A method, apparatus for providing at least near continuous broadcast services to one or more terrestrial receiver stations is disclosed. The system comprises a plurality of satellites, each satellite in an inclined, elliptical geosynchronous orbit, each satellite providing a portion of the at least near continuous broadcast service to the terrestrial receiver. In one embodiment, the system also comprises a receiver station having a legacy antenna modified so as to include a sensitivity pattern substantially matched to the track of the apparent position of the satellites actively broadcasting information to the receiver stations. The present invention is also embodied in a method for receiving at least near continuous broadcast service from at least one of a plurality of satellites at a time, each satellite in an inclined, elliptical, geosynchronous orbit.
|
5. A method of providing at least near continuous broadcast service to a terrestrial receiver, comprising the steps of:
providing a signal having a portion of the continuous broadcast service from at least one of a plurality of satellites at a time, each satellite in an inclined, elliptical, geosynchronous orbit; and
providing service from at least one legacy satellite in a geostationary orbit,
wherein a track of the apparent position of the each of the satellites relative to the terrestrial receiver when the satellite is providing its portion of the at least near continuous broadcast service is substantially closed loop.
8. A method of providing at least near continuous broadcast service to a terrestrial receiver, comprising the steps of:
providing a signal having a portion of the continuous broadcast service from at least one of a plurality of satellites at a time, each satellite in an inclined, elliptical, geosynchronous orbit; and
providing service from at least one legacy satellite in a geostationary orbit;
wherein a track of the apparent position of the each of the satellites relative to the terrestrial receiver when the satellite is providing its portion of the at least near continuous broadcast service is substantially teardrop-shaped.
1. A system for providing at least near continuous broadcast service to a terrestrial receiver, comprising:
a plurality of satellites, each satellite in an inclined, elliptical, geosynchronous orbit, each satellite providing a portion of time of the at least near continuous broadcast service to the terrestrial receiver;
wherein the plurality of satellites augments at least one legacy satellite in a geostationary orbit providing service to the terrestrial receiver; and
wherein a track of the apparent position of each of the satellites relative to the terrestrial receiver when the satellite is providing its position of the at least near continuous broadcast service is substantially closed loop.
4. A system for providing at least near continuous broadcast service to a terrestrial receiver, comprising:
a plurality of satellites, each satellite in an inclined, elliptical, geosynchronous orbit, each satellite providing a portion of time of the at least near continuous broadcast service to the terrestrial receiver;
wherein the plurality of satellites augments at least one legacy satellite in a geostationary orbit providing service to the terrestrial receiver; and
wherein a track of the apparent position of each of the satellites relative to the terrestrial receiver when the satellite is providing its portion of the at least near continuous broadcast service is substantially teardrop-shaped.
9. A method of receiving at least near continuous broadcast service at a terrestrial receiver, comprising the steps of:
receiving a signal having a portion of the continuous broadcast service from at least one of a plurality of augmenting satellites at a time, each augmenting satellite of the plurality of satellites being in an inclined, elliptical, geosynchronous orbit; and
receiving broadcast service from at least one legacy satellite in a geostationary orbit;
wherein a track of the apparent position of the each of the augmenting satellites relative to the terrestrial receiver when the augmenting satellite is providing its portion of the at least near continuous broadcast service is closed loop.
12. A method of receiving at least near continuous broadcast service at a terrestrial receiver, comprising the steps of:
receiving a signal having a portion of the continuous broadcast service from at least one of a plurality of augmenting satellites at a time, each augmenting satellite of the plurality of satellites being in an inclined, elliptical, geosynchronous orbit; and
receiving broadcast service from at least one legacy satellite in a geostationary orbit;
wherein a track of the apparent position of the each of the augmenting satellites relative to the terrestrial receiver when the augmenting satellite is providing its portion of the at least near continuous broadcast service is teardrop-shaped.
2. The system of
3. The system of
6. The method of
7. The method of
10. The system of
11. The system of
|
This application is a continuation of U.S. patent application Ser. No. 12/069,346, entitled “LOW COST DESIGN TO DOUBLE NUMBER OF CHANNELS FOR DIRECT BROADCAST SATELLITE SERVICES,” filed Feb. 8, 2008, by Arthur W. Wang, issued as U.S. Pat. No. 7,877,089, which is a continuation of U.S. patent application Ser. No. 09/702,218, entitled “LOW COST DESIGN TO DOUBLE NUMBER OF CHANNELS FOR DIRECT BROADCAST SATELLITE SERVICES”, filed Oct. 20, 2000, by Arthur W. Wang, issued as U.S. Pat. No. 7,369,809, both of which applications are incorporated by reference herein.
1. Field of the Invention
The present invention relates to systems and methods for providing satellite broadcast services, and in particular to a low cost system for increasing channel capacity in a satellite broadcast network.
2. Description of the Related Art
The past decade has seen the development of Direct Broadcast Satellite (DBS) services for providing video, audio, data, and other program material to subscribers. The electromagnetic spectrum allocated for DBS in the United States has been limited to 500 MHz. This constraint limits the maximum number of channels that existing DBS service can offer from one geostationary orbit (GSO) slot, since each video channel typically occupies about 2-6 MHz of bandwidth, depending on the data rates. This shortage of spectrum/channels becomes worse with the emerging demand for High Definition TV (HDTV) which requires much higher bandwidth per channel than traditional video channels. The shortage of spectrum and channels is made even more apparent with the recent approval for DBS operators to provide local programming. There are an estimated 200 or more local TV station spreading over the domestic markets, and DBS operators will not be able to cover all cities through their existing fleet of satellites, if the demand on extending channel numbers continue to grow.
One possible solution is to use another GSO orbital slot for DBS services. However, using another GSO slot is not a permanent solution, because the 9 degree orbit slot spacing requirement for satellites broadcasting at DBS frequencies allow only few slots for given service regions (e.g. the continental United States, or CONUS) and these orbital slots are almost all taken.
Another possible solution is to use different or additional frequency bands to transmit the additional information. Unfortunately, this solution requires that each subscriber's receiver include additional circuitry to detect and demodulate the information on the additional frequency bands. Further, this solution faces the formidable task of overcoming the regulatory process to acquire the required spectrum.
What is needed is a system and method for providing high bandwidth DBS services that augment current DBS systems in a non-interfering way. The present invention satisfies that need.
To address the requirements described above, the present invention discloses a method and apparatus for providing at least near continuous broadcast services to one or more terrestrial receiver stations. The system comprises a plurality of satellites, each satellite in an inclined, elliptical geosynchronous orbit, each satellite providing a portion of the at least near continuous broadcast service to the terrestrial receiver. In one embodiment, the system also comprises a receiver station having a legacy antenna modified so as to include a sensitivity pattern substantially matched to the track of the apparent position of the satellites actively broadcasting information to the receiver stations. The present invention is also embodied in a method for receiving at least near continuous broadcast service from at least one of a plurality of satellites at a time, each satellite in an inclined, elliptical, geosynchronous orbit.
Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
In the following description, reference is made to the accompanying drawings which form a part hereof, and which is shown, by way of illustration, several embodiments of the present invention. It is understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
The uplink center 104 receives program material and program control information from the control center 102, and using an uplink antenna 106, transmits the program material and program control information to a geostationary satellite 108. The satellite 108 receives and processes this information, and transmits the video programs and control information to the IRD 132 and a communicatively coupled receiver station antenna 112 at the receiver station 130 via downlink 118. The IRD 132 receives this information using a communicatively coupled subscriber antenna 112.
The video distribution system 100 can comprise a plurality of satellites 108 in order to provide wider terrestrial coverage, to provide additional channels, or to provide additional bandwidth per channel. In one embodiment of the invention, each satellite comprises 16 transponders to receive and transmit program material and other control data from the uplink center 104 and provide it to the subscribers 110. However, using data compression and multiplexing techniques the channel capabilities are far greater. For example, two satellites 108 working together can receive and broadcast over 150 conventional (non-HDTV) audio and video channels via 32 transponders.
While the invention disclosed herein will be described with reference to a satellite based video distribution system 100, the present invention may also be practiced with terrestrial-based transmission of program information, whether by traditional broadcasting means, cable, or other means. Further, the different functions collectively allocated among the control center 102 and uplink center 104 as described above can be reallocated as desired without departing from the intended scope of the present invention.
Although the foregoing has been described with respect to an embodiment in which the program material delivered to the subscriber is video (and audio) program material such as a movie, the foregoing method can be used to deliver program material comprising purely audio information or data as well.
The foregoing video distribution system 100 provides continuous broadcast services using geostationary satellites 108. Since the apparent position of the satellites in the sky does not move, inexpensive stationary ground antennae can be used to receive the broadcast signal. However, as described above, the number of channels available in such a system is limited by the allocation of broadcast bandwidth and the number of geostationary satellite orbital slots. The present invention provides the additional broadcast bandwidth with a satellite constellation that is compatible with existing DBS broadcast systems.
There are typically three configurations that allow a terrestrial receiver station 130, whether mobile or stationary, to communicate the satellites 108. First, the receiver station 130 may point in a fixed direction at a geostationary satellite (e.g. legacy satellite 204), whose apparent position in the sky remains stationary over time. Second, the receiver station 130 may be equipped with antennae 112 and other equipment that allows tracking a non-geostationary satellite (such as a low earth orbit or mid earth orbit satellite) as the apparent position of the satellite moves in the sky over time. Third, the receiver station 130 may have an omni-direction antenna. Unfortunately, all of these configurations have drawbacks. The drawback of the first configuration is that they are generally usable only with geostationary satellites, and orbital slots for geostationary satellites are a precious commodity. One drawback of the second configuration is that is requires expensive receiver station 130 equipment. One drawback of the second configuration is that it requires expensive receiver station 130 equipment. One drawback of the second configuration is that it is difficult to use for two way communications between the receiver station 130 and the satellite 108, and the low gains inherent with omnidirectional antennae place greater demands on the receiver and transmitter subsystems of the satellite 108 and IRD 132.
TABLE I
Longitude
97
degrees West
Period
86164.09
Seconds
Inclination
50
degrees
Eccentricity
0.13
Altitude at Perigee
30305
Km
Altitude at Apogee
41268
Km
Phase difference between
120
degrees
adjacent orbital planes
The enhanced video distribution system 200 of the present invention has several advantages over the systems described above. The receiver station 132 maintains relatively high gain and a fixed antenna configuration, yet is still capable of communicating with non-GSO satellites. The augmenting constellation 203 is designed to minimize the apparent motion of the constellation 203 member satellites 202 in the sky so that the sensitivity pattern of a stationary receiver station antenna 112 is sufficient to receive the broadcast signal from at least one of the augmenting constellation 203 satellite 202 members at any given time.
The augmenting satellite constellation 203 of the video distribution system 100 provides not only an optimized coverage for receiver stations 130 within CONUS but also minimizes the footprint of the apparent satellite position over time. This allows the use of receiver station antennae 112 which offer relatively high gain and low beamwidth. Further, the augmenting satellite constellation 203 presents apparent satellite positions that are sufficiently disposed away from the apparent positions of GSO satellites. This allows the video distribution system 100 to operate with existing GSO distribution systems without interference. Finally, as will be discussed later, the teardrop shape of the apparent position of the active satellite 202 over time during the active period substantially coincides with a teardrop sensitivity pattern of the receiver station antennae.
While the augmenting constellation 203 of the present invention obviates the need for the use of receiver station antennae 112 that can track a satellite 108 across the sky, the ability of the receiver antenna 112 to track a satellite across the sky can still be valuable for some applications. For example, in typical broadcast applications, the size of the receiver station antenna 112 is kept small to ease installation difficulties. This negatively affects the gain of the receiver station antenna 112, and the power of the signal transmitted from the satellite 108 is adjusted to take this into account. However, where two way communications between the receiver station 130 (essentially rendering it a receiver/transmitter station or gateway) and the satellite are desired (e.g. for high-bandwidth Internet and data transfer applications), the smaller size of the receiver station antenna 112 can be problematic, because it negatively affects the strength of the signal transmitted from the receiver station 130. In such situations, it may be advantageous for the antenna at the gateway to track satellites 108 across the sky during service.
The augmenting satellite constellation 203 is designed so that when an active satellite 202 is about to finish its service, its apparent position in the sky relative to the receiver station 130 substantially overlaps with another satellite 202 in the constellation 203 rising and about to enter active service. This allows the receiver station antenna 112 to continue ground tracking without re-steering or experiencing temporary data drop-outs, thus saving the time for tracking and handover.
An important feature of the constellation 203 of the present invention is that it creates satellite tracks 402 that are essentially closed-loop. For a specific orbital period (and hence, service period for each satellite 202) there is only one constellation 203 that can be defined. The constellation 203 described above not only offers the closed loop satellite track 402 feature that simplifies receiver antenna 112 design, it also meets the required elevation angle for servicing subscribers 110 in CONUS and maintains an adequate separation angle from satellites in geostationary orbits.
One significant advantage of the present invention is that it can be applied to existing receiver station 130 designs. This allows service capacity to be essentially doubled with minor modifications of existing hardware to add an additional receiving head or LNB and providing an intelligent switch.
The reduced gain inherent in the augmented receiver station (22 dBi versus 34 dBi) may be compensated for by increasing the output of the signal from the satellites in the augmenting constellation.
The foregoing can be implemented with a simple clip on LNB head, or a minor replacement to legacy LNBs. To maximize performance, the location of the second LNB 610 can be varied according to the geographical location of the subscriber 110.
In addition to facilitating the design of a simplified receiver station, the augmenting satellite constellation 203 also achieves the highest elevation for coverage focusing at CONUS. Impact of the apparent motion of the satellites 202 is now discussed.
As can be seen, the present invention can be implemented while minimizing changes to existing user equipment through add-on receiver station 130 components, and the augmenting satellite constellation 203. The system requires only two additional hardware components to double the reception capacity provided to the receiver station 130: an add-on kit for the receiving antenna 112, and an intelligent switch to select the signal received from the legacy satellites 104 by the first LNB 606 from the augmenting satellites 202 by the second LNB 610. The intelligent switch may be integrated with other antenna components or with the RD 132.
As described above, an important advantage of the present invention is that it allows the antennae, converters, and set top boxes used by current GSO satellites to be used for additional capacity without interference. In addition to these advantages, the present invention allows the augmenting satellite constellation 203 to share the electromagnetic spectrum with the legacy satellites 204. The satellites 202 in the augmenting satellite constellation 203 achieve a minimum 30° spatial separation to avoid the signals from the legacy satellites 204. When a member satellite 202 of the augmenting satellite constellation 203 flies through lower latitude regions during the non-active period, the satellite ceases the transmission of signals in the shared spectrum to avoid harmful interference with legacy satellite 204 transmission. The satellite 202 remains in a stand-by mode until it leaves the lower latitude regions and becomes active. The spatial separation away from legacy satellites 204 (at least 30°) provides large (−30 dB) antenna discrimination, which prevents interference.
The present invention can be used to provide additional bandwidth to nearly any broadcast service provided by satellites in geostationary orbits. The augmenting satellite constellation 203 provides improved capacity, improved reception (due to the higher elevation), and reduced cost (since management and other ground functions can be shared with other GSO systems).
The foregoing description of the preferred embodiment of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto. The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
Patent | Priority | Assignee | Title |
10135520, | Mar 13 2015 | System and method for communicating via a satellite in an inclined geosynchronous orbit |
Patent | Priority | Assignee | Title |
6105060, | Sep 05 1997 | WorldSpace, Inc.; WORLDSPACE, INC | System for providing global portable internet access using low earth orbit satellite and satellite direct radio broadcast system |
6198907, | Feb 02 1998 | CDC PROPRIETE INTELLECTUELLE | Satellite communications systems using satellites in a zero-drift constellation |
6564053, | May 20 1998 | SIRIUS XM RADIO INC | Efficient high latitude service area satellite mobile broadcasting systems |
6684056, | Apr 10 2000 | CDC PROPRIETE INTELLECTUELLE | System for providing optimal satellite communication via a MEO/LEO satellite constellation |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 18 2000 | WANG, ARTHUR W | The DIRECTV Group, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037329 | /0663 | |
Mar 16 2004 | Hughes Electronics Corporation | The DIRECTV Group, Inc | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 026707 | /0823 | |
Jan 24 2011 | The DIRECTV Group, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 19 2017 | ASPN: Payor Number Assigned. |
Jun 19 2017 | RMPN: Payer Number De-assigned. |
Oct 14 2019 | REM: Maintenance Fee Reminder Mailed. |
Mar 30 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 23 2019 | 4 years fee payment window open |
Aug 23 2019 | 6 months grace period start (w surcharge) |
Feb 23 2020 | patent expiry (for year 4) |
Feb 23 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 23 2023 | 8 years fee payment window open |
Aug 23 2023 | 6 months grace period start (w surcharge) |
Feb 23 2024 | patent expiry (for year 8) |
Feb 23 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 23 2027 | 12 years fee payment window open |
Aug 23 2027 | 6 months grace period start (w surcharge) |
Feb 23 2028 | patent expiry (for year 12) |
Feb 23 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |