Methods and systems for indicating an end of an idle sequence residing between first and second frames, while maintaining bounded running disparity, including: encoding the first frame; encoding a basic idle sequence utilizing a first line-code; producing an idle sequence by replacing m code words of the basic idle sequence with m alternative code words; encoding the second frame; transmitting the first frame, the idle sequence, and the second frame; and receiving the second frame by a second communication node. Each one of the m alternative code words is equal to a code word of the basic idle sequence. And the second communication node is unable to determine a starting point of the second frame based only on the idle sequence and the second frame, but is able to determine the starting point of the second frame based on difference between the basic idle sequence and the idle sequence.
|
13. A method for indicating an end of an idle sequence residing between first and second frames, while maintaining bounded running disparity, the method comprising:
maintaining, from a beginning of a first frame to an end of a second frame, absolute value of running disparity lower than or equal to k, while:
encoding the first frame;
encoding a basic idle sequence utilizing a first line-code having a binary code word length n_idle, wherein k is lower than n_idle/2;
producing an idle sequence by replacing m code words of the basic idle sequence with m alternative code words, wherein each one of the m alternative code words is equal to at least one code word of the basic idle sequence;
encoding the second frame;
transmitting the first frame, the idle sequence, and the second frame; and
receiving the second frame by a second communication node; the second communication node is unable to determine a starting point of the second frame based only on the idle sequence and the second frame, but is able to determine the starting point of the second frame based on difference between the basic idle sequence and the idle sequence.
1. A communication system comprising:
a first node configured to communicate with a second node;
the first node comprises an encoder and a transmitter;
the encoder is configured to encode a first frame, an idle sequence including x code words, and a second frame;
the encoder is further configured to determine x minus m code words of the idle sequence to be equal to x minus m code words of a basic idle sequence; wherein the basic idle sequence is obtained utilizing a first line-code having a binary code word length n_idle;
the encoder is further configured to determine remaining m code words of the idle sequence to be alternative code words, wherein each alternative code word is equal to at least one code word of the basic idle sequence;
the encoder is further configured to maintain over the idle sequence absolute value of running disparity lower than or equal to k, wherein k is lower than n_idle/2;
the transmitter is configured to transmit the first frame, idle sequence, and second frame;
the second node is characterized by not being able to determine a starting point of the second frame based only on the idle sequence and the second frame; and
the second node is further characterized by being able to determine the starting point of the second frame based on difference between the basic idle sequence and the idle sequence.
2. The communication system of
3. The communication system of
4. The communication system of
5. The communication system of
each one of the code words of the idle sequence belongs to a third output set consisting of all code words produced by the third line-code.
6. The communication system of
7. The communication system of
10. The communication system of
11. The communication system of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
21. The method of
|
Various communication systems transmit packets from a first node (the transmitting node) to a second node (the receiving node) over a communication channel. The transmitting node typically includes an encoder and a transmitter, and the receiving node typically includes a detector and a decoder. In many communication systems, the packets are encoded utilizing line-codes, which are configured to suit the characteristics of the channel, and facilitate the operation of the detector. For example, line-codes characterized by high transition density facilitate better clock recovery. As another example, line-codes characterized by good DC-balance, usually indicated by low running disparity, are better suitable for communication channels with poor response to DC signals. DC-balanced line-codes also facilitate simpler coupling of the nodes to the communication channel (e.g. AC coupling rather than DC coupling).
In many communication systems, idle signals are transmitted during the gaps between packets. Since the idle signals are utilized by the receiving node in order to maintain synchronization, the idle signals are usually configured to comply with the line-code related characteristics, such as running disparity and transition density. The duration of the gap between the packets may be unknown in advance, and the receiving node needs to determine the starting point of the following packet by identifying the end of the idle signal.
In one embodiment, a communication system including a first node configured to communicate with a second node. The first node includes an encoder and a transmitter. The encoder is configured to encode a first frame, an idle sequence including X code words, and a second frame. The encoder is further configured to determine X minus M code words of the idle sequence to be equal to X minus M code words of a basic idle sequence. The basic idle sequence is obtained utilizing a first line-code having a binary code word length N_idle. The encoder is further configured to determine remaining M code words of the idle sequence to be alternative code words. Each alternative code word is equal to at least one code word of the basic idle sequence. The encoder is further configured to maintain over the idle sequence absolute value of running disparity lower than or equal to K, which is lower than N_idle/2. The transmitter is configured to transmit the first frame, idle sequence, and second frame. The second node is characterized by not being able to determine a starting point of the second frame based only on the idle sequence and the second frame. And the second node is further characterized by being able to determine the starting point of the second frame based on difference between the basic idle sequence and the idle sequence.
In another embodiment, a method for indicating an end of an idle sequence residing between first and second frames, while maintaining bounded running disparity includes: maintaining, from a beginning of a first frame to an end of a second frame, absolute value of running disparity lower than or equal to K, while: encoding the first frame; encoding a basic idle sequence utilizing a first line-code; producing an idle sequence by replacing M code words of the basic idle sequence with M alternative code words; encoding the second frame; transmitting the first frame, the idle sequence, and the second frame; and receiving the second frame by a second communication node. The first line-code has a binary code word length N_idle, and K is lower than N_idle/2. Each one of the M alternative code words is equal to at least one code word of the basic idle sequence. The second communication node is unable to determine a starting point of the second frame based only on the idle sequence and the second frame, but is able to determine the starting point of the second frame based on difference between the basic idle sequence and the idle sequence.
The embodiments are herein described, by way of example only, with reference to the accompanying drawings. In the drawings:
A line-code is a binary code, which encodes words of M binary symbols, referred to as input words, to words of N binary symbols, referred to as code words. The two values of the binary symbols are denoted herein as “one” (“1”) and “zero” (“0”). M is referred to as the input word length of the line-code, N is referred to as the code word length of the code, and the ratio of M divided by N is referred to as the rate R of the line-code. M is lower than N, and therefore R is less than 1. The output set of a line-code is the set of all code words that may be produced by the line-code, and is therefore a proper subset of the set of all 2N binary words of length N.
The first and second line-codes have input word lengths M′ and M″, respectively, binary code word lengths N′ and N″, respectively, and code rates R′ and R″, respectively. The first and second line-codes have minimum Hamming distances D′ and D″, respectively, where D″ is lower than D′.
In one embodiment, the “running disparity” at a certain binary symbol produced by the encoder is the difference between the number of “ones” and the number of “zeroes” produced by the encoder up to and including the certain symbol.
The encoder 108 maintains the running disparity over the frame 112 bounded by a predetermined value K (i.e., the absolute value of the running disparity over the frame is maintained lower than or equal to K). In one example, K is lower than N′/2. Additionally or alternatively, K may be lower than N″/2.
In one example, the initial value of the running disparity is zero. In another example, the initial value of the running disparity is minus one. In one example, the running disparity is reset to its initial value every predetermined number of frames, which may be unlimited. The running disparity may be calculated at the end of each code word, or at each symbol.
In one example, K is lower than N′/4. Additionally or alternatively, K may be lower than N″/4. In one example, K is lower than 3. In one example, K is lower than 2. The disparity of a code word is the difference between the number of “ones” and the number of “zeroes” within the word. For example, the disparity of the code word 01101100 is zero, the disparity of the code word 01111100 is two, and the disparity of the code word 01001000 is minus four.
In one embodiment, the first and second line-codes facilitate maintaining the running disparity bounded by selecting the disparity of the current code word based on the running disparity at the end of the previous code word. For example, the encoder may select a code word with a zero or negative disparity when the running disparity is positive, and selects a code word with a zero or positive disparity when the running disparity is negative, thereby maintaining the running disparity bounded.
A “paired disparity” line-code is a line-code, where each input word is encoded either to a code word with a zero disparity, or to a code word selected from a set of code words containing at least one code word with a positive disparity and at least one code word with a negative disparity. A “balanced paired disparity” line-codes is a paired disparity line-codes, where each input word is encoded either to a code word with a zero disparity, or to a code word selected from a balanced pair of code words (i.e., a first code word with a positive disparity P, and a second code word with a negative disparity minus P).
In one embodiment, the first and second line-codes are paired disparity line-codes, and code word selection is based on the running disparity (i.e., when the running disparity is positive, the disparity of the next code is either zero or negative, and when the running disparity is negative, the disparity of the next code word is either zero or positive). Thereby, the absolute value of the running disparity is maintained lower than or equal to P, where P is the maximum absolute value of the disparities of all code words in the output set of the line-code. In one embodiment, the first and second line-codes are balanced paired disparity line-codes, and the encoder maintains the running disparity bounded between zero and P (inclusive) by selecting a code word with negative disparity only when the running disparity is positive. Alternatively, the encoder may maintain the running disparity between zero and minus P (inclusive), by selecting a code word with positive disparity only when the running disparity is negative. In one example, P equals 2, and the running disparity is maintained between zero and 2 (inclusive). Alternatively, the running disparity is maintained between zero and minus 2 (inclusive). In one example, the initial value of the running disparity is minus one, and the running disparity is maintained between minus one and plus one.
In one embodiment, the encoder selects the code words of the second part of the frame based on a running disparity, which is calculated from the beginning of the first part of the frame, thereby maintaining the running disparity bounded over the entire frame. The disparity of the first code word of the second frame is selected based on the running disparity calculated at the end of the first part of the frame, although the first and second parts of the frame are encoded with different line-codes. In one example, the first and second line-codes are balanced paired disparity line-codes, both with P equals 2, and the initial value of the running disparity is set to minus one. In this example, the running disparity is maintained between minus one and one (inclusive), and the absolute value of the running disparity is accordingly maintained lower than 2.
In some examples, N′ and N″ are equal, and therefore the first output set of the first line-code and the second output set of the second line-code are both subsets of the set of all binary words of length N′. Following are some examples regarding the relation between the first and second output sets. In all those examples, N′ and N″ are equal.
In one example, the first and second output sets are mutually exclusive to each other, i.e., they do not share any common code word. In another example, the first set and second output sets, are not exclusive to each other, i.e., they share at least one common code word.
In one example, the first output set is a subset of a second output set, M′ is lower than M″, and R′ is lower than R″. Accordingly, the first and second line-codes provide a trade-off between error resilience and bandwidth efficiency: the first line-code features better error resilience (D′ is higher), while the second line-code features better bandwidth efficiency (R′ is lower). In this example, the first line code may be utilized when higher error resilience is desired, thereby gaining the higher bandwidth efficiency of the second code whenever lower error resilience can be tolerated.
In one example, the first output set is not a subset of a second output set, i.e. the first output set includes at least one code word exclusive to the second output set.
The 8b/10b is a known family of balanced paired disparity line-codes with M=8, N=10, and P=2. In one example, the first output set is a subset of the output set of an 8b/10b line-code. Additionally or alternatively, the second output set may be a subset of the output set of an 8b/10b line-code.
In one embodiment, the encoder 108 maintains over the frame transition density equal to or better than a predetermined transition density. The predetermined transition density may be at least one transition within any sequence of Z consecutive symbols. Z may equal 6, e.g., when the first and second output sets are subsets of the output set of the data and control words of an 8b/10b line-code. Z may also be lower than 6, e.g., when the first and second output sets are subsets of the output set of the data words of an 8b/10b line-code.
In one embodiment, the encoder 108 maintains over the frame spectral uniformity equal to or better than a predetermined spectral uniformity. The encoder may receive words that are already selected to produce the required spectral uniformity. Additionally or alternatively, the encoder may randomize the stream of input words, thereby maintaining the spectral uniformity of the stream of encoded words.
In one example, the communication channel 106 includes an optical fiber. Additionally or alternatively, the communication channel may include a conductive wire, a wireless channel, and/or any other suitable communication channel.
The second part of different frames may be encoded utilizing different line-codes, e.g. encoding the second part of some frames utilizing the first line-code, and the second part of other frames utilizing the second line-code. The line-code may be selected based on conditions of the communication channel, such as received signal level, received noise level, signal to noise ratio, symbol error rate, and/or any other suitable channel condition. For example, the first line-code may be selected only when its higher error resilience capability is required due to the channel condition (e.g. the symbol error rate is higher than some accepted value). In this example, the system may benefit from the higher bandwidth efficiency of the second line-code whenever allowed by the channel condition.
Additionally or alternatively, the line-code utilized for encoding the second part of the frame may be selected based on the type of the data contained therein. For example, the second part of the frame may be encoded utilizing the first line-code only when its higher error resilience capability is required due to the type of the data (e.g. the data is highly sensitive to errors). In one example, the line-code is selected based on both data type and channel condition.
In one example, the first part of the frame may include a header of the frame, and the second part of the frame may include a payload of the frame. The first part of the frame may include an indication of the line-code utilized for encoding the second part of the frame. Accordingly, the first part of the frame may contain an indication that the second part of the frame is encoded utilizing the second line-code. The decoder 116 may select an appropriate line-code for decoding the second part of the frame based on the indication included in the first part of the frame.
In one embodiment, the encoder 108 produces an idle sequence 122, which resides between the frame 112 and a following frame 124. The idle sequence includes code words of length N_idle, which may optionally be equal to N′ or to N″. In one example, the second node 104 cannot predict the starting point of the following frame 124, because the length of the idle sequence 122 is unknown. In this example, the detector 114 detects the idle sequence 122, and the decoder 116 identifies the end thereof, thereby determining the starting point of the following frame 124.
In one embodiment, the encoder 108 maintains the absolute value of the running disparity over the idle sequence 122 lower than or equal to K. K may optionally be lower than N_idle/2 or lower than N_idle/4.
In one embodiment, the idle sequence is composed of code words of a fourth line-code. The idle sequence may be produced by encoding a pseudo-random sequence of binary symbols utilizing the fourth line-code. The encoder 108 may select the disparity of the current code word based on the running disparity at the end of the previous code word, as explained above regarding the first and second line-codes.
In one embodiment, the encoder 108 maintains the absolute running disparity over the frame and the idle sequence lower than or equal to K. The encoder 108 may select the disparity of the first code word of the idle sequence based on the running disparity calculated at the end of the frame, although the frame and the idle sequence are encoded with different line codes. In one example, the first, second, and fourth line-codes are balanced paired disparity line-codes with P equals two, the initial value of the running disparity is set to minus one, and the absolute value of the running disparity is maintained lower than 2, although the frame and the idle sequence may be encoded with different line codes.
In one embodiment, the encoder 108 maintains the transition density over the idle sequence equal to or better than the predetermined transition density of at least one transition within any sequence of Z consecutive symbols. In one example, Z equals. In another example, Z is lower than 6.
In one embodiment, the encoder 108 maintains the spectral uniformity over the idle sequence equal to or better than the predetermined spectral uniformity. The spectral uniformity of the idle sequence may result from the distribution of the output set of the fourth line-code, and/or from randomizing the input of the fourth line-code.
In one embodiment, the encoder 108 maintains the running disparity, from the beginning of the frame 112 to the end of the following frame 124, bounded by K (i.e., maintaining the absolute value of the running disparity lower than or equal to K). The running disparity may be maintained bounded over a sequence of the frame 112, the following frame 124, and the idle sequence 122. Additionally or alternatively, the running disparity may be maintained bounded over a sequence of the frame 112 and the following frame 124, with no intermediate idle sequence.
In one embodiment, the following frame is encoded utilizing one or more line-codes, and the encoder 108 selects the code words of the following frame based on a running disparity, which is calculated from the beginning of the frame, thereby maintaining the running disparity bounded by K over the stream of the code words of the frame and the following frame. The disparity of the first code word of the following frame is selected based on the running disparity calculated at the end of the frame, or at the end of the idle sequence, as applicable.
In one embodiment, the following frame 124 includes a first part 126 of the following frame, and a second part 128 of the following frame, and encoder 108 encodes the first and second parts of the following frame utilizing the first line-code and a third line-code, respectively. The third line-code has input word length M′″, binary code word lengths N′″, and code rate R′″. The third line-code has a minimum Hamming distance D′″, where D′″ is lower than D″. The encoder 108 maintains the running disparity from the beginning of the frame to the end of the following frame bounded by K (i.e., the absolute value of the running disparity is maintained lower than or equal to K). In one example, the disparity of the first code word of the second part of the following frame is selected based on the running disparity calculated at the end of the first part of the second frame, although the first and the second parts of the following frame are encoded with different line codes. K may be lower than N′″/2 or lower than N′″/4, and N′″ may be equal to N′.
When N′″ is equal to N′, the first output set of the first line-code and the third output set of the third line-code are both subsets of the set of all binary words of length N′. In one example, where N′″ is equal to N′, the third output set of the third line-code is not a subset of the first output set of the first line-code (i.e., the third output set includes at least one code word exclusive to a first output set).
In one example, K is lower than N′/4. Additionally or alternatively, K may be lower than N″/4. In one example, K is lower than 3. In one example, K is lower than 2.
In some examples, N′ and N″ are equal. Following are some examples regarding the relation between the first and second output sets. In all those examples, N′ and N″ are equal. In one example, the first and second output sets are mutually exclusive to each other, i.e., they do not share any common code word. In another example, the first set and second output sets, are not exclusive to each other, i.e., they share at least one common code word. In one example, the first output set is a subset of a second output set. In one example, the first output set is not a subset of a second output set, i.e. the first output set includes at least one code word exclusive to the second output set.
In one embodiment, the first output set is a subset of the output set of an 8b/10b line-code. Additionally or alternatively, the second output set may be a subset of the output set of an 8b/10b line-code.
In one embodiment, the method illustrated in
In one embodiment, the method further includes maintaining over the frame spectral uniformity equal to or better than a predetermined spectral uniformity.
In one embodiment, the method optionally includes an additional step of transmitting the frame over a communication channel. The step of transmitting the frame may be performed by a transmitter, such as the transmitter 110 in
The method may further include an optional step of detecting the frame and a step of decoding thereof, which may be performed by a second communication node, such as the second node 104 in
In one example, the first part of the frame may include the header of the frame, and the second part of the frame may include the payload of the frame. In one example, the second part of different frames may be encoded utilizing different line-codes. The line-code may be may be selected based on the type of the data carried by the certain frame, or by the state of the channel during the transmission of the certain frame, or by some combination thereof, or by any other suitable parameter. The first part of the certain frame may include an indication of the line-code utilized for encoding the second part of the certain frame, in order to facilitate utilization of an appropriate line-code for decoding the second part of the certain frame. Accordingly, the first part of the frame may contain an indication that the second part of the frame is encoded utilizing the second line-code.
In one embodiment, the method illustrated in
Additionally, the method may include an optional step of transmitting the idle sequence over the communication channel, which may be performed by a transmitter, such as the transmitter 110 in
In one embodiment, the step of producing an idle sequence further includes maintaining the absolute running disparity over the idle sequence lower than the predetermined value K. In one example, K is lower than N_idle/2. In one example, K is lower than N_idle/4. In one embodiment, the idle sequence is produced of code words of a fourth line-code, e.g., by encoding a pseudo-random sequence of binary symbols utilizing the fourth line-code. In one embodiment, the method illustrated in
In one embodiment, the method illustrated in
In one embodiment, the method include an optional step of transmitting the following frame over the communication channel, which may be performed by a transmitter, such as the transmitter 110 in
In one embodiment, the method further includes maintaining the running disparity, from the beginning of the frame to the end of the following frame, bounded by K (i.e., maintaining the absolute value of the running disparity lower than or equal to K). The running disparity is maintained bounded over a sequence including the frame and the following frame, with or without intermediate idle sequence.
In one embodiment, the following frame includes first and second parts of the following frame, and the step of encoding the following frame includes a step of encoding the first part of the following frame utilizing the first line-code, and a step of encoding the second part of the following frame utilizing a third line-code. The third line-code has binary code word lengths N′ and a minimum Hamming distance D′″, where D′ is lower than D″. The method may further include maintaining the running disparity from the beginning of the frame to the end of the following frame bounded by K (i.e., maintaining the absolute value of the running disparity lower than or equal to K). In one example, K is lower than N′″/2. In one example, K is lower than N′/4.
N′″ may be equal to N′. In one example, in which N′ and N′″ are equal, the third output set of the third line-code is not a subset of the first output set of the first line-code (i.e., the third output set includes at least one code word exclusive to a first output set).
In one embodiment, the method further includes a step of transmitting the frame over a binary channel. In one embodiment, the first and second codes are first and second line-codes having binary code word lengths N1 and N2, respectively, and the method further includes maintaining the running disparity over the frame bounded by K (i.e., maintaining the absolute value of the running disparity lower than or equal to K). In one example, K is lower than N1/2. Additionally or alternatively, in one example, K is lower than N2/2. In one example, N2 equals N1.
In one embodiment, encoder 402 encodes the payloads of different frames utilizing different line-codes selected from the set of two or more line-codes, while the headers of the frames are encoded utilizing the same line-code, referred to as the first line-code. In one embodiment, a payload of a certain frame is encoded utilizing a line-code selected based on the type of the data within the payload of the certain frame. In one embodiment, the header of the certain frame includes an indication of the line-code utilized for encoding the payload of the certain frame, thereby facilitating the second communication node 408 to decode the payload of the certain frame utilizing the respective line-code.
In one example, the set of two or more line-codes include the first line-code and a second line-code, having input word lengths M′ and M″, respectively, binary code word lengths N′ and N″, respectively, and code rates R′ and R″, respectively. The first and second line-codes have minimum Hamming distances D′ and D″, respectively, where D″ is lower than D′.
In one example, the encoder 402 encodes a first frame 410, which includes a first header 412 and a first payload 414, and a second frames 416, which includes a second header 418 and a second payload 420. The encoder 402 encodes the first and second header utilizing the first line-code, and the first and second payloads utilizing the first and second line-codes, respectively.
In one example, the first line-code is selected for encoding the first payload based on a first data type of a first data included in the first payload, and the second line-code is selected for encoding the second payload based on a second data type of a second data included in the second payload.
In one example, the selection of a line-code for encoding the payload of a certain frame may be based only on the respective data type of the data included therein. In another example, line-code selection may be further based on other applicable criteria, such as a criterion based on the condition of the communication channel, or any other suitable criterion. The applicable criteria may be based on channel condition such as signal to noise ratio, symbol error rate, and/or any other suitable channel condition. However, in both examples the selection is affected by the respective data type.
In one example, the communication channel 406 is characterized by first and second channel conditions, which are respectively associated with the transmission of the first and second frames. In this example, the first and second line-codes may be selected for encoding the first and second payloads, respectively, although the differences between the first and second channel conditions are not enough for implying selection of different line-codes.
In one embodiment, the encoder 402 maintains the absolute value of the running disparity, form the beginning of the first frame to the end of the second frame, lower than or equal to a predetermined value K. In one example, K is lower than N′/2. Additionally or alternatively, in one example K is lower than N″/2.
In one example, K is lower than N′/4. Additionally or alternatively, K may be lower than N″/4. In one example, K is lower than 3. In one example, K is lower than 2.
In some examples, N′ and N″ are equal. Following are some examples regarding the relation between the first and second output sets. In all those examples, N′ and N″ are equal. In one example, the first and second output sets are mutually exclusive to each other, i.e., they do not share any common code word. In another example, the first set and second output sets, are not exclusive to each other, i.e., they share at least one common code word. In one example, the first output set is a subset of a second output set. In one example, the first output set is not a subset of a second output set.
In one embodiment, the first output set is a subset of the output set of an 8b/10b line-code. Additionally or alternatively, the second output set may be a subset of the output set of an 8b/10b line-code.
In one embodiment, the encoder 402 maintains, from the beginning of the frame to the end of the second frame, transition density equal to or better than a predetermined transition density, which is at least one transition within any sequence of Z consecutive symbols. In one example, Z equals 6. In one example, Z is lower than 6. In one embodiment, the encoder 402 maintains, from the beginning of the frame to the end of the second frame, spectral uniformity equal to or better than a predetermined spectral uniformity.
In one example, the communication channel 406 includes an optical fiber. Additionally or alternatively, the communication channel may include a conductive wire, a wireless channel, and/or any other suitable communication channel. In one example, the first header includes an indication that the first payload is encoded utilizing the first line-code, and the second header includes an indication that the second payload is encoded utilizing the second line-code.
In one embodiment, the encoder 402 produces an idle sequence 422, which resides between the first frame 410 and a second frame 416, and includes code words of length N_idle. In one example, N_idle may be equal to N′. Additionally or alternatively, N_idle may be equal to N″.
In one embodiment, the encoder 402 maintains the absolute value of the running disparity, over the first frame, the idle sequence, and the second frame, lower than or equal to K. K may optionally be lower than N_idle/2, or lower than N_idle/4.
In one embodiment, the encoder 402 maintains the transition density, over the first frame, the idle sequence, and the second frame, equal to or better than the predetermined transition density. In one embodiment, the encoder 420 maintains the spectral uniformity over the first frame, the idle sequence, and the second frame, equal to or better than the predetermined spectral uniformity.
In one example, the set of two or more line-codes further includes a third line-code having input word length M′″, binary code word length N′″, code rate R′″, and minimum Hamming distance D′″, which is different from D″.
In one example, the encoder 402 encodes a third frame 424 including a third header 426, and third payload 428, and the third payload 428 includes a third data 430 having a third data type, and a fourth data 432 having a fourth data type. Encoder 402 encodes the third header 426, the third data 430, and the forth data 432, utilizing the first, second and third line-codes, respectively, which are selected for encoding the third data 430 and the fourth data 432, respectively, based on a third and fourth data types, respectively.
In one example, D′″ is lower than D″, and R′″ is higher than R″. In this example the fourth data features higher bandwidth efficiency (R′″>R″) but lower error resilience (D′″>D″) than the third data. In another example the third line-code coincides with the first line-code, and D′″ is equal to D′.
In one embodiment, the method illustrated in
In one example, the communication channel is characterized by first and second channel conditions, which are respectively associated with the transmission of the first and second frames. In this example, the first and second line-codes are selected for encoding the first and second payloads, respectively, although the differences between the first and second channel conditions are not enough for implying selection of different line-codes.
In one example, K is lower than N′/4. Additionally or alternatively, K may be lower than N″/4. K may optionally be is lower than 3, or lower than 2. In some examples, N′ and N″ are equal. Following are some examples regarding the relation between the first and second output sets. In all those examples, N′ and N″ are equal.
In one example, the first and second output sets are mutually exclusive to each other, i.e., they do not share any common code word. In another example, the first set and second output sets, are not exclusive to each other, i.e., they share at least one common code word. In one example, the first output set is a subset of a second output set. In one example, the first output set is not a subset of a second output set. In one example, the first output set is a subset of the output set of an 8b/10b line-code. Additionally or alternatively, the second output set may be a subset of the output set of an 8b/10b line-code.
In one embodiment, the method illustrated in
In one embodiment, the method further includes maintaining, from the beginning of the frame to the end of the second frame, spectral uniformity equal to or better than a predetermined spectral uniformity.
In one example, the communication channel includes an optical fiber. Additionally or alternatively, the communication channel may include a conductive wire, a wireless channel, and/or any other suitable communication channel.
In one example, the first header includes an indication that the first payload is encoded utilizing the first line-code, and the second header includes an indication that the second payload is encoded utilizing the second line-code.
The method illustrated in
In one embodiment, the method further involves maintaining the absolute value of the running disparity, over the first frame, the idle sequence, and the second frame, lower than or equal to K. K may optionally be lower than N_idle/2, or lower than N_idle/4.
In one embodiment, the method further involves maintaining the transition density, over the first frame, the idle sequence, and the second frame, equal to or better than the predetermined transition density.
In one embodiment, the method further involves maintaining the spectral uniformity over the first frame, the idle sequence, and the second frame, equal to or better than the predetermined spectral uniformity.
In one example, the set of two or more line-codes further includes a third line-code having input word length M′″, binary code word length N′″, code rate R′″, and minimum Hamming distance D′″, which is different from D″.
In one example, the method illustrated in
The encoder 602 encodes a first frame 608, a basic idle sequence 610, and a second frame 612. The first frame 608, the basic idle sequence 610, and the second frame 612 include code words, and the length of the idle sequence (measured in words) is denoted by X. The code words may include binary symbols, i.e. symbols belonging to an alphabet consisting of two values. Alternatively, the symbols may belong to a non-binary alphabet, i.e. an alphabet consisting of more than two values.
The idle sequence modifier 604 modifies the basic idle sequence 610 into an idle sequence 614, by replacing M certain code words out of the X code words of the basic idle sequence with M alternative code words. The M alternative code words are not unique, i.e., each alternative code word belongs to the same output set as the code words of the idle sequence. Therefore, in one example, each alternative code word is equal to at least one code word of the idle sequence.
In one example, the first frame 608, the idle sequence 614, and the second frame 612 are transmitted by the transmitter 606 over a communication channel 620, and received by a second communication node 622, which includes a detector 624 and a decoder 626. The detector produces a detected first frame 627, a detected idle sequence 628, and a detected second frame 629, also referred to as the received firsts frame, the received idle sequence, and the received second frame. The code words of the detected first frame, the detected idle sequence, and the detected second frame may include one or more erroneous detected symbols, i.e. detected symbols that are different from the respective transmitted symbols. The erroneous symbols are referred to as channel errors.
In one example, the second communication node 622 does not know in advance the length X of the idle sequence, and therefore the decoder 624 does not know in advance the starting point of the detected second frame 629. Furthermore, the decoder 624 is unable to determine the starting point of the detected second frame 629 by inspecting the detected idle sequence 628 per se, since the idle sequence by itself does not indicate its end.
The code words of the basic idle sequence 610 are known in advance to the second communication node 622. For example, the encoder 602 may produce the basic idle sequence utilizing a certain algorithm (e.g. a pseudo random symbol generator) and certain one or more parameters thereof (e.g. initial state of the generator), and the second communication node may produce an identical replica of the basic idle sequence by utilizing the same certain algorithm and the same certain one or more parameters thereof.
The decoder 624 compares the detected idle sequence 628 with a replica of the basic idle sequence 610, and determines the differences between respective code words of the two sequences, which are referred to as the detected differences. In case of no channel errors, the detected differences are identical to the differences between the code words of the basic idle sequence 610 and the respective code words of the idle sequence 614, the latter differences being accordingly referred to as the error-free differences. As explained above, the error-free differences include X-M zero words, and M non-zero words.
A sub-sequence of the error-free differences, which includes the M non-zero words, is referred to as the synchronization sequence. The synchronization sequence is located at a predetermined distance from the end of the idle sequence 614, and the end of the detected idle sequence 628 may be determined by determining the presence of the synchronization sequence.
In one example, M equals one, and the synchronization sequence is a single non-zero word located at a predetermined distance from the end of the idle sequence, for example at the end of the idle sequence. In another example, M is higher than one, and the M non-zero code words are located at predetermined distances from the end of the idle sequence. The M non-zero code words may be consecutive, or not consecutive.
The idle sequence modifier 604 determines the value of each alternative code word to be different from the value of the respective certain code word within the basic idle sequence 610, thereby resulting in the M non-zero words of the synchronization sequence. In one example, the idle sequence modifier 604 determines the value of each alternative code word based only on the value of the respective basic code word appearing in the basic idle sequence 610, thereby resulting in a deterministic synchronization sequence. In another example, the idle sequence modifier 604 may determine the value of each alternative code word based also on other considerations, thereby resulting in different synchronization sequences. The other consideration may be, for example, line-code related considerations, such as running disparity.
The detected sequence of differences may include channel errors. However, in one example, the synchronization sequence facilitates detection thereof also in presence of channel errors, as long as the number of channel errors does not exceed a predetermined threshold.
The difference between the idle sequence and the basic idle sequence may be measured using Hamming distance. When the number of alternative code words is one, the decoder decides between to hypotheses: a first hypothesis that the received word represents an original code word of the basic idle sequence, and a second hypothesis that the received word represents an alternative code word. In this example, T is equal to the integer part of (D_idle 1)/2, where D_idle is the Hamming distance between the two hypotheses, i.e., the distance between the alternative code word and the respective code word in the basic idle sequence.
In one example, D_idle is equal to or higher than 3. In one example, the code words of the idle sequence have code word length N_idle, and D_idle is higher than or equal to N_idle/2. In one example, at least N_idle 1 symbols, out of the N_idle symbols of the alternative code word, are different from the respective symbols of the certain code word. In this example, D_idle is higher than or equal to N_idle 1. In one example, all N_idle symbols of the alternative code word are different from the respective symbols of the certain code word. In this example, D_idle equals N_idle.
In one example, the communication channel 606 includes an optical fiber. Additionally or alternatively, the communication channel may include a conductive wire, a wireless channel, and/or any other suitable communication channel.
In one embodiment, the encoder 602 maintains over the idle sequence 614 an absolute running disparity lower than or equal to K, which is lower than N_idle/2. In one example, K is lower than N_idle/4. In one example, K is lower than 3. In one example, K is lower than 2.
In one example, the first output set of the first line-code is a subset of the output set of all code words produced by an 8b/10b line-code. In this example, each code word of the basic idle sequence is included within an output set of all code words produced by an 8b/10b line-code. In one example, the alternative code words are also included within the first output set, and therefore each code word of the idle sequence is included within the output set output set of all code words produced by an 8b/10b line-code. In one example, the first line-code is an 8b/10b line-code.
In step 702, encoding a first frame. Step 702 may be performed by the encoder 602 in
In step 704, encoding a basic idle sequence, which includes code words. Step 704 may be performed by the encoder 602 in
In step 706, producing an idle sequence by replacing certain M code words of the idle sequence with M alternative code words. Step 706 may be performed by the idle sequence modifier 604 in
And in step 710, encoding a second frame. Step 710 may be performed by the encoder 602 in
The method illustrated in
In one example, the second communication node is unable to determine the starting point of the detected second frame by inspection the detected idle sequence per se, because the second communication node does not know in advance the length of the idle sequence, and the idle sequence by itself does not indicate its end.
In one embodiment, the code words of the basic idle sequence are known in advance to the second communication node, which compares the received idle sequence with a replica of the basic idle sequence. Based on the sequence of differences between the received idle sequence and replica of the basic idle sequence, the second communication node determines the end of the detected idle sequence, thereby determining the starting point of the detected second frame. Furthermore, the second communication node should be able to determine the end of the detected idle sequence correctly, as long as the number of channel errors does not exceed a predetermined threshold.
In one example, the difference between the idle sequence and the basic idle sequence is measured using Hamming distance. When the idle sequence include a single alternative code word, T is equal to the integer part of (D_idle 1)/2, where D_idle is the Hamming distance between the alternative code word and the respective code word in the basic idle sequence. In this example, the second communication node is able to determine the end of the detected idle as long as the number of channel errors within the detected idle sequence is lower than D_idle/2.
In one example, D is equal to or higher than 3. In one example, the code words of the idle sequence have code word length N_idle, and D is higher than or equal to N_idle/2. In one example, D_idle is higher than or equal to N_idle−1. In one example, D_idle equals N_idle.
In one embodiment, the method further includes maintaining over the idle sequence an absolute running disparity lower than or equal to K, which is lower than N_idle/2.
K may optionally be lower than N_idle/4, lower than 3, or lower than 2.
In one example, each code word of the basic idle sequence is included within an output set consisting of all code words produced by an 8b/10b line code. In one example, each code word of the idle sequence is included within the output set output set of all code words produced by an 8b/10b line code.
In one embodiment, the step 704 of encoding the basic idle sequence further includes maintaining over the basic idle sequence transition density equal to or better than a predetermined transition density. In one example, the predetermined transition density is at least one transition within any sequence of 6 consecutive symbols. In one embodiment, the step 706 of producing the idle sequence further includes maintaining over the idle sequence 614 transition density equal to or better than the predetermined transition density.
In one embodiment, the step 704 of encoding the basic idle sequence further includes maintaining over the frame spectral uniformity equal to or better than a predetermined spectral uniformity.
In one example, the encoder 802 encodes a first frame 808, a basic idle sequence 810, and a second frame 812. The first frame 808, the basic idle sequence 810, and the second frame 812 include symbols. In one example, the symbols are binary symbols, i.e. symbols belonging to an alphabet consisting of two values. Alternatively, the symbols may belong to a non-binary alphabet, i.e. an alphabet consisting of more than two values.
In one embodiment, the idle sequence modifier 804 modifies the basic idle sequence 810 into an idle sequence 814, by replacing M certain symbols of the basic idle sequence with M alternative symbols. The M alternative symbols belong to the same alphabet as the symbols of the idle sequence. Therefore, in one example, each alternative symbol is equal to at least one symbol of the idle sequence.
In one example, the first frame 808, the idle sequence 814, and the second frame 812 are transmitted by the transmitter 806 over a communication channel 820, and received by a second communication node 822, which includes a detector 824 and a decoder 826. The detector produces a detected first frame 827, a detected idle sequence 828, and a detected second frame 829, also referred to as the received first frame, the received idle sequence, and the received second frame, respectively. In one example, the detected first frame, the detected idle sequence, and the detected second frame may include one or more channel errors.
In one example, the decoder 824 is unable to determine the starting point of the detected second frame 829 by inspection the detected idle sequence 828 per se, because the second communication node 822 does not know in advance the length of the idle sequence, and the idle sequence by itself does not include an indication of its end.
In one embodiment, the code words of the basic idle sequence are known in advance to the second communication node 822, and the decoder 824 compares the received idle sequence with a replica of the basic idle sequence. The sequence of differences between the received idle sequence and the basic idle sequence is referred to as the detected sequence of differences. The differences may be represented in binary symbols, where zero indicates no difference between the two symbols being compared. The decoder 824 correlates the detected sequence of differences with a synchronization sequence, which represents the difference between the basic idle sequence and the idle sequence. Based on the correlation, the second communication node determines the end of the detected idle sequence, thereby determining the starting point of the detected second frame.
In one example, the synchronization sequence is a Barker sequence of length 13. The weight (i.e. number of non-zero symbols) of this synchronization sequence is 9, and its maximum side-lobe is one. Therefore, in this example, T is equal to 3.
In one embodiment, the difference between the received idle sequence and the basic idle sequence is determined by a detector configured to identify a synchronization sequence. In one example, the difference is a single symbol and deterministic, therefore the detector compares the symbol with the basic idle sequence. In another example, the difference is not deterministic, and the operation of the encoder is reconstructed in the receiver, which checks whether the hypothesis that the idle sequence ends at a certain symbol is correct, or the hypothesis that the idle sequence does not end at the certain symbol is correct.
In one example, the encoder 906 encodes a first frame 916, an idle sequence 918, and a second frame 920, utilizing one or more line-codes, and the transmitter 908 transmits them over the communication channel 910. The first frame 916, idle sequence 918, and second frame 920 may be the frame 112, idle sequence 122, and following frame 124, respectively, in
In one example, the idle sequence 918 is based on a basic idle 930 having X code words, which is obtained utilizing a first line-code having a binary code word length N_idle. The idle sequence differs from the basic idle sequence in M out of the X code words. In one embodiment, the encoder 906 determines X minus M code words of the idle sequence to be equal to the corresponding X minus M code words of a basic idle sequence. The encoder 906 further determines the remaining M code words of the idle sequence to be alternative code words, which are different from the corresponding M code words of the idle sequence. In one example, the M alternative code words are not unique, i.e., each alternative code word belongs to the same output set as the code words of the idle sequence. Therefore, in one example, each alternative code word is equal to at least one code word of the basic idle sequence. In one example, each alternative code word belongs to the same output set as the code words of the second frame. Therefore, in one example, each alternative code word is equal to at least one code word of the second frame.
In one example, M equals one, and the single alternative code word is located at a predetermined distance from the end of the idle sequence. In one example, the single alternative code word is located at the end of the idle sequence. In another example, M is higher than one. In one example, the M alternative code words are located at predetermined distances from the end of the idle sequence. The M alternative code words may be consecutive, or not consecutive.
In one embodiment, the encoder 906 maintains over the idle sequence absolute value of running disparity lower than or equal to K. In one example K is lower than N_idle/2.
In one example, the first frame 916, idle sequence 918, and second frame 920 are transmitted by the transmitter 908 over the communication channel 910, and received by the second node 904. The detector 912 of the second node produces a detected first frame 622, a detected idle sequence 624, and a detected second frame 626, also referred to as the received firsts frame, the received idle sequence, and the received second frame. The code words of the detected first frame, the detected idle sequence, and the detected second frame may include one or more channel errors.
In one example, the second node 904 does not know in advance the length X of the idle sequence 918, and therefore the decoder 614 does not know in advance the starting point of the detected second frame 626. Furthermore, the decoder 614 is unable to determine the starting point of the detected second frame 626 by inspection the detected idle sequence 624 per se, since the idle sequence by itself does not indicates its end.
In one embodiment, the code words of the basic idle sequence are known in advance to the second node 904. In one embodiment, the decoder 914 compares the detected idle sequence 624 with a replica of the basic idle sequence, thereby producing a detected sequence of differences, which is the sequence of differences between the code words of the detected idle sequence 624 and the respective code words of the basic idle sequence. Based on the detected sequence of differences, the decoder 914 determines the end of the detected idle sequence 624, thereby determining the starting point of the detected second frame 626. Furthermore, the decoder 914 should be able to determine the end of the detected idle sequence 624 correctly, as long as the number of channel errors within the detected idle sequence 624 does not exceed a predetermined threshold.
In one example, the encoder 906 obtains the basic idle sequence 930 by encoding the output of a pseudorandom bit generator. In one example, the pseudorandom bit generator starts at a predetermined state. The decoder 914 may produce a replica of the basic idle sequence by utilizing the same pseudo random bit generator, starting at the same predetermined state.
In one example, the second frame 920 includes a header and a payload. In one example, the encoder encodes the header utilizing a second line-code, and the first output set of all words of the first line-code and the second output set of all code words produced by the second line-code are mutually exclusive to each other.
In one example, the encoder 906 encodes the payload utilizing a third line-code, and the third output set of all code words produced by the third line-code and the first output set have at least one common code word.
In one example, the encoder 906 encodes the payload utilizing the first line-code.
In one example, the encoder 906 encodes the payload utilizing a third line-code, and each one of the code words of the idle sequence belongs to a third output set of all code words produced by the third line-code.
In one example, the difference between the idle sequence and the basic idle sequence is measured using Hamming distance. When the idle sequence include a single alternative code word, the decoder 914 is able to determine the end of the detected idle sequence 924 as long as the number of channel errors within the detected idle sequence is lower than D_idle/2, where D_idle is the Hamming distance between the alternative code word and the respective code word in the basic idle sequence.
In one example, D_idle is equal to or higher than 3. In one example, D_idle is higher than or equal to N_idle/2. In one example, D_idle is higher than or equal to N_idle 1. In one example, D_idle equals N_idle.
In one example, the communication channel 910 includes an optical fiber. Additionally or alternatively, the communication channel may include a conductive wire, a wireless channel, and/or any other suitable communication channel.
In one example, the encoder 906 maintains the absolute value of the running disparity, from a beginning of a first frame to an end of the second frame, lower than or equal to K.
In one example, K is lower than N_idle/4. In one example, K is lower than 3. In one example, K is lower than 2.
In one example, the first output set of the first line-code is a subset of the output set of all code words of an 8b/10b line-code. In this example, each code word of the basic idle sequence is included within an output set of all code words produced by an 8b/10b line-code. In one example, the alternative code words are also included within the first output set, and therefore each code word of the idle sequence is included within the output set output set of all code words produced by an 8b/10b line-code. In one example, the first line-code is an 8b/10b line-code.
In one example, the step 1006 of encoding the basic idle sequence includes encoding the output of a pseudorandom bit generator, which may start at a predetermined state.
In one example, the header of the second frame is encoded utilizing a second line-code, where the first and second output sets of all code words of the first and second line-codes, respectively, are mutually exclusive to each other.
In one example, the payload of the second frame is encoded utilizing a third line-code, where the first and third output sets of all code words of the first and third line-codes, respectively, have at least one common code word.
In one example, the payload of the second frame is encoded utilizing the first line-code.
In one example, payload of the second frame is encoded utilizing a third line-code, where each one of the code words of the idle sequence belongs to a third output set of all code words of the third line-code.
In one example, the difference between the idle sequence and the basic idle sequence is measured using Hamming distance. When the idle sequence includes a single alternative code word, the second communication node is able to determine the end of the idle sequence as long as the number of channel errors within the idle sequence is lower than D_idle/2, where D_idle is the Hamming distance between the alternative code word and the respective code word in the basic idle sequence.
In one example, D_idle is equal to or higher than 3. In one example, D_idle is higher than or equal to N_idle/2. In one example, D_idle is higher than or equal to N_idle 1. In one example, D_idle equals N_idle.
In one example, K is lower than N_idle/4. K may optionally be lower than 3, or lower than 2.
In one example, the first output set of the first line-code is a subset of the output set of all code words produced by an 8b/10b line-code. In this example, each code word of the basic idle sequence is included within an output set of all code words produced by an 8b/10b line-code. In one example, the alternative code words are also included within the first output set, and therefore each code word of the idle sequence is included within the output set output set of all code words produced by an 8b/10b line-code. In one example, the first line-code is an 8b/10b line-code.
Herein, a predetermined value, such as a predetermined confidence level or a predetermined threshold, is a fixed value and/or a value determined any time before performing a calculation that compares a certain value with the predetermined value. A value is also considered to be a predetermined value when the logic, used to determine whether a threshold that utilizes the value is reached, is known before start of performing computations to determine whether the threshold is reached.
In this description, references to “one embodiment” mean that the feature being referred to may be included in at least one embodiment of the invention. Moreover, separate references to “one embodiment” or “some embodiments” in this description do not necessarily refer to the same embodiment. Additionally, references to “one embodiment” and “another embodiment” may not necessarily refer to different embodiments, but may be terms used, at times, to illustrate different aspects of an embodiment.
The embodiments of the invention may include any variety of combinations and/or integrations of the features of the embodiments described herein. Although some embodiments may depict serial operations, the embodiments may perform certain operations in parallel and/or in different orders from those depicted. Moreover, the use of repeated reference numerals and/or letters in the text and/or drawings is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. The embodiments are not limited in their applications to the details of the order or sequence of steps of operation of methods, or to details of implementation of devices, set in the description, drawings, or examples. Moreover, individual blocks illustrated in the figures may be functional in nature and therefore may not necessarily correspond to discrete hardware elements.
While the methods disclosed herein have been described and shown with reference to particular steps performed in a particular order, it is understood that these steps may be combined, sub-divided, and/or reordered to form an equivalent method without departing from the teachings of the embodiments. Accordingly, unless specifically indicated herein, the order and grouping of the steps is not a limitation of the embodiments. Furthermore, methods and mechanisms of the embodiments will sometimes be described in singular form for clarity. However, some embodiments may include multiple iterations of a method or multiple instantiations of a mechanism unless noted otherwise. For example, when a processor is disclosed in one embodiment, the scope of the embodiment is intended to also cover the use of multiple processors. Certain features of the embodiments, which may have been, for clarity, described in the context of separate embodiments, may also be provided in various combinations in a single embodiment. Conversely, various features of the embodiments, which may have been, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination. Embodiments described in conjunction with specific examples are presented by way of example, and not limitation. Moreover, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the embodiments. Accordingly, this disclosure is intended to embrace all such alternatives, modifications, and variations that fall within the spirit and scope of the appended claims and their equivalents.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4486739, | Jun 30 1982 | International Business Machines Corporation | Byte oriented DC balanced (0,4) 8B/10B partitioned block transmission code |
4620311, | Jan 20 1984 | U S PHILIPS CORPORATION | Method of transmitting information, encoding device for use in the method, and decoding device for use in the method |
5048062, | Oct 30 1989 | International Business Machines Corp. | Transmitting commands over a serial link |
5305352, | Oct 31 1991 | AT&T Bell Laboratories; AMERICAN TELEPHONE AND TELEGRAPH COMPANY A CORP OF NEW YORK | Coded modulation with unequal error protection |
5784387, | Oct 31 1994 | International Business Machines Corporation; IBM Corporation | Method for detecting start-of-frame, end of frame and idle words in a data stream |
5852634, | Aug 21 1992 | U.S. Philips Corporation | Data coding system |
6052411, | Apr 06 1998 | Hewlett Packard Enterprise Development LP | Idle mode for digital subscriber line |
6088369, | May 30 1997 | PMC-SIERRA LTD | Line coding technique for efficient transmission and delineation of encapsulated frames over high speed data links |
6198413, | Jul 01 1999 | International Business Machines Corporation | Partitioned DC balanced (0,6) 16B/18B transmission code with error correction |
6347122, | Jan 13 1998 | Infineon Technologies AG | Optimal complement punctured convolutional codes for use in digital audio broadcasting and other applications |
6747580, | Jun 12 2003 | Lattice Semiconductor Corporation | Method and apparatus for encoding or decoding data in accordance with an NB/(N+1)B block code, and method for determining such a block code |
6804805, | Jun 27 2000 | Seagate Technology LLC | Method and apparatus for encoding with unequal protection in magnetic recording channels having concatenated error correction codes |
6876315, | Mar 12 2004 | International Business Machines Corporation | DC-balanced 6B/8B transmission code with local parity |
6897793, | Apr 29 2004 | Lattice Semiconductor Corporation | Method and apparatus for run length limited TMDS-like encoding of data |
7024653, | Oct 30 2000 | MONTEREY RESEARCH, LLC | Architecture for efficient implementation of serial data communication functions on a programmable logic device (PLD) |
7076724, | Jun 25 2002 | Lockheed Martin Corporation | System and method for forward error correction |
7187307, | Jun 12 2003 | UNIVERSAL CONNECTIVITY TECHNOLOGIES INC | Method and system for encapsulation of multiple levels of communication protocol functionality within line codes |
7296211, | Jun 25 2002 | Lockheed Martin Corporation | System and method for transferring data on a data link |
7599396, | Jul 11 2005 | MOSYS, INC | Method of encoding and synchronizing a serial interface |
7760749, | Jan 11 2007 | VIA Technologies, Inc. | Apparatus and method for deskewing 1000 BASE-T Ethernet physical layer signals |
7778242, | Nov 27 2001 | Alcatel Lucent | Protecting content of a packet containing speech data using unequal error protection |
20080063375, | |||
20080101467, | |||
EP1018815, | |||
EP1303917, | |||
EP1381179, | |||
WO3069918, | |||
WO2009087546, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 03 2014 | Valens Semiconductor Ltd. | (assignment on the face of the patent) | / | |||
Feb 03 2014 | LIDA, EYRAN | VALENS SEMICONDUCTOR LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032217 | /0848 | |
Feb 03 2014 | SALAMON, AVIV | VALENS SEMICONDUCTOR LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032217 | /0848 |
Date | Maintenance Fee Events |
Mar 07 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 28 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 23 2019 | 4 years fee payment window open |
Aug 23 2019 | 6 months grace period start (w surcharge) |
Feb 23 2020 | patent expiry (for year 4) |
Feb 23 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 23 2023 | 8 years fee payment window open |
Aug 23 2023 | 6 months grace period start (w surcharge) |
Feb 23 2024 | patent expiry (for year 8) |
Feb 23 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 23 2027 | 12 years fee payment window open |
Aug 23 2027 | 6 months grace period start (w surcharge) |
Feb 23 2028 | patent expiry (for year 12) |
Feb 23 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |