arginine, L-lysine, antibodies to toxins produced from microorganisms, antimicrobial peptides such as cecropins, defensins, thionins and cathelicidins.
For each of these and other explicitly mentioned examples of medicament substances that are potentially useful for carrying out the invention, the compound names specified herein should be understood as also including any pharmaceutically acceptable salts, solvates or other hydrates, prodrugs, isomers or any other chemical or physical forms of the relevant compounds which contain the corresponding active residues.
Gallem, Thomas, Hetzer, Uwe, Loenner, Mihaela
Patent | Priority | Assignee | Title |
10064882, | May 07 2007 | INSMED INCORPORATED | Methods of treating pulmonary disorders with liposomal amikacin formulations |
10124066, | Nov 29 2012 | INSMED INCORPORATED | Stabilized vancomycin formulations |
10238675, | May 15 2014 | INSMED INCORPORATED | Methods for treating pulmonary non-tuberculous mycobacterial infections |
10251900, | May 15 2014 | INSMED INCORPORATED | Methods for treating pulmonary non-tuberculous mycobacterial infections |
10328071, | Dec 08 2005 | INSMED INCORPORATED | Lipid-based compositions of antiinfectives for treating pulmonary infections and methods of use thereof |
10398719, | May 15 2014 | INSMED INCORPORATED | Methods for treating pulmonary non-tuberculous mycobacterial infections |
10471149, | Nov 29 2012 | INSMED INCORPORATED | Stabilized vancomycin formulations |
10588918, | May 15 2014 | INSMED INCORPORATED | Methods for treating pulmonary non-tuberculous mycobacterial infections |
10751355, | May 15 2014 | INSMED INCORPORATED | Methods for treating pulmonary non-tuberculous mycobacterial infections |
10828314, | May 15 2014 | INSMED INCORPORATED | Methods for treating pulmonary non-tuberculous mycobacterial infections |
11077263, | Nov 23 2007 | PARI Pharma GmbH | Disposable ampoule for an aerosol generating device |
11278683, | Aug 16 2005 | PARI Pharma GmbH | Inhalation therapy device comprising an ampoule for storing a medicament to be nebulized |
11395830, | May 15 2014 | INSMED INCORPORATED | Methods for treating pulmonary non-tuberculous mycobacterial infections |
11446318, | May 15 2014 | INSMED INCORPORATED | Methods for treating pulmonary non-tuberculous mycobacterial infections |
11571386, | Mar 30 2018 | INSMED INCORPORATED | Methods for continuous manufacture of liposomal drug products |
9566234, | May 21 2012 | INSMED INCORPORATED | Systems for treating pulmonary infections |
9895385, | May 15 2014 | INSMED INCORPORATED | Methods for treating pulmonary non-tuberculous mycobacterial infections |
Patent | Priority | Assignee | Title |
3171412, | |||
3919374, | |||
4133312, | Oct 13 1976 | Cordis Dow Corp. | Connector for attachment of blood tubing to external arteriovenous shunts and fistulas |
4671763, | Jun 29 1983 | Automatic Liquid Packaging, Inc. | Container with a unitary but removable closure and method and apparatus therefor |
5009309, | Sep 29 1988 | Double chamber receptacle | |
5048514, | Jul 07 1989 | Somova S.p.A. | Inhaler for medicaments contained in capsules |
5152284, | Feb 23 1989 | PH&T S R L | Disposable inhaler with pre-pierced capsule |
5337740, | Aug 01 1991 | SEPRACOR INC | Inhalation devices |
5379898, | Feb 06 1992 | L'Oreal | Self-breakable ampoule |
5435282, | May 19 1994 | Habley Medical Technology Corporation | Nebulizer |
5515842, | Aug 09 1993 | Siemens Aktiengesellschaft | Inhalation device |
5529059, | Aug 01 1991 | SEPRACOR INC | Inhalation devices |
5619985, | Aug 08 1994 | Unisia Jecs Corporation; Dott Limited Company | Inhaler type medicine administering device |
5647349, | Jun 01 1995 | Hitachi, LTD | Medicine administering inhaling device |
5715810, | Jul 25 1991 | SEPRACOR INC | Inhalation devices |
5921236, | Mar 10 1995 | Hitachi, LTD | Medicine administering device for nasal cavities |
5950619, | Mar 14 1995 | Siemens Aktiengesellschaft | Ultrasonic atomizer device with removable precision dosating unit |
5970974, | Mar 14 1995 | Siemens Aktiengesellschaft | Dosating unit for an ultrasonic atomizer device |
6059749, | Mar 13 1996 | New York Blood Center | Fibrin sealant glue-gun with insertable compressed gas cartridge and luer-type reservoir connectors |
6197260, | Dec 05 1997 | Siemens Healthcare Diagnostics Inc | Reagent package |
6367473, | Feb 08 1997 | APTAR RADOLFZELL GMBH | Medium dispenser |
6443152, | Jan 12 2001 | Becton Dickinson and Company | Medicament respiratory delivery device |
6481435, | Oct 17 1998 | BOEHRINGER INGELHEIM PHARMA GMBH & CO KG | Closure-cap and container as a two-chamber cartridge for nebulizers for producing aerosols and active substance formulations, suitable for storage |
6668827, | Jun 02 2000 | Novartis Pharma AG | Systems devices and methods for opening receptacles having a powder to be fluidized |
6708846, | Feb 14 1999 | APTAR RADOLFZELL GMBH | Dispenser for flowable media |
6832703, | May 20 2003 | Howmedica Osteonics Corp. | Monomer vial breaker |
6851626, | Jan 07 2002 | Novartis Pharma AG | Methods and devices for nebulizing fluids |
6877672, | Dec 21 2001 | APTAR RADOLFZELL GMBH | Method and dispenser for mixing and discharging media |
6948491, | Mar 20 2001 | Novartis Pharma AG | Convertible fluid feed system with comformable reservoir and methods |
6948494, | May 10 2000 | ZHEJIANG HISUN PHARMACEUTICAL CO LTD | Medicament container with same side airflow inlet and outlet and method of use |
6971385, | May 09 2003 | Apparatus and method for respiratory drug delivery | |
7032590, | Mar 20 2001 | Novartis Pharma AG | Fluid filled ampoules and methods for their use in aerosolizers |
7040316, | Jan 12 2001 | Becton, Dickinson and Company | Medicament inhalation delivery devices and methods for using the same |
7100600, | Mar 20 2001 | Novartis Pharma AG | Fluid filled ampoules and methods for their use in aerosolizers |
7185790, | Mar 20 2003 | WEILER ENGINEERING, INC | Hermetically sealed container with non-drip opening |
7261102, | Sep 12 2001 | Norton Healthcare Ltd | Breath-enhanced ultrasonic nebulizer and dedicated unit dose ampoule |
7270127, | Jan 12 2001 | Becton, Dickinson and Company | Medicament respiratory delivery device |
7360536, | Jan 07 2002 | Novartis Pharma AG | Devices and methods for nebulizing fluids for inhalation |
8047394, | Apr 05 2006 | Safety device for at least one container, in particular a blow-mouded plastic container | |
8074642, | May 21 2002 | TRUDELL MEDICAL INTERNATIONAL INC | Visual indicator for an aerosol medication delivery apparatus and system |
20020129812, | |||
20030140921, | |||
20040126325, | |||
20050051166, | |||
20050056281, | |||
20050150492, | |||
20050161041, | |||
20060057257, | |||
20060150969, | |||
20070107720, | |||
20090293868, | |||
CA2619605, | |||
DE102005038619, | |||
DE10253237, | |||
DE3823428, | |||
DE4306458, | |||
EP326391, | |||
EP1186350, | |||
EP1186530, | |||
JP10151199, | |||
JP10179739, | |||
JP2003521977, | |||
JP3094233, | |||
JP5064490, | |||
WO66277, | |||
WO158236, | |||
WO2074373, | |||
WO2074374, | |||
WO2006032320, | |||
WO2007020073, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 21 2008 | PARI Pharma GmbH | (assignment on the face of the patent) | / | |||
Jan 12 2009 | LOENNER, MIHAELA | PARI Pharma GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022303 | /0308 | |
Jan 12 2009 | GALLEM, THOMAS | PARI Pharma GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022303 | /0308 | |
Jan 12 2009 | HETZER, UWE | PARI Pharma GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022303 | /0308 |
Date | Maintenance Fee Events |
Aug 19 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 16 2023 | REM: Maintenance Fee Reminder Mailed. |
Apr 01 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 23 2019 | 4 years fee payment window open |
Aug 23 2019 | 6 months grace period start (w surcharge) |
Feb 23 2020 | patent expiry (for year 4) |
Feb 23 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 23 2023 | 8 years fee payment window open |
Aug 23 2023 | 6 months grace period start (w surcharge) |
Feb 23 2024 | patent expiry (for year 8) |
Feb 23 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 23 2027 | 12 years fee payment window open |
Aug 23 2027 | 6 months grace period start (w surcharge) |
Feb 23 2028 | patent expiry (for year 12) |
Feb 23 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |