The present invention relates to methods for protecting a data signal using the following techniques: applying a data reduction technique to reduce the data signal into a reduced data signal; subtracting the reduced data signal from the data signal to produce a remainder signal; embedding a first watermark into the reduced data signal to produce a watermarked, reduced data signal; and adding the watermarked, reduced data signal to the remainder signal to produce an output signal. A second watermark may be embedded into the remainder signal before the final addition step. Further, cryptographic techniques may be used to encrypt the reduced data signals and to encrypt the remainder signals before the final addition step.

Patent
   9270859
Priority
Mar 24 1999
Filed
May 06 2014
Issued
Feb 23 2016
Expiry
Mar 14 2020

TERM.DISCL.
Assg.orig
Entity
Large
7
504
EXPIRED
1. A method of digital watermarking, encrypting, or both, of an input signal containing information, comprising:
generating, using a processor, a first data reduced signal from said input signal by data reducing said input signal;
subtracting, using a processor, said first data reduced signal from said original data signal resulting in a first remainder signal;
generating, using a processor, a second data reduced signal from said first data reduced signal by data reducing said first data reduced signal;
digitally watermarking or encrypting, using a processor, said first data reduced signal or said second data reduced signal to create a third signal; and
generating an output signal using said third signal.
9. A system for digital watermarking, encrypting, or both, of an input signal containing information, comprising:
a computer system comprising at least one processor and memory;
said computer system configured to use at least one of said at least one processor for generating a first data reduced signal from said input signal by data reducing said input signal;
said computer system configured to use at least one of said at least one processor for subtracting said first data reduced signal from said original data signal resulting in a first remainder signal;
said computer system configured to use at least one of said at least one processor for generating a second data reduced signal from said first data reduced signal by data reducing said first data reduced signal;
said computer system configured to use at least one of said at least one processor for digitally watermarking or encrypting said first data reduced signal or said second data reduced signal to create a third signal; and
generating an output signal using said third signal.
2. The method of claim 1 wherein said input signal is at least one of: instructional text; executable binary computer code; images; audio; video;
multimedia; and virtual reality imaging.
3. The method of claim 1 wherein said digitally watermarking or encrypting, further comprising using a watermarking algorithm to digitally watermark said first data reduced signal.
4. The method of claim 1 wherein said digitally watermarking or encrypting, further comprising using an encryption algorithm to encrypt said first data reduced signal.
5. The method of claim 1 further comprising splitting said input signal into two physically distinct input signals, and wherein said first data reduced signal is generated from a first one of said two physically distinct input signals.
6. The method of claim 1 wherein said digitally watermarking or encrypting comprises a processor using at least one key.
7. The method of claim 1, wherein said generating an output signal comprises adding said third signal to that one of said first data reduced signal and said second data reduced signal from which the third signal was not generated.
8. The method of claim 1 further comprising a computer system receiving the output signal in said computer system, further comprising said computer system executing programming designed to detect watermarks embedded in the output signal.
10. The system of claim 9 wherein said input signal is at least one of: instructional text; executable binary computer code; images; audio; video;
multimedia; and virtual reality imaging.
11. The system of claim 9 wherein said digitally watermarking or encrypting, further comprising using a watermarking algorithm to digitally watermark said first data reduced signal.
12. The system of claim 9 wherein said digitally watermarking or encrypting, further comprising using an encryption algorithm to encrypt said first data reduced signal.
13. The system of claim 9 further comprising splitting said input signal into two physically distinct input signals, and wherein said first data reduced signal is generated from a first one of said two physically distinct input signals.
14. The system of claim 9, wherein said computer system is configured to add said third signal to that one of said first data reduced signal and said second data reduced signal from which the third signal was not generated.
15. The system of claim 9, further comprising a receiving computer system;
wherein said receiving computer system is configured to execute programming designed to detect watermarks embedded in the output signal.

This application is a continuation of U.S. patent application Ser. No. 13/802,471, filed Mar. 13, 2013, issued Jul. 15, 2014 as U.S. Pat. No. 8,781,121, which is a continuation of U.S. patent application Ser. No. 13/423,650, filed Mar. 19, 2012, issued Sep. 3, 2013 as U.S. Pat. No. 8,526,611, which is a continuation of U.S. patent application Ser. No. 12/655,036, filed Dec. 22, 2009, issued Apr. 17, 2012 as U.S. Pat. No. 8,160,249, which is a continuation of U.S. patent application Ser. No. 11/519,467, filed Sep. 12, 2006, issued Feb. 16, 2010 as U.S. Pat. No. 7,664,264, which is a divisional of U.S. patent application Ser. No. 09/594,719, filed Jun. 16, 2000, issued Oct. 17, 2006 as U.S. Pat. No. 7,123,718, which is a continuation-in-part of International Application No. PCT/US00/06522, filed Mar. 14, 2000, and International Application No. PCT/US00/06522 claims priority to U.S. Provisional Application No. 60/125,990, filed Mar. 24, 1999, entitled “UTILIZING DATA REDUCTION IN STEGANOGRAPHIC AND CRYPTOGRAPHIC SYSTEMS”. The previously identified patents and/or patent applications are hereby incorporated by reference, in their entireties. This application also is related to the following applications: U.S. patent application Ser. No. 09/046,627, issued as U.S. Pat. No. 6,598,162, filed Mar. 24, 1998, entitled “Method for Combining Transfer Function with Predetermined Key Creation”; U.S. patent application Ser. No. 09/053,628, issued as U.S. Pat. No. 6,205,249, filed Apr. 2, 1998, entitled “Multiple Transform Utilization and Application for Secure Digital Watermarking”; U.S. Provisional Patent Application No. 60/169,274, which corresponds to U.S. patent application Ser. No. 09/731,040 which issued as U.S. Pat. No. 7,159,116, filed Dec. 7, 1999, entitled “Systems, Methods and Devices for Trusted Transactions”; and U.S. Patent Application No. 60/147,134, which corresponds to U.S. patent application Ser. No. 10/049,101 which issued as U.S. Pat. No. 7,475,246, filed Aug. 4, 1999, entitled, “A Secure Personal Content Server.” All of the patent applications previously identified in this paragraph are hereby incorporated by reference, in their entireties.

This invention relates to digital signal processing, and more particularly to a method and a system for encoding at least one digital watermark into a signal as a means of conveying information relating to the signal and also protecting against unauthorized manipulation or use of the signal.

Many methods and protocols are known for transmitting data in digital form for multimedia applications (including computer applications delivered over public networks such as the interne or World Wide Web (“WWW”). These methods may include protocols for compression of data, such that it may more readily and quickly be delivered over limited bandwidth data lines. Among standard protocols for data compression of digital files may be mentioned the MPEG compression standards for audio and video digital compression, promulgated by the Moving Picture Experts Group. Numerous standard reference works and patents discuss such compression and transmission standards for digitized information.

Digital watermarks help to authenticate the content of digitized multimedia information, and can also discourage piracy. Because piracy is clearly a disincentive to the digital distribution of copyrighted content, establishment of responsibility for copies and derivative copies of such works is invaluable. In considering the various forms of multimedia content, whether “master,” stereo, NTSC video, audio tape or compact disc, tolerance of quality will vary with individuals and affect the underlying commercial and aesthetic value of the content. It is desirable to tie copyrights, ownership rights, purchaser information or some combination of these and related data into the content in such a manner that the content must undergo damage, and therefore reduction of its value, with subsequent, unauthorized distribution, commercial or otherwise. Digital watermarks address many of these concerns. A general discussion of digital watermarking as it has been applied in the art may be found in U.S. Pat. No. 5,687,236 (whose specification is incorporated in whole herein by reference).

Such prior art applications have been drawn to providing basic digital watermarking functionality. For instance, it has been known to provide an apparatus or method for encoding or decoding independent information, including a digital watermark, represented as a series of data bits into or out of a series of digitized samples, wherein the apparatus contained:

a) a sample buffer for holding, accessing, and transforming digitized samples;

b) a digital signal processor for performing sample modifications and spectral transformations;

c) a memory for storing information representing:

d) a first input for acquiring a plurality of digital samples;

e) a first output for outputting a plurality of modified digital samples;

f) a second input for inputting a plurality of values to the one or more masks, the start of message delimiter, the mask calculation buffer, the first buffer, the table and the number of samples;

g) a third output for outputting the independent information stored in the first buffer as a result of the decoding process and a value of the state of the decoding process to an attached digital circuit;

h) one or more data buses for transferring information from:

i) a clock for generating a clock signal for driving the digital signal processor and the data bus(es), and for controlling the operation of the apparatus.

Further applications of basic digital watermarking functionality have also been developed. Examples of such applications are shown in U.S. Pat. No. 5,889,868 (whose specification is incorporated in whole herein by reference). Such applications have been drawn, for instance, to implementations of digital watermarks that were deemed most suited to particular transmissions, or particular distribution and storage mediums, given the nature of digitally sampled audio, video, and other multimedia works. There have also been developed techniques for adapting watermark application parameters to the individual characteristics of a given digital sample stream. and for implementation of digital watermarks that are feature-based—i.e., a system in which watermark information is not carried in individual samples, but is carried in the relationships between multiple samples, such as in a waveform shape. For instance, natural extensions may be added to digital watermarks that may also separate frequencies (color or audio), channels in 3D while utilizing discreteness in feature-based encoding only known to those with pseudorandom keys (i.e., cryptographic keys) or possibly tools to access such information, which may one day exist on a quantum level.

A matter of general weakness in digital watermark technology relates directly to the manner of implementation of the watermark. Many approaches to digital watermarking leave detection and decode control with the implementing party of the digital watermark, not the creator of the work to be protected. This weakness removes proper economic incentives for improvement of the technology. One specific form of exploitation mostly regards efforts to obscure subsequent watermark detection. Others regard successful over encoding using the same watermarking process at a subsequent time. Yet another way to perform secure digital watermark implementation is through “key-based” approaches.

This paper draws a distinction between a “forensic watermark,” based on provably-secure methods, and a “copy control” or “universal” watermark which is intended to be low cost and easily implemented into any general computing or consumer electronic device. A watermark can be forensic if it can identify the source of the data from which a copy was made. For example, assume that digital data are stored on a disk and provided to “Company A” (the “A disk”). Company A makes an unauthorized copy and delivers the copy to “Company B” (the “B disk”). A forensic watermark, if present in the digital data stored on the “A disk,” would identify the “B disk” as having been copied from the “A disk.”

On the other hand, a copy control or universal watermark is an embedded signal which is governed by a “key” which may be changed (a “session key”) to increase security, or one that is easily accessible to devices that may offer less than strict cryptographic security. The “universal” nature of the watermark is the computationally inexpensive means for accessing or other associating the watermark with operations that can include playback, recording or manipulations of the media in which it is embedded.

A fundamental difference is that the universality of a copy control mechanism, which must be redundant enough to survive many signal manipulations to eliminate most casual piracy, is at odds with the far greater problem of establishing responsibility for a given instance of a suspected copying of a copyrighted media work. The more dedicated pirates must be dealt with by encouraging third party authentication with “forensic watermarks” or those that constitute “transactional watermarks” (which are encoded in a given copy of said content to be watermarked as per the given transaction).

The goal of a digital watermark system is to insert a given information signal or signals in such a manner as to leave little or no evidence of the presence of the information signal in the underlying content signal. A separate but equal goal is maximizing the digital watermark's encoding level and “location sensitivity” in the underlying content signal such that the watermark cannot be removed without damage to the content signal.

One means of implementing a digital watermark is to use key-based security. A predetermined or random key can be generated as a map to access the hidden information signal. A key pair may also be used. With a typical key pair, a party possesses a public and a private key. The private key is maintained in confidence by the owner of the key, while the owner's public key is disseminated to those persons in the public with whom the owner would regularly communicate. Messages being communicated, for example by the owner to another, are encrypted with the private key and can only be read by another person who possesses the corresponding public key. Similarly, a message encrypted with the person's public key can only be decrypted with the corresponding private key. Of course, the keys or key pairs may be processed in separate software or hardware devices handling the watermarked data.

Two conventional techniques for providing key-based confidentiality and/or authentication currently in use involve reciprocal and non-reciprocal encrypting. Both systems use non-secret algorithms to provide encryption and decryption, and keys that are used by the algorithm.

In reciprocal algorithm systems, such as DES, the same key and algorithm is used both to encrypt and decrypt a message. To assure confidentiality and authenticity, the key should be known only to the sending and receiving computers, and were traditionally provided to the systems by “secure” communication, such as courier.

In the prior art there have been developed systems wherein a common key may be developed by the sender and receiver using non-secure communications. In such systems, as described in U.S. Pat. Nos. 4,200,770, 5,375,169 and 5,583,939, each party to a communication generates a numerical sequence, operates on the sequence and transfers the result to the other party. By further operation using the transferred result and the locally generated sequence, each party can develop the identical encyphering key, which cannot be obtained from the transferred results alone.

As implemented for use over the interne, the most common prior art encryption systems are those denoted by the Secure Socket Layer (SSL) and IPSEC protocols.

In non-reciprocal systems, such as described in U.S. Pat. No. 4,218,582, a first party to a communication generates a numerical sequence and uses that sequence to generate non-reciprocal and different encrypting and decrypting keys. The encrypting key is then transferred to a second party in a non-secure communication. The second party uses the encrypting key (called a public key because it is no longer secure) to encrypt a message that can only be de-crypted by the decrypting key retained by the first party. The key generation algorithm is arranged such that the decrypting key cannot be derived from the public encrypting key. Similar methods are known for using non-reciprocal keys for authentication of a transmission. In this application, the non-secure “public” key is used to a message that has been encrypted using a secure “private” key known only to the originating party. In this method the receiving party has assurance that the origination of the message is the party who has supplied the “public” decrypting key. Prior art systems for key generation have often relied upon supposedly-random or quasi-random numbers generated by a fixed mathematical algorithm.

Adaptations of key systems specifically used in conjunction with digital watermarking have been developed, as disclosed in, for example, U.S. Pat. No. 5,822,432 (which is incorporated in whole herein by reference). Such adaptations have included, for instance, providing methods for the human-assisted generation and application of pseudorandom keys for the purpose of encoding and decoding digital watermarks to and from a digitized data stream. In such methods, a pseudorandom key and key application “envelope” may be generated and stored using guideline parameters input by a human engineer interacting with a graphical representation of the digitized data stream. Key “envelope” information is permanently associated with the pseudo-random binary string comprising the key. Key and “envelope” information may then be applied in a digital watermark system to the encoding and decoding of digital watermarks. Such a method can improve encoding and decoding with digital watermarks by providing: separation of the encoder from the decoder; increased information capacity (relative to spread spectrum methods); destruction or degradation of content when attempts to erase watermarks take place; detection of presence of watermarks without ability to access watermark information; multi-channel watermark capability; use of various classes of keys for watermark access control; support for alternative encoding, decoding, or other component algorithms; and/or use of a digital notary to authenticate and time stamp watermark certificates.

While, as described above, various prior art approaches do exist for implementation of digital watermarking (though not necessarily for forensic or copy control use), there are additional desirable features for digital watermarking systems that are not currently believed to be available. For instance, it would be desirable to be able to secure a data signal by using data reduction techniques to reduce the data signal into a reduced data signal; in conjunction with cryptographic techniques, so that an output signal can reliably and efficiently be securely delivered.

It would further be advantageous to user remainder signals (produced by data reduction techniques) as a vehicle for performing encryption upon and using in conjunction with encrypting/decrypting of a data signal to be secured.

It would likewise be desirable to combine data reduction techniques to reduce a data signal into a reduced data signal; produce a remainder signal from the data signal; and then embed complementary watermarks in reduced data signal and the remainder signal, for effective and secure delivery of an output signal.

It would still further be desirable to combine scrambling techniques in conjunction with data reduction techniques such that data signals can be reduced and transmitted on a secured basis.

It would likewise be desirable to provide cost-efficient and universal systems for digital watermarking, and to provide systems adaptable both to copy protection and forensic tracing of “pirated” data signals to detect and deter unauthorized copyists thereof.

It would also be desirable to provide a system of digital watermarking that is highly compatible with known and future methods for compression of data used in conjunction with electronic transmission thereof. It would further be desirable to provide digital watermarking techniques in conjunction with known and effective “key” systems for cryptography and data signal protection.

The prior art does not meet these needs.

The present invention provides a method of securing a data signal which comprises the steps of: applying a data reduction technique to reduce the data signal into a reduced data signal; embedding a first watermark into said reduced data signal to produce a watermarked, reduced data signal; and adding said watermarked, reduced data signal to said remainder signal to produce an output signal.

The present invention also provides a method of securing a data signal which comprises the steps of: applying a data reduction technique to reduce the data signal into a reduced data signal; subtracting said reduced data signal from the data signal to produce a remainder signal; embedding a first watermark into said reduced data signal to produce a watermarked, reduced data signal; embedding a second watermark into said remainder signal; to produce a watermarked remainder signal; and adding said watermarked, reduced data signal to said watermarked remainder signal to produce an output signal.

The present invention also provides a method of securing a data signal which comprises the steps of: applying a data reduction technique to reduce the data signal into a reduced data signal; subtracting said reduced data signal from the data signal to produce a remainder signal; using a first scrambling technique to scramble said reduced data signal to produce a scrambled, reduced data signal; using a second scrambling technique to scramble said remainder signal to produce a scrambled remainder signal; and adding said scrambled, reduced data signal to said scrambled remainder signal to produce an output signal.

The present invention also provides a method of securing a data signal which comprises the steps of: applying a data reduction technique to reduce the data signal into a reduced data signal; subtracting said reduced data signal from the data signal to produce a remainder signal; using a first cryptographic technique to encrypt the reduced data signal to produce an encrypted, reduced data signal; using a second cryptographic technique to encrypt the remainder signal to produce an encrypted remainder signal; and adding said encrypted, reduced data signal to said encrypted remainder signal to produce an output signal.

The present invention also supplies a system for securing a data signal which comprises: means to apply a data reduction technique to reduce the data signal into a reduced data signal; means to subtract said reduced data signal from the data signal to produce a remainder signal; means to apply a first cryptographic technique to encrypt the reduced data signal to produce an encrypted, reduced data signal; means to apply a second cryptographic technique to encrypt the remainder signal to produce an encrypted remainder signal; and means to add said encrypted, reduced data signal to said encrypted remainder signal to produce an output signal.

The present invention also supplies a system for securing a data signal which comprises: (a) a computer processor; (b) at least one computer memory; (c) a data reduction algorithm; and (d) at least one digital watermarking algorithm, wherein said computer processor is supplied with programming in conjunction with said computer memory: (I) to apply said data reduction algorithm to the data signal to yield a reduced data signal; and to subtract said reduced data signal from the data signal to produce a remainder signal; (II) to embed a first watermark into said reduced data signal by application of said at least one digital watermarking algorithm to produce a watermarked remainder signal; and (IV) to add said watermarked, reduced data signal to said watermarked remainder signal to produce an output signal.

The present invention also provides a method of securing a data signal which comprises the steps of: evaluating the data signal to determine its characteristics and reducibility; selecting at least one appropriate data reduction technique for the data signal based on the data signal's characteristics; applying said at least one appropriate data reduction technique to the data signal to produce a reduced data signal; embedding at least one digital watermark in the reduced data signal; and supplying an output signal corresponding to the data signal, said output signal comprising said watermark and said reduced data signal.

The present invention also supplies a method for the protection of a data signal, comprising the steps of: (a) defining and analyzing a plurality of data substreams within the data signal; (b) associating at least one key or key pair with data reduction digital watermarking for at least one of said data substreams; (c) employing said at least one key or key pairs for at least one step selected from the group of: (i) identifying at least one associated watermark; (ii) encoding at least one associated watermark; (iii) detecting at least one associated watermark; or (iv) decoding at least one associated watermark.

A method for protected distribution of a data file is also provided, which method comprises: (a) embedding one or more digital watermarks in the data file using data reduction techniques in creating said digital watermark; (b) and distributing the digitally watermarked file to an end user.

Also provided is a method for analyzing a data signal that has been embedded with at least one digital watermark using a data reduction technique, said method comprising: receiving the data signal; processing the data signal to detect information relative to the digital watermark; analyzing the detected information to determine if the output of the data signal is authorized; and outputting said data signal if the detected information establishes that output is authorized.

Also provided is a device for analyzing a data signal that has been embedded with at least one digital watermark using a data reduction technique, said device comprising: an interface for receiving the data signal; a detector for processing the data signal to detect information relative to the at least one digital watermark; an analyzer to analyze the detected information to determine if output of the data signal is authorized or unauthorized; and an signal generator to output data if the detected information establishes that output is authorized.

There are two design goals in an overall digital watermarking system's low cost, and universality. Ideally, a method for encoding and decoding digital watermarks in digitized media for copy control purposes should be inexpensive and universal. This is essential in preventing casual piracy. On the other hand, a more secure form of protection, such as a “forensic watermarks,” can afford to be computationally intensive to decode, but must be unaffected by repeated re-encoding of a copy control watermark. An ideal method for achieving these results would separate the signal into different areas, each of which can be accessed independently. The embedded signal or may simply be “watermark bits” or “executable binary code,” depending on the application and type of security sought. Improvements to separation have been made possible by enhancing more of the underlying design to meet a number of clearly problematic issues.

The present invention interprets the signal as a stream which may be split into separate streams of digitized samples or may undergo data reduction (including both lossy and lossless compression, such as MPEG lossy compression and Meridian's lossless compression, down sampling, common to many studio operations, or any related data reduction process). The stream of data can be digital in nature, or may also be an analog waveform (such as an image, audio, video, or multimedia content). One example of digital data is executable binary code. When applied to computer code, the present invention allows for more efficient, secure, copyright protection when handling functionality and associations with predetermined keys and key pairs in software applications or the machine readable versions of such code in microchips and hardware devices. Text may also be a candidate for authentication or higher levels of security when coupled with secure key exchange or asymmetric key generation between parties. The subsets of the data stream combine meaningful and meaningless bits of data which may be mapped or transferred depending on the application intended by the implementing party. The present invention utilizes data reduction to allow better performance in watermarking as well as cryptographic methods concerning binary executable code, its machine readable form, text and other functionality-based or communication-related applications. Some differences may simply be in the structure of the key itself, a pseudo random or random number string or one which also includes additional security with special one way functions or signatures saved to the key. The key may also be made into key pairs, as is discussed in other disclosures and patents referenced herein. The present invention contemplates watermarks as a plurality of digitized sample streams, even if the digitized streams originate from the analog waveform itself. The present invention also contemplates that the methods disclosed herein can be applied to non-digitized content. Universally, data reduction adheres to some means of “understanding” the reduction. This disclosure contemplates data reduction which may include down sampling, lossy compression, summarization or any means of data reduction as a novel means to speed up watermarking encode and decode operations. Many forms of data reduction rely upon sampling of a data signal, for instance frequency or time sampling of a digital audio or video signal. For example, a signal may be sampled on a regular basis every x fractions of a second, where x is arbitrarily chosen, such that representative data slices of the signal are obtained. Other data reduction techniques include bit depth reduction. Bit depth reduction relies on the fact that when measuring items, scales of different degrees of precision can be used. For example, one can measure things on a scale with three division marks (zero to two), or on a scale of the same magnitude with ten division marks (zero to nine). Scales with more divisions are of higher precision than scales with fewer divisions. On a computer, because of processing and storage limitations, numerical values (e.g., numerical values relating to a digitized signal) are also represented with varying degrees of precision. For example, one can use two bits (a scale of zero to three) to represent a numerical value or use five bits (a scale of zero to thirty-one) to represent the same numerical value. The number of bits used to represent a numerical value is generally referred to as the “bit depth.” Numerical data may be reduced for storage or transmission by reduction of the bit depth scale.

While any of a number of different data reduction techniques can be used in conjunction with the present invention, essentially a lossy method for data reduction yields the best results for encode and decode operations. Data reduction methods should be appropriately chosen with an eye toward the particular type of data signal being reduced. Some data signals may more readily be reduced than others. For instance, when the data reduction technique chosen is a compression technique, it will be realized that not all data signals or files are equally compressible. For example, there are limits to the degree to which aesthetic information (such as music or video signals) may be compressed without losing their aesthetic or informational value. Thus, in practicing the present invention, techniques can be applied for intelligent selection of data reduction, and differential data reduction techniques can be selected for differential substreams of an aggregate data stream. For example, a computer processor implementing the present invention for protection of a data signal stream comprising, say, both video and text portions, can be programmed to “split” the aggregate data stream into video and text signal substreams, and to apply a first data reduction algorithm most suitable for video data to the first substream, while applying a second data reduction algorithm most suitable for text data to the second substream.

It is desirable to have both copy control and forensic watermarks in the same signal to address the needs of the hardware, computer, and software industries while also providing for appropriate security to the owners of the copyrights. This will become clearer with further explanation of the sample embodiments discussed herein.

The present invention also contemplates the use of data reduction for purposes of speedier and more tiered forms of security, including combinations of these methods with transfer function functions. In many applications, transfer functions (e.g., scrambling), rather than mapping functions (e.g., watermarking), are preferable or can be used in conjunction with mapping. With “scrambling,” predetermined keys are associated with transfer functions instead of mapping functions, although those skilled in the art may recognize that a transfer function is simply a subset of mask sets encompassing mapping functions. It is possible that tiered scrambling with data reduction or combinations of tiered data reduction with watermarking and scrambling may indeed increase overall security to many applications.

The use of data reduction can improve the security of both scrambling and watermarking applications. All data reduction methods include coefficients which affect the reduction process. For example, when a digital signal with a time or space component is down sampled, the coefficient would be the ratio of the new sample rate to the original sample rate. Any coefficients that are used in the data reduction can be randomized using the key, or key pair, making the system more resistant to analysis. Association to a predetermined key or key pair and additional measure of security may include biometric devices, tamper proofing of any device utilizing the invention, or other security measures.

Tests have shown that the use of data reduction in connection with digital watermarking schemes significantly reduces the time required to decode the watermarks, permitting increases in operational efficiency.

Particular implementations of the present invention, which have yielded extremely fast and inexpensive digital watermarking systems, will now be described. These systems may be easily adapted to consumer electronic devices, general purpose computers, software and hardware. The exchange of predetermined keys or key pairs may facilitate a given level of security. Additionally, the complementary increase in security for those implementations where transfer functions are used to “scramble” data, is also disclosed.

For a more complete understanding of the invention and some advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:

FIG. 1 is a functional block diagram that shows a signal processing system that generates “n” remainder signals and “n” data reduced signals.

FIG. 2 is a functional block diagram for an embodiment of the present invention which illustrates the generation of an output signal comprised of a data-reduced, watermarked signal and a first remainder signal.

FIG. 3 is a functional block diagram for an embodiment of the present invention which illustrates the generation of an output signal comprised of a data-reduced, watermarked signal and a watermarked, first remainder signal.

FIG. 4 is a functional block diagram for decoding the output signal generated by the system illustrated in FIG. 2.

FIG. 5 is a functional block diagram for decoding the output signal generated by the system illustrated in FIG. 3.

FIG. 6 is a functional block diagram for an embodiment of the present invention which illustrates the generation of an output signal comprised of a data-reduced, scrambled signal and a first remainder signal.

FIG. 7 is a functional block diagram for an embodiment of the present invention which illustrates the generation of an output signal comprised of a data-reduced, scrambled signal and a scrambled, first remainder signal.

FIG. 8 is a functional block diagram for decoding the output signal generated by the system illustrated in FIG. 6.

FIG. 9 is a functional block diagram for decoding the output signal generated by the system illustrated in FIG. 7.

The embodiments of the present invention and its advantages are best understood by referring to the drawings, like numerals being used for like and corresponding parts of the various drawings.

An Overview

A system for achieving multiple levels of data reduction is illustrated in FIG. 1. An input signal 10 (for example, instructional text, executable binary computer code, images, audio, video, multimedia or even virtual reality imaging) is subjected to a first data reduction technique 100 to generate a first data reduced signal 20. First data reduced signal 20 is then subtracted from input signal 10 to generate a first remainder signal 30.

First data reduced signal 20 is subjected to a second data reduction technique 101 to generate a second data reduced signal 21. Second data reduced signal 21 is then subtracted from first data reduced signal 20 to generate a second remainder signal 31.

Each of the successive data reduced signals is, in turn, interactively subjected to data reduction techniques to generate a further data reduced signal, which, in turn, is subtracted from its respective parent signal to generate another remainder signal. This process is generically described as follows. An (n−1) data reduced signal 28 (i.e, a signal that has been data reduced n−1 times) is subjected to an nth data reduction technique 109 to generate an nth data reduced signal 29. The nth data reduced signal 29 is then subtracted from the (n−1) data reduced signal 28 to produce an nth remainder signal 39.

An output signal can be generated from the system illustrated in FIG. 1 in numerous ways. For example, each of the n remainder signals (which, through represented by reference numerals 30-39, are not intended to be limited to 10 signals though n must obviously be a finite number, and as a practical matter will usually be comparatively small) and the nth data signal may optionally subjected to a watermarking technique, or even optionally subjected to a encryption technique, and each of the (n+1) signals (whether watermarked or encrypted, or otherwise untouched) may then be added together to form an output signal. By way of more particular examples, each of the (n+1) signals (i.e., the n remainder signals and the nth data reduced signal) can be added together without any encryption or watermarking to form an output signal; or one or more of the (n+1) signals may be watermarked and then all (n+1) signals may be added together; or one or more of the (n+1) signals may be encrypted and then all (n+1) signals may be added together. It is anticipated that between these three extremes lie numerous hybrid combinations involving one or more encryptions and one or more watermarkings.

Each level may be used to represent a particular data density. E.g., if the reduction method is down-sampling, for a DVD audio signal the first row would represent data sampled at 96 kHz, the second at 44.1 kHz., the third at 6 kHz., etc. There is only an issue of deciding what performance or security needs are contemplated when undertaking the data reduction process and choice of which types of keys or key pairs should be associated with the signal or data to be reduced. Further security can be increased by including block ciphers, special one way functions, one time stamps or even biometric devices in the software or hardware devices that can be embodied. Passwords or biometric data are able to assist in the determination of the identity of the user or owner of the data, or some relevant identifying information.

A variety of keys may advantageously be chosen. Additionally, any key or keys employed need not remain static over time but may be changed from time to time. For instance, the key may be changed in real time, or upon detection of a “marker” signal within the data signal stream. The key can also be a ciphered key. As is known in the art, the key or keys may be generated by any of a variety of effective methods, including steganographic cipher, symmetric cryptographic cipher, and asymmetric cryptographic cipher. Keys may be derived (in whole or in part) from the signal stream itself or may be derived from sources completely external to the signal stream.

Additionally, and given that information signals may comprise a variety of forms of information (e.g., audio, still image, video, computer code, or text), it is appreciated that a single multimedia information signal stream may be divided into multiple substreams based on the various constituent information forms in the multimedia information stream. It could be advantageous, in such a substreamed context, to associate predetermined discrete, and particular, forms or instances of key or key pair to particular information substreams—for instance, a predetermined first key or key pair could be assigned for association and use with a video substream whereas a predetermined second key or key pair could be assigned for association and use with a text substream. Thus, complex watermarking of a multi-substream data signal may be flexibly accomplished. Such complexity may contribute, inter alia, to more effective watermarking and security as multiple watermarks would have to be compromised in order to compromise the entire aggregate information stream or set of substreams. Keys and key pairs are understood to be multifunctional, insofar as they are useful for both the encoding and decoding of watermarks.

An example of a real world application is helpful here. Given the predominant concern, at present, of MPEG 1 Layer 3, or MP3, a perceptual lossy compression audio data format, which has contributed to a dramatic re-evaluation of the distribution of music, a digital watermark system must be able to handle casual and more dedicated piracy in a consistent manner. The present invention contemplates compatibility with MP3, as well as any perceptual coding technique that is technically similar. One issue, is to enable a universal copy control “key” detect a watermark as quickly as possible from a huge range of perceptual quality measures. For instance, DVD 24 bit 96 kHz, encoded watermarks, should be detected in at least “real time,” even after the signal has been down sampled, to say 12 kHz of the 96 kHz originally referenced. By delineating and starting with less data, since the data-reduced signal is obviously smaller though still related perceptually to the original DVD signal, dramatic increases in the speed and survival of the universal copy control bits can be achieved. The present invention also permits the ability to separate any other bits which may be associated with other more secure predetermined keys or key pairs.

Where the data stream is executable computer code, the present invention contemplates breaking the code into objects or similar units of functionality and allowing for determination of what is functionally important. This may be more apparent to the developer or users of the software or related hardware device. Data reduction through the use of a subset of the functional objects related to the overall functionality of the software or executable code in hardware or microchips, increase the copyright protection or security sought, based on reducing the overall data to be associated with predetermined keys or key pairs. Similarly, instead of mapping functions, transfer functions, so-called “scrambling,” appear better candidates for this type of security although both mapping and transferring may be used in the same system. By layering the security, the associated keys and key pairs can be used to substantially improve the security and to offer easier methods for changing which functional “pieces” of executable computer code are associated with which predetermined keys. These keys may take the form of time-sensitive session keys, as with transactions or identification cards, or more sophisticated asymmetric public key pairs which may be changed periodically to ensure the security of the parties' private keys. These keys may also be associated with passwords or biometric applications to further increase the overall security of any potential implementation.

An example for text message exchange is less sophisticated but, if it is a time sensitive event, e.g., a secure communication between two persons, benefits may also be encountered here. Security may also be sought in military communications. The ability to associate the securely exchanged keys or key pairs while performing data reduction to enhance the detection or decoding performance, while not compromising the level of security, is important. Though a steganographic approach to security, the present invention more particularly addresses the ability to have data reduction to increase speed, security, and performance of a given steganographic system. Additionally, data reduction affords a more layered approach when associating individual keys or key pairs with individual watermark bits, or digital signature bits, which may not be possible without reduction because of considerations of time or the payload of what can be carried by the overall data “covertext” being transmitted.

Layering through data reduction offers many advantages to those who seek privacy and copyright protection. Serialization of the detection chips or software would allow for more secure and less “universal” keys, but the interests of the copyright owners are not always aligned with those of hardware or software providers. Similarly, privacy concerns limit the amount of watermarking that can be achieved for any given application. The addition of a pre-determined and cryptographic key-based “forensic” watermark, in software or hardware, allows for 3rd party authentication and provides protection against more sophisticated attacks on the copy control bits. Creating a “key pair” from the “predetermined” key is also possible.

Separation of the watermarks also relates to separate design goals. A copy control mechanism should ideally be inexpensive and easily implemented, for example, a form of “streamed watermark detection.” Separating the watermark also may assist more consistent application in broadcast monitoring efforts which are time-sensitive and ideally optimized for quick detection of watermarks. In some methods, the structure of the key itself, in addition to the design of the “copy control” watermark, will allow for few false positive results when seeking to monitor radio, television, or other streamed broadcasts (including, for example, Internet) of copyrighted material. As well, inadvertent tampering with the embedded signal proposed by others in the field can be avoided more satisfactorily. Simply, a universal copy control watermark may be universal in consumer electronic and general computing software and hardware implementations, but less universal when the key structure is changed to assist in being able to log streaming, performance, or downloads, of copyrighted content. The embedded bits may actually be paired with keys in a decode device to assure accurate broadcast monitoring and tamper proofing, while not requiring a watermark to exceed the payload available in an inaudible embedding process. E.g., A full identification of the song, versus time-based digital signature bits, embedded into a broadcast signal, may not be recovered or may be easily over encoded without the use of block ciphers, special one way functions or one time pads, during the encoding process, prior to broadcast. Data reduction as herein disclosed makes this operation more efficient at higher speeds.

A forensic watermark is not time sensitive, is file-based, and does not require the same speed demands as a streamed or broadcast-based detection mechanism for copy control use. Indeed, a forensic watermark detection process may require additional tools to aid in ensuring that the signal to be analyzed is in appropriate scale or size, ensuring signal characteristics and heuristic methods help in appropriate recovery of the digital watermark. Simply, all aspects of the underlying content signal should be considered in the embedding process because the watermarking process must take into account all such aspects, including for example, any dimensional or size of the underlying content signal. The dimensions of the content signal may be saved with the key or key pair, without enabling reproduction of the unwatermarked signal. Heuristic methods may be used to ensure the signal is in proper dimensions for a thorough and accurate detection authentication and retrieval of the embedded watermark bits. Data reduction can assist in increasing operations of this nature as well, since the data reduction process may include information about the original signal, for example, signal characteristics, signal abstracts, differences between samples, signal patterns, and related work in restoring any given analog waveform.

The present invention provides benefits, not only because of the key-based approach to the watermarking, but the vast increase in performance and security afforded the implementations of the present invention over the performance of other systems.

The architecture of key and key-pair based watermarking is superior to statistical approaches for watermark detection because the first method meets an evidentiary level of quality and are mathematically provable. By incorporating a level of data reduction, key and key paired based watermarking is further improved. Such levels of security are plainly necessary if digital watermarks are expected to establish responsibility for copies of copyrighted works in evidentiary proceedings. More sophisticated measures of trust are necessary for use in areas which exceed the scope of copyright but are more factually based in legal proceedings. These areas may include text authentication or software protection (extending into the realm of securing microchip designs and compiled hardware as well) in the examples provided above and are not contemplated by any disclosure or work in the art.

The present invention may be implemented with a variety of cryptographic protocols to increase both confidence and security in the underlying system. A predetermined key is described as a set of masks: a plurality of mask sets. These masks may include primary, convolution and message delimiters but may extend into additional domains. In previous disclosures, the functionality of these masks is defined solely for mapping. Public and private keys may be used as key pairs to further increase the unlikeliness that a key may be compromised. Examples of public key cryptosystems may be found in the following U.S. Pat. Nos. 4,200,770; 4,218,582; 4,405,829; and 4,424,414, which examples are incorporated herein by reference. Prior to encoding, the masks described above are generated by a cryptographically secure random generation process. Mask sets may be limited only by the number of dimensions and amount of error correction or concealment sought, as has been previously disclosed.

A block cipher, such as DES, in combination with a sufficiently random seed value emulates a cryptographically secure random bit generator. These keys, or key pairs, will be saved along with information matching them to the sample stream in question in a database for use in subsequent detection or decode operation. These same cryptographic protocols may be combined with the embodiments of the present invention in administering streamed content that requires authorized keys to correctly display or play said streamed content in an unscrambled manner. As with digital watermarking, symmetric or asymmetric public key pairs may be used in a variety of implementations. Additionally, the need for certification authorities to maintain authentic key-pairs becomes a consideration for greater security beyond symmetric key implementations, where transmission security is a concern.

Signal Processing in a Multi-Watermark System (a Plurality of Streams May be Watermarked)

FIG. 2 illustrates a system and method of implementing a multiple-watermark system. An input signal 11 (e.g., binary executable code, instruction text. or other data), is first processed by a lossy data-reduction scheme 200 (e.g., down-sampling, bit-rate reduction, or compression method) to produced a data-reduced signal 40. Data-reduced signal 40 is then embedded with a watermark (process step 300) to generate a watermarked, data-reduced signal 50, while a copy of the unmarked, data-reduced signal 40 is saved.

Watermarking process step 300 may be chosen from among various watermarking processes known in the art. As an example, a digital audio data signal may be represented, for purpose of watermarking, by a series of samples in 1 dimension. {S1, S2, S3 . . . Sn}. This series is also referred to as a sample stream. The sample stream approximates an analog waveform of sound amplitude over time. Each sample represents an estimate of the wave amplitude at the instant of time the sample is recorded. For monaural audio, there is one such sample stream. Stereo audio is comprised of two sample streams, one representing the right channel, and the other representing the left. Each stream is used to drive a corresponding speaker to reproduce the stereo sound. What is referred to as CD quality audio is characterized by 16 bit (2 byte) stereo samples, recorded at 44.1 Khz, or 44,100 samples per second in each channel. The dynamic range of sound reproduction is directly proportional to the number of bits per sample. Some lower quality recordings are done at 8 bits. A CD audio recording can be stored using any scheme for containing the 2 sample streams in their entirety. When these streams are played back at the same frequency they were recorded at, the sound recorded is reproduced to a high degree of accuracy. The sample stream is processed in order from first sample to last. For the purpose of the invention disclosed, the stream is separated into sample windows, each of which has a fixed number of consecutive samples from the stream, and where windows do not overlap in the sample stream. Windows may be contiguous in the sample stream. For illustration, assume each window contains 128 samples, and that windows are contiguous. Thus, the windows within the stream look like

{>S1, S2, S3 . . . S128 !, >S129, S130, S131 . . . S256! . . . >Sn-128 . . . Sn!}

wherein the bracketed set > . . . ! denotes each window and any odd samples at the end of the stream which do not completely fill a window can be ignored, and simply passed through the system unmodified.

These windows will be used as input for the discrete Fast Fourier Transform (and its inverse) operation. Briefly, Fourier Transform methods are based on the principle that a complex waveform, expressed as amplitude over time and represented by a sample stream, is really the sum of a number of simple waveforms, each of which oscillates at different frequencies. By complex, it is meant that the value of the next sample is not easily predicted from the values of the last N samples or the time of the sample. By simple it is meant that the value of the sample is easily predictable from the values of the last N samples and/or the time of the sample.

The sum of multiple simple waves is equivalent to the complex wave. The discrete FFT and its inverse simply translate a limited amount of data from one side of this equivalence to the other, between the complex waveform and the sum of simple waves. The discrete FFT can be used to translate a series of samples representing amplitude over time (the complex wave, representing a digital audio recording) into the same number of samples representing total spectral energy in a given range of frequencies (the simple wave components) at a particular instant of time. This instant is the time in the middle of the original amplitude/time samples. The inverse discrete FFT translates the data in the other direction, producing the complex waveform, from its simpler parts.

Each 128 sample window will be used as an input to the discrete FFT, resulting in 128 bins representing each of 128 frequency bands, ranging from 0 Hz to 22 Khz (the Nyquist frequency, or ½ the sampling rate).

Information can be encoded into the audio signal in the frequency domain or in the time domain. In the latter case, no FFT or inverse FFT is necessary. However, encoding in the frequency domain is recommended, since its effects are scattered over the resultant time domain samples, and not easily predicted. In addition, frequency domain encoding makes it more likely that randomization will result in noticeable artifacts in the resultant signal, and therefore makes the stega-cipher more defensible against such attacks. It is in the frequency domain that additional information will be encoded into the audio signal for the purpose of this discussion. Each frequency band in a given time slice can potentially be used to store a small portion of some additional information to be added to the signal. Since these are discrete estimates, there is some room for error which will not significantly effect the perceived quality of the signal, reproduced after modification, by the inverse FFT operation. In effect, intentional changes, which cannot be distinguished from random variations, are introduced in the frequency domain, for the purpose of storing additional information in the sample stream. These changes are minimized so as not to adversely affect the perceived quality of the reproduced audio signal, after it has been encoded with additional information in the manner described below. In addition, the location of each of these changes is made virtually impossible to predict, an innovation which distinguishes this scheme from simple steganographic techniques.

The saved, unwatermarked data-reduced signal (signal 40) is subtracted from the original input signal 11, yielding a remainder signal 60 composed only of the data that was lost during the data-reduction. A second watermark is then applied using a desired watermarking protocol (process step 301) to remainder signal 60 to generate a watermarked remainder signal 70. Finally, the watermarked remainder 70 and the watermarked, data-reduced signal 50 are added to form an output signal 80, which is the final, full-bandwidth, output signal.

The two watermarking techniques (process steps 300 and 301) may be identical (i.e., be functionally the same), or they may be different.

To decode the signal, a specific watermark is targeted. Duplicating the data-reduction processes that created the watermark in some cases can be used to recover the signal that was watermarked. Depending upon the data-reduction method, it may or may not be necessary to duplicate the data-reduction process in order to read a watermark embedded in a remainder signal. Because of the data-reduction, the decoding search can occur much faster than it would in a full-bandwidth signal. Detection speed of the remainder watermark remains the same as if there were no other watermark present.

FIG. 4 illustrates a functional block diagram for one means of decoding the output signal generated by the system illustrated in FIG. 2. A signal to be analyzed 80 (e.g., the same output from FIG. 2) is processed by a data-reduction scheme 200. Data reduced signal 41 can then be decoded to remove the message that was watermarked in the original data reduced signal. Further, data reduced signal 41 can be subtracted from signal to be analyzed 80 to form a differential signal 61 which can then be decoded to remove the message that was watermarked in the original remainder signal. A decoder may only be able to perform one of the two decodings. Differential access and/or different keys may be necessary for each decoding.

Additionally, the watermarking described in connection with this embodiment above may be done with a plurality of predetermined keys or key pairs associated with a single watermark “message bit,” code object, or text. Keys or key pairs may also be stored or archived in a central certification authority, such that there will be a verified and official version of a particular key or key pair whenever access to such key or key pair, or verification or identification of the legitimacy and authorization of the use of a particular data signal or file associated with that key, is required. The central certification authority could be, for instance, a secure computer server archive maintained by a copyright holder to store keys relating to copyrighted files watermarked using such keys.

Signal Processing in a Single Watermark System

FIG. 3 illustrates a system and method of implementing a single watermark system. The process and system contemplated here is identical to process described in connection to FIG. 2, above, except that no watermark is embedded in the remainder signal. Hence, the watermarked, data-reduced signal 50 is added directly to the remainder signal 60 to generate an output signal 90.

Additionally, the watermarking described in connection with this embodiment above may be done with a plurality of predetermined keys or key pairs associated with a single watermark “message bit,” code object, or text.

In either process, an external key can be used to control the insertion location of either watermark. In a copy-control system, a key is not generally used, whereas in a forensic system, a key must be used. The key can also control the parameters of the data-reduction scheme. The dual scheme can allow a combination of copy-control and forensic watermarks in the same signal. A significant feature is that the copy-control watermark can be read and rewritten without affecting the forensic mark or compromising its security.

FIG. 5 illustrates a functional block diagram for one means of decoding the output signal generated by the system illustrated in FIG. 3. A signal to be analyzed 90 (e.g., the same output from FIG. 3) is processed by a data-reduction scheme 200. Data reduced signal 41 can then be decoded to remove the message that was watermarked in the original data reduced signal.

Signal Processing in a Multi-Scrambler System (a Plurality of Streams May be Scrambled)

FIG. 6 illustrates a system and method of implementing a multi-scrambler system. An input signal 12 (e.g., binary executable code, instruction text. or other data), is first processed by a lossy data-reduction scheme 400 (e.g., down-sampling, bit-rate reduction, or compression method) to produced a data-reduced signal 45. Data-reduced signal 45 is then scrambled using a first scrambling technique (process step 500) to generate a scrambled, data-reduced signal 55, while a copy of the unscrambled, data-reduced signal 45 is saved.

The saved, unscrambled data-reduced signal (signal 45) is subtracted from the original input signal 12, yielding a remainder signal 65 composed only of the data that was lost during the data-reduction. A second scrambling technique is then applied (process step 501) to remainder signal 65 to generate a scrambled remainder signal 75. Finally, the scrambled remainder signal 75 and the scrambled data-reduced signal 55 are added to form an output signal 85, which is the final, full-bandwidth, output signal.

The two scrambling techniques (process steps 500 and 501) may be identical (i.e., be functionally the same), or they may be different.

Additionally the scrambling described in connection with this embodiment may be done with a plurality of predetermined keys or key pairs associated with a single scrambling operation containing only a “message bit,” code object, or text.

To decode the signal, unscrambling follows the exact pattern of the scrambling process except that the inverse of the scrambling transfer function is applied to each portion of the data, thus returning it to its pre-scrambled state.

FIG. 8 illustrates a functional block diagram for one means of decoding the output signal generated by the system illustrated in FIG. 6. A signal to be analyzed 85 (e.g., the same output from FIG. 6) is processed by a data-reduction scheme 200. Data reduced signal 46 can be subtracted from signal to be analyzed 85 to form a differential signal 66, which signal can then be descrambled in process 551 using the inverse transfer function of the process that scrambled the original remainder signal (e.g., the inverse of scrambling process 501). Descrambling process 551 generates an descrambled signal 76. Data reduced signal 46 may further be descrambled in process 550 using the inverse transfer function of the process that scrambled the original data reduced signal (e.g., the inverse of scrambling process 500). Descrambling process 550 generates an descrambled signal 56, which may then be added to descrambled signal 76 to form an output signal 98.

Signal Processing in a Single Scrambling Operation

FIG. 7 illustrates a system and method of implementing a single scrambling system. The process and system contemplated here is identical to process described in connection to FIG. 6, above, except that no scrambling is applied to the remainder signal. Hence, the scrambled data-reduced signal 55 is added directly to the remainder signal 65 to generate an output signal 95.

Additionally the scrambling described in connection with this embodiment may be done with a plurality of predetermined keys or key pairs associated with a single scrambling operation containing only a “message bit,” code object, or text.

FIG. 9 illustrates a functional block diagram for one means of decoding the output signal generated by the system illustrated in FIG. 7. A signal to be analyzed 95 (e.g., the same output from FIG. 7) is processed by a data-reduction scheme 200. Data reduced signal 46 can be subtracted from signal to be analyzed 95 to form a differential signal 66. Data reduced signal 46 may further be descrambled in process 550 using the inverse transfer function of the process that scrambled the original data reduced signal (e.g., the inverse of scrambling process 500). Descrambling process 550 generates an descrambled signal 56, which may then be added to differential signal 66 to form an output signal 99.

Another embodiment may combine both watermarking and scrambling with data reduction. Speed, performance and computing power may influence the selection of which techniques are to be used. Decisions between data reduction schemes ultimately must be measured against the types of keys or key pairs to use, the way any pseudo random or random number generation is done (chaotic, quantum or other means), and the amount of scrambling or watermarking that is necessary given the needs of the system. It is quite possible that some derived systems would yield a fairly large decision tree, but the present invention offers many benefits to applications in security that are not disclosed in the art.

As a further illustrative example of an advantageous embodiment, the following briefly describes an implementation of the present invention using sample rate reduction as the chosen data reduction method for watermarking in connection with an audio data signal.

I. Encoding:

II(A). Decoding Both Watermarks, or Just the Secure Watermark:

IIB. Decoding Just the Open Watermark:

In connection with the above-described embodiment, alternative step IIB is illustrated because decoding the open watermark may have to occur on consumer electronic devices, and therefore, generally, fewer processing steps may be desirable in consumer electronic devices. The secure watermark is not as time-critical during the decode process, and can therefore be afforded more processing time. Note further that the original sample rate during the encode does not have to be the same as the original sample rate for decode. Any intervening sample rate conversion will be ignored, as long as it never drops below the same rate of the signal to which the watermark is applied (for example, 10 kHz for the secured watermark of the prior example, or 5 kHz for the open watermark of the prior example).

The embodiments described herein may advantageously be implemented in connection with a data signal recipient's personal computer system or workstation (comprising a computer processor such as an Intel Pentium processor, spreadsheet software such as Microsoft Excel, and implementing a communications module such as a common web browser such as Internet Explorer or Netscape), linked by a World Wide Web connection to a data signal or file provider utilizing similar standard computer hardware and software, but may also be implemented in connection with any output device having appropriate electronic memory and/or processing capacity to implement the techniques set forth herein (which could include, for instance, consumer electronics output devices other than microcomputers). Because the digital watermarking techniques and systems disclosed herein are substantially universal, however, they may be applied across a variety of computer hardware and software configurations, for use with a variety of transmitted data signals or files, over a variety of public or private networks (although the utility of the present invention for digital watermarking of audio or video files transmitted over public networks such as the interne is obvious). The network communication link between the data signal/file recipient and the signal/file provider may further be provided with some network-default level of encryption (perhaps a relatively weak level such as 56 bit encryption). Similarly, known computer programming techniques and languages (for instance, Visual Basic, JAVA, C++) may be adapted in a variety of fashions for use in either the data reduction steps discussed herein, the cryptographic/scrambling processes disclosed, the specific watermarking techniques applied, or any combination of the above, for customized data reduction and digital watermarking, and output of an output signal, in the fashion most amenable to a particular user's needs. The ability to adapt a wide range of data processing algorithms (including but not limited to algorithms for data reduction, encryption/decryption, and compression) to yield various desired data signal outputs, to apply customizable digital watermarking procedures, and to allow customizable and maximally-efficient forensic or copy control watermarks to popular and useful data transmission protocols, all across a broad range of computer system platforms (i.e., various hardware, software, computer language, and operating system combinations) provides the present invention with considerable versatility.

The present invention as implemented with such computer systems permits secured delivery of valuable data streams over a variety of networks. Specifically, the present invention provides great utility for the delivery (commercial or otherwise) of video, audio, or other such files on media or over a public network such as the internet in a fashion that impedes theft or unauthorized use or resale of such files. For instance, the methods of the present invention could be applied to all the digitized commercial music files of a music vendor (to impose, for instance, a copy control watermark thereupon). Subsequently, those watermarked music files may be delivered to end users. End user attempts to make unauthorized copies can thus be controlled. Alternatively, output devices may be programmed to detect watermarks embedded in files by use of the present invention, such that if the file does not contain an appropriate watermark, the output device will not execute or “play” the file.

It is important to note that the watermarks embedded using the present invention may be embedded at a wide variety of points along the distribution chain for the data signals. For instance, in an embodiment in which the present invention is used to watermark commercial music or video files downloaded by an individual end user from a central server over an internet connection through an internet service provider, the present invention could be used to impose a forensic watermark (uniquely identifying the customer and download transaction) at the central server (or at the server of the internet service provider). When a suspected unauthorized copy of the file in question was detected, the watermark therein could be sensed/decoded in order to identify the source of the unauthorized copy. As has been emphasized, the techniques of the present invention may be applied to a wide variety of data signals, whether stored multimedia or computer code files, streamed files transmitted in real time, or other files or data signals, and may be applied in context-sensitive fashion to maximize protection (and effective signal transmission and output) for a particular data stream. It is also an aspect of this invention that the novel techniques for watermarking using data reduction herein can be exploited at the end user point of the distribution chain for data signals; that is, using the unique watermark/key information associated with a file watermarked using the techniques described hereinabove, a file may be analyzed (whether by representatives of a file copyright owner, for instance, or by hardware, software, or other appropriate analyzer, such as an embedded firmware chip, etc. contained in or supplied to an end user output device). Once the data signal is analyzed at the end user point, information relative to the any watermark or key actually contained on the file at that point may be derived and analyzed to determine if the file has been properly distributed to the end user. If it has not, the output device may be programmed to deny output or to manipulate the data signal in a destructive way (or to take other appropriate legal or copyright control action as may be desired by the file owner). The present invention includes such uses of (and devices for) data reduction-derived watermark detection and output control.

Those of ordinary skill in the art will appreciate that the foregoing discussion of certain preferred embodiments is illustrative only, and does not limit the spirit and scope of the present invention, which are limited only by the claims set forth below.

Moskowitz, Scott A., Berry, Mike W.

Patent Priority Assignee Title
10347262, Oct 18 2017 CITIBANK, N A Systems and methods to improve timestamp transition resolution
10567975, Oct 04 2005 HOFFBERG FAMILY TRUST 2 Multifactorial optimization system and method
10734004, Oct 18 2017 CITIBANK, N A Systems and methods to improve timestamp transition resolution
11056123, Oct 18 2017 The Nielsen Company (US), LLC Systems and methods to improve timestamp transition resolution
11087772, Oct 18 2017 The Nielsen Company (US), LLC Systems and methods to improve timestamp transition resolution
11106765, Nov 30 2012 CITIBANK, N A Methods, apparatus, and articles of manufacture to encode auxiliary data into relational database keys and methods, apparatus, and articles of manufacture to obtain encoded data from relational database keys
11562753, Oct 18 2017 The Nielsen Company (US), LLC Systems and methods to improve timestamp transition resolution
Patent Priority Assignee Title
3947825, Jun 28 1971 International Business Machines Corporation Abstracting system for index search machine
3984624, Jul 25 1974 Weston Instruments, Inc. Video system for conveying digital and analog information
3986624, Feb 12 1971 International Incinerators, Inc. Disposal feeding system including selective container control
4038596, Jul 04 1974 Thorn EMI Patents Limited Method and apparatus for authenticating a record medium consisting of applying two different strength magnetizing fields and monitoring the remanent fields
4200770, Sep 06 1977 Stanford University Cryptographic apparatus and method
4218582, Oct 06 1977 The Board of Trustees of the Leland Stanford Junior University Public key cryptographic apparatus and method
4339134, Jul 05 1977 Boeing Company, the Electronic card game
4390898, Mar 23 1981 Nortel Networks Limited Scrambling and unscrambling video signals in a pay TV system
4405829, Dec 14 1977 Massachusetts Institute of Technology Cryptographic communications system and method
4424414, May 01 1978 Board of Trustees of the Leland Stanford Junior University Exponentiation cryptographic apparatus and method
4528588, Sep 26 1980 Method and apparatus for marking the information content of an information carrying signal
4633462, Jul 18 1983 Board of Trustees of the University of Illinois, The Multiple access communication on a CATV reverse channel
4672605, Mar 20 1984 APPLIED SPECTRUM TECHNOLOGIES, INC Data and voice communications system
4748668, Jul 09 1986 Yeda Research and Development Company Limited Method, apparatus and article for identification and signature
4789928, Feb 17 1986 AUCNET INC Auction information transmission processing
4827508, Oct 14 1985 ELECTRONIC PUBLISHING RESOURCES, INC Database usage metering and protection system and method
4876617, May 06 1986 MEDIAGUIDE HOLDINGS, LLC Signal identification
4896275, Jul 10 1987 Bull HN Information Systems Inc.; HONEYWELL BULL INC Full page graphics image display data reduction
4908873, May 13 1983 TOLTEK ELECTRONICS CORPORATION Document reproduction security system
4939515, Sep 30 1988 GENERAL ELECTRIC COMPANY, A CORP OF NEW YORK Digital signal encoding and decoding apparatus
4969204, Nov 29 1989 Eastman Kodak Company Hybrid residual-based hierarchical storage and display method for high resolution digital images in a multiuse environment
4972471, May 15 1989 Encoding system
4977594, Oct 14 1986 ELECTRONIC PUBLISHING RESOURCES, INC Database usage metering and protection system and method
4979210, Jul 08 1987 Matsushita Electric Industrial Co., Ltd. Method and apparatus for protection of signal copy
4980782, Jun 14 1982 Software protection and identification system
5050213, Oct 14 1986 Electronic Publishing Resources, Inc. Database usage metering and protection system and method
5073925, Jul 08 1987 Matsushita Electric Industrial Co., Ltd. Method and apparatus for the protection of signal copy
5077665, May 25 1989 REUTERS TRANSACTIONS SERVICES LIMITED Distributed matching system
5103461, Jun 29 1989 Symbol Technologies, Inc. Signal quality measure in packet data communication
5111530, Nov 04 1988 Sony Computer Entertainment Inc Digital audio signal generating apparatus
5113437, Oct 25 1988 MEDIAGUIDE HOLDINGS, LLC Signal identification system
5123045, Aug 18 1989 Massachusetts Institute of Technology Comprehensive software protection system
5136581, Jul 02 1990 AT&T Bell Laboratories Arrangement for reserving and allocating a plurality of competing demands for an ordered bus communication network
5136646, Mar 08 1991 Telcordia Technologies, Inc Digital document time-stamping with catenate certificate
5136647, Aug 02 1990 Telcordia Technologies, Inc Method for secure time-stamping of digital documents
5142576, Feb 07 1989 Market Data Corporation System for securely providing restricted video information
5161210, Nov 10 1988 U S PHILIPS CORPORATION Coder for incorporating an auxiliary information signal in a digital audio signal, decoder for recovering such signals from the combined signal, and record carrier having such combined signal recorded thereon
5189411, Nov 27 1985 Seiko Instruments Inc Radio signal data transmission synchronization
5210820, May 02 1990 NIELSEN ENTERTAINMENT, LLC, A DELAWARE LIMITED LIABILITY COMPANY; THE NIELSEN COMPANY US , LLC, A DELAWARE LIMITED LIABILITY COMPANY Signal recognition system and method
5243423, Dec 20 1991 NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP Spread spectrum digital data transmission over TV video
5243515, Oct 30 1990 Secure teleprocessing bidding system
5287407, May 31 1990 International Business Machines Corporation Computer software protection
5293633, Dec 06 1988 GENERAL INSTRUMENT CORPORATION GIC-4 Apparatus and method for providing digital audio in the cable television band
5297032, Feb 01 1991 Bank of America Corporation Securities trading workstation
5319735, Dec 17 1991 Raytheon BBN Technologies Corp Embedded signalling
5327520, Jun 04 1992 AT&T Bell Laboratories; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A NEW YORK CORPORATION Method of use of voice message coder/decoder
5341429, Dec 04 1992 BUYLINE, INC Transformation of ephemeral material
5341477, Feb 24 1989 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Broker for computer network server selection
5363448, Jun 30 1993 LEAR CORPORATION EEDS AND INTERIORS Pseudorandom number generation and cryptographic authentication
5365586, Apr 09 1993 Washington University Method and apparatus for fingerprinting magnetic media
5369707, Jan 27 1993 TecSec Incorporated Secure network method and apparatus
5375055, Feb 03 1992 EBS DEALING RESOURCES, INC Credit management for electronic brokerage system
5379345, Jan 29 1993 NIELSEN COMPANY US , LLC, THE Method and apparatus for the processing of encoded data in conjunction with an audio broadcast
5394324, Dec 08 1993 Xerox Corporation Auction-based control system for energy resource management in a building
5398285, Dec 30 1993 Motorola Mobility LLC Method for generating a password using public key cryptography
5406627, Aug 06 1990 NEC Corporation Of America Digital data cryptographic system
5408505, Apr 09 1993 Washington University Method and apparatus for process control, tension control, and testing of magnetic media
5410598, Oct 14 1986 Electronic Publishing Resources, Inc. Database usage metering and protection system and method
5412718, Sep 13 1993 Kent Ridge Digital Labs Method for utilizing medium nonuniformities to minimize unauthorized duplication of digital information
5418713, Aug 05 1993 DIGITAL ON-DEMAND, INC Apparatus and method for an on demand data delivery system for the preview, selection, retrieval and reproduction at a remote location of previously recorded or programmed materials
5428606, Jun 30 1993 Wistaria Trading Ltd Digital information commodities exchange
5437050, Nov 09 1992 IHEARTMEDIA MANAGEMENT SERVICES, INC Method and apparatus for recognizing broadcast information using multi-frequency magnitude detection
5450490, Mar 31 1994 THE NIELSEN COMPANY US , LLC Apparatus and methods for including codes in audio signals and decoding
5469536, Feb 25 1992 BET FUNDING LLC Image editing system including masking capability
5471533, Jan 05 1990 Symbol Technologies, Inc. Record with encoded data
5478990, Oct 14 1993 COOPERATIEVE CENTRALE RAIFFEISEN-BOERENLEENBANK B A , RABOBANK NEDERLAND , NEW YORK BRANCH, AS COLLATERAL AGENT Method for tracking the production history of food products
5479210, Jun 11 1993 QUANTEL, LTD Video image processing system having variable data compression
5487168, Jun 15 1992 International Business Machines Corporation Method and system for global optimization of device allocation
5493677, Jun 08 1994 Apple Inc Generation, archiving, and retrieval of digital images with evoked suggestion-set captions and natural language interface
5497419, Apr 19 1994 SAFETY VISION LIMITED LIABILITY COMPANY Method and apparatus for recording sensor data
5506795, Feb 21 1992 Apparatus and method for generating chaotic signals and chaos device
5513126, Oct 04 1993 LORAMAX LLC Network having selectively accessible recipient prioritized communication channel profiles
5513261, Dec 29 1993 American Telephone and Telegraph Company Key management scheme for use with electronic cards
5530739, Mar 20 1991 Fujitsu Limited Mail center management system
5530751, Jun 30 1994 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Embedded hidden identification codes in digital objects
5530759, Feb 01 1995 International Business Machines Corporation Color correct digital watermarking of images
5539735, Jun 30 1993 Wistaria Trading Ltd Digital information commodities exchange
5548579, Jun 23 1994 CISCO TECHNOLOGY, INC , A CORPORATION OF CALIFORNIA System for effective allocation of network-wide bandwidth
5568570, Sep 30 1994 Intellectual Ventures Fund 83 LLC Method and apparatus for reducing quantization artifacts in a hierarchical image storage and retrieval system
5579124, Nov 16 1992 THE NIELSEN COMPANY US , LLC Method and apparatus for encoding/decoding broadcast or recorded segments and monitoring audience exposure thereto
5581703, Jun 29 1993 GOOGLE LLC Method and apparatus for reserving system resources to assure quality of service
5583488, Apr 28 1995 Proximity alarm system
5598470, Apr 25 1994 International Business Machines Corporation Method and apparatus for enabling trial period use of software products: Method and apparatus for utilizing a decryption block
5606609, Sep 19 1994 SILANIS TECHNOLOGY INC Electronic document verification system and method
5613004, Jun 07 1995 Wistaria Trading Ltd Steganographic method and device
5617119, Jun 08 1994 Apple Inc Protection of an electronically stored image in a first color space by the alteration of a digital component in a second color space
5617506, Jun 29 1994 SAMSUNG ELECTRONICS CO , LTD Method for communicating a value over a transmission medium and for decoding same
5625690, Nov 15 1993 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Software pay per use system
5629980, Nov 23 1994 CONTENTGUARD HOLDINGS, INC System for controlling the distribution and use of digital works
5633932, Dec 19 1995 Intel Corporation Apparatus and method for preventing disclosure through user-authentication at a printing node
5634040, Dec 19 1994 Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD , A CORP OF KOREA Data communication apparatus and method having concurrent image overlay function
5636276, Apr 18 1994 III Holdings 2, LLC Device for the distribution of music information in digital form
5636292, May 08 1995 DIGIMARC CORPORATION AN OREGON CORPORATION Steganography methods employing embedded calibration data
5640569, Apr 28 1995 HE HOLDINGS, INC , A DELAWARE CORP Diverse goods arbitration system and method for allocating resources in a distributed computer system
5644727, Apr 15 1987 HOME ACCOUNT NETWORK, INC System for the operation and management of one or more financial accounts through the use of a digital communication and computation system for exchange, investment and borrowing
5646997, Dec 14 1994 Sony Corporation Method and apparatus for embedding authentication information within digital data
5649284, Dec 17 1993 Sony Corporation Multiplex broadcasting system
5657461, Oct 04 1993 TURN IP LLC User interface for defining and automatically transmitting data according to preferred communication channels
5659726, Feb 23 1995 Regents of the University of California, The Data embedding
5664018, Mar 12 1996 Watermarking process resilient to collusion attacks
5673316, Mar 29 1996 International Business Machines Corporation Creation and distribution of cryptographic envelope
5675653, Nov 06 1995 Method and apparatus for digital encryption
5677952, Dec 06 1993 International Business Machines Corporation Method to protect information on a computer storage device
5680462, Aug 07 1995 Sandia Corporation Information encoder/decoder using chaotic systems
5687236, Jun 07 1995 Wistaria Trading Ltd Steganographic method and device
5689587, Feb 09 1996 Massachusetts Institute of Technology Method and apparatus for data hiding in images
5696828, Sep 22 1995 UT Automotive Dearborn, INC Random number generating system and process based on chaos
5719937, Sep 12 1996 Verance Corporation Multi-media copy management system
5721781, Sep 13 1995 Microsoft Technology Licensing, LLC Authentication system and method for smart card transactions
5721788, Jul 31 1992 DIGIMARC CORPORATION AN OREGON CORPORATION Method and system for digital image signatures
5734752, Sep 24 1996 Xerox Corporation Digital watermarking using stochastic screen patterns
5737416, Apr 25 1994 ACTIVISION PUBLISHING, INC Method and apparatus for enabling trial period use of software products: method and apparatus for utilizing a decryption stub
5737733, Jun 30 1993 Microsoft Technology Licensing, LLC Method and system for searching compressed data
5740244, Apr 09 1993 Washington University Method and apparatus for improved fingerprinting and authenticating various magnetic media
5745569, Jan 17 1996 Wistaria Trading Ltd Method for stega-cipher protection of computer code
5748783, May 08 1995 DIGIMARC CORPORATION AN OREGON CORPORATION Method and apparatus for robust information coding
5751811, Aug 30 1995 ROUCHES, JAMES J ; NELSON, LARRY A ; SAIS, RAMON 32N +D bit key encryption-decryption system using chaos
5754697, Dec 02 1994 Lawrence Livermore National Security LLC Selective document image data compression technique
5754938, Nov 29 1994 Pinpoint Incorporated Pseudonymous server for system for customized electronic identification of desirable objects
5757923, Sep 22 1995 LEAR CORPORATION EEDS AND INTERIORS Method of generating secret identification numbers
5765152, Oct 13 1995 DIGIMARC CORPORATION AN OREGON CORPORATION System and method for managing copyrighted electronic media
5768396, Apr 21 1993 Yamaha Corporation Online karaoke system with flying start performance
5774452, Mar 14 1995 VERANCE CORPORATION, DELAWARE CORPORATION Apparatus and method for encoding and decoding information in audio signals
5781184, Sep 23 1994 SAMSUNG ELECTRONICS CO , LTD Real time decompression and post-decompress manipulation of compressed full motion video
5790677, Jun 29 1995 SET SECURE ELECTRONIC TRANSACTION LLC System and method for secure electronic commerce transactions
5799083, Aug 26 1996 Mineral Lassen LLC Event verification system
5809139, Sep 13 1996 Intel Corporation Watermarking method and apparatus for compressed digital video
5809160, Jul 31 1992 DIGIMARC CORPORATION AN OREGON CORPORATION Method for encoding auxiliary data within a source signal
5818818, Sep 26 1995 Fujitsu Limited Communication service quality control system
5822432, Jan 17 1996 Wistaria Trading Ltd Method for human-assisted random key generation and application for digital watermark system
5822436, Apr 25 1996 DIGIMARC CORPORATION AN OREGON CORPORATION Photographic products and methods employing embedded information
5828325, Apr 03 1996 VERANCE CORPORATION, DELAWARE CORPORATION Apparatus and method for encoding and decoding information in analog signals
5832119, Nov 18 1993 DIGIMARC CORPORATION AN OREGON CORPORATION Methods for controlling systems using control signals embedded in empirical data
5839100, Apr 22 1996 ALTERA CORPORATOPM Lossless and loss-limited compression of sampled data signals
5842213, Jan 28 1997 TUMBLEWEED HOLDINGS LLC Method for modeling, storing, and transferring data in neutral form
5845266, Dec 12 1995 OPTIMARK HOLDINGS, INC ; OPTIMARK, INC Crossing network utilizing satisfaction density profile with price discovery features
5848155, Sep 04 1996 NEC Corporation Spread spectrum watermark for embedded signalling
5850481, Mar 17 1994 DIGIMARC CORPORATION AN OREGON CORPORATION Steganographic system
5859920, Nov 30 1995 Intellectual Ventures Fund 83 LLC Method for embedding digital information in an image
5860099, May 12 1993 USARSYS ACQUISITION CORP Stored program system with protected memory and secure signature extraction
5862260, Nov 18 1993 DIGIMARC CORPORATION AN OREGON CORPORATION Methods for surveying dissemination of proprietary empirical data
5864827, Jun 27 1997 Belzberg Financial Markets & News International Inc. System and method for providing an information gateway
5870474, Dec 04 1995 TECH 5 SAS Method and apparatus for providing conditional access in connection-oriented, interactive networks with a multiplicity of service providers
5875437, Apr 15 1987 HOME ACCOUNT NETWORK, INC System for the operation and management of one or more financial accounts through the use of a digital communication and computation system for exchange, investment and borrowing
5884033, May 15 1996 OPENTV, INC Internet filtering system for filtering data transferred over the internet utilizing immediate and deferred filtering actions
5889868, Jul 02 1996 Wistaria Trading Ltd Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
5892900, Aug 30 1996 INTERTRUST TECHNOLOGIES CORP Systems and methods for secure transaction management and electronic rights protection
5893067, May 31 1996 Massachusetts Institute of Technology Method and apparatus for echo data hiding in audio signals
5894521, May 26 1994 D A N JOINT VENTURE III, L P System and method for encrypting sensitive information
5901178, Dec 06 1995 Verance Corporation Post-compression hidden data transport for video
5903721, Mar 13 1997 CHA! TECHNOLOGIES SERVICES, INC Method and system for secure online transaction processing
5905800, Jan 17 1996 Wistaria Trading Ltd Method and system for digital watermarking
5905975, Jan 04 1996 Efficient Auctions LLC Computer implemented methods and apparatus for auctions
5912972, Dec 14 1994 Sony Corporation Method and apparatus for embedding authentication information within digital data
5915027, Nov 05 1996 NEC PERSONAL COMPUTERS, LTD Digital watermarking
5917915, Jun 24 1994 Sony Corporation Scramble/descramble method and apparatus for data broadcasting
5918223, Jul 19 1996 MUSCLE FISH, LLC; Audible Magic Corporation Method and article of manufacture for content-based analysis, storage, retrieval, and segmentation of audio information
5920900, Dec 30 1996 Extreme Networks, Inc Hash-based translation method and apparatus with multiple level collision resolution
5923763, Mar 21 1996 Inventor Holdings, LLC Method and apparatus for secure document timestamping
5930369, Sep 28 1995 NEC Corporation Secure spread spectrum watermarking for multimedia data
5930377, Jul 31 1992 DIGIMARC CORPORATION AN OREGON CORPORATION Method for image encoding
5940134, Dec 11 1995 U S PHILIPS CORPORATION Marking a video and/or audio signal
5943422, Aug 12 1996 Intertrust Technologies Corp.; INTERTRUST TECHNOLOGIES CORP Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels
5949055, Oct 23 1997 Xerox Corporation Automatic geometric image transformations using embedded signals
5949973, Jul 25 1997 CA SOFTWARE ISRAEL LTD Method of relocating the stack in a computer system for preventing overrate by an exploit program
5963909, Dec 06 1995 Verance Corporation Multi-media copy management system
5973731, Mar 03 1994 SCHWAB, BARRY H Secure identification system
5974141, Mar 31 1995 PIRACY PROTECTION LLC Data management system
5991426, Dec 18 1998 NEC Corporation Field-based watermark insertion and detection
5999217, Jun 06 1996 Apparatus and method for encoding data
6009176, Feb 13 1997 IBM Corporation How to sign digital streams
6018722, Apr 18 1994 AExpert Advisory, Inc. S.E.C. registered individual account investment advisor expert system
6029126, Jun 30 1998 Microsoft Technology Licensing, LLC Scalable audio coder and decoder
6029146, Aug 21 1996 CITIBANK, N A Method and apparatus for trading securities electronically
6029195, Nov 29 1994 Pinpoint Incorporated System for customized electronic identification of desirable objects
6032957, Nov 14 1996 Cashflow Technologies Incorporated Board game for teaching fundamental aspects of personal finance, investing and accounting
6035398, Nov 14 1997 DIGITALPERSONA, INC Cryptographic key generation using biometric data
6041316, Jul 25 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Method and system for ensuring royalty payments for data delivered over a network
6044471, Jun 04 1998 Z4 TECHNOLOGIES, INC Method and apparatus for securing software to reduce unauthorized use
6049838, Jul 01 1996 Sun Microsystems, Inc Persistent distributed capabilities
6051029, Oct 31 1997 ENTELOS HOLDING CORP Method of generating a display for a dynamic simulation model utilizing node and link representations
6061793, Aug 30 1996 DIGIMARC CORPORATION AN OREGON CORPORATION Method and apparatus for embedding data, including watermarks, in human perceptible sounds
6067622, Jan 02 1996 Software security system using remove function to restrict unauthorized duplicating and installation of an application program
6069914, Sep 19 1996 NEC Corporation Watermarking of image data using MPEG/JPEG coefficients
6078664, Dec 20 1996 Wistaria Trading Ltd Z-transform implementation of digital watermarks
6081251, Oct 07 1992 Sony Corporation Apparatus and method for managing picture data
6081587, Nov 25 1991 Zoom Telephonics, Inc. Modem with ring detection/modem processing capability
6081597, Aug 19 1996 ONBOARD SECURITY, INC Public key cryptosystem method and apparatus
6088455, Jan 07 1997 TIVO SOLUTIONS INC Methods and apparatus for selectively reproducing segments of broadcast programming
6108722, Sep 13 1996 Hewlett Packard Enterprise Development LP Direct memory access apparatus for transferring a block of data having discontinous addresses using an address calculating circuit
6131162, Jun 05 1997 Hitachi Ltd. Digital data authentication method
6134535, Mar 23 1994 BELZBERG FINANCIAL MARKETS & NEWS INTERNATIONAL INC Computerized stock exchange trading system automatically formatting orders from a spreadsheet to an order entry system
6138239, Nov 13 1998 ESW HOLDINGS, INC Method and system for authenticating and utilizing secure resources in a computer system
6141753, Feb 10 1998 Thomson Licensing; Mitsubishi Corporation Secure distribution of digital representations
6141754, Nov 28 1997 UNILOC 2017 LLC Integrated method and system for controlling information access and distribution
6148333, May 13 1998 HANGER SOLUTIONS, LLC Method and system for server access control and tracking
6154571, Jun 24 1998 NEC Corporation Robust digital watermarking
6173322, Jun 05 1997 Hewlett Packard Enterprise Development LP Network request distribution based on static rules and dynamic performance data
6178405, Nov 18 1996 INNOMEDIA PTE , LTD Concatenation compression method
6185683, Feb 13 1995 Intertrust Technologies Corp. Trusted and secure techniques, systems and methods for item delivery and execution
6192138, May 08 1997 Kabushiki Kaisha Toshiba Apparatus and method for embedding/unembedding supplemental information
6199058, Feb 28 1997 Oracle International Corporation Report server caching
6205249, Apr 02 1998 Wistaria Trading Ltd Multiple transform utilization and applications for secure digital watermarking
6208745, Dec 30 1997 HANGER SOLUTIONS, LLC Method and apparatus for imbedding a watermark into a bitstream representation of a digital image sequence
6226618, Aug 13 1998 Level 3 Communications, LLC Electronic content delivery system
6230268, Sep 12 1997 IBM Corporation Data control system
6233347, May 21 1998 Massachusetts Institute of Technology System method, and product for information embedding using an ensemble of non-intersecting embedding generators
6233566, Mar 18 1999 GHR SYSTEMS, INC System, method and computer program product for online financial products trading
6233684, Feb 28 1997 CONTENTGUARD HOLDINGS, INC System for controlling the distribution and use of rendered digital works through watermaking
6240121, Jul 09 1997 Matsushita Electric Industrial Co., Ltd. Apparatus and method for watermark data insertion and apparatus and method for watermark data detection
6253193, Feb 13 1995 Intertrust Technologies Corporation Systems and methods for the secure transaction management and electronic rights protection
6263313, Oct 22 1998 Level 3 Communications, LLC Method and apparatus to create encoded digital content
6272474, Feb 08 1999 Method for monitoring and trading stocks via the internet displaying bid/ask trade bars
6272535, Jan 31 1996 Canon Kabushiki Kaisha System for enabling access to a body of information based on a credit value, and system for allocating fees
6272634, Aug 30 1996 DIGIMARC CORPORATION AN OREGON CORPORATION Digital watermarking to resolve multiple claims of ownership
6275988, Jun 30 1995 Canon Kabushiki Kaisha Image transmission apparatus, image transmission system, and communication apparatus
6278780, Oct 31 1997 NEC Corporation Method of and an apparatus for generating internal crypto-keys
6278791, May 07 1998 Eastman Kodak Company Lossless recovery of an original image containing embedded data
6282300, Jan 21 2000 NEC Corporation Rotation, scale, and translation resilient public watermarking for images using a log-polar fourier transform
6282650, Jan 25 1999 Intel Corporation Secure public digital watermark
6285775, Oct 01 1998 The Trustees of The University of Princeton Watermarking scheme for image authentication
6301663, Nov 20 1997 Kabushiki Kaisha Toshiba Copy protection apparatus and information recording medium used in this copy protection apparatus
6310962, Aug 20 1997 Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD MPEG2 moving picture encoding/decoding system
6317728, Oct 13 1998 KCG IP HOLDINGS LLC Securities and commodities trading system
6324649, Mar 02 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Modified license key entry for pre-installation of software
6330335, Nov 18 1993 DIGIMARC CORPORATION AN OREGON CORPORATION Audio steganography
6330672, Dec 03 1997 HANGER SOLUTIONS, LLC Method and apparatus for watermarking digital bitstreams
6345100, Oct 14 1998 Microsoft Technology Licensing, LLC Robust watermark method and apparatus for digital signals
6351765, Mar 09 1998 HANGER SOLUTIONS, LLC Nonlinear video editing system
6363483, Nov 03 1994 QUARTERHILL INC ; WI-LAN INC Methods and systems for performing article authentication
6363488, Feb 13 1995 INTERTRUST TECHNOLOGIES CORP Systems and methods for secure transaction management and electronic rights protection
6373892, Nov 17 1994 Sega Enterprises, Ltd Method for compressing and decompressing moving picture information and video signal processing system
6373960, Jan 06 1998 Pixel Tools Corporation Embedding watermarks into compressed video data
6374036, Oct 08 1997 Rovi Solutions Corporation Method and apparatus for copy-once watermark for video recording
6377625, Jun 05 1999 SOFT4D CO , LTD Method and apparatus for generating steroscopic image using MPEG data
6381618, Jun 17 1999 International Business Machines Corporation Method and apparatus for autosynchronizing distributed versions of documents
6381747, Apr 01 1996 Rovi Solutions Corporation Method for controlling copy protection in digital video networks
6385324, Mar 17 1997 Sorus Audio AG Broadband loudspeaker
6385329, Feb 14 2000 DIGIMARC CORPORATION AN OREGON CORPORATION Wavelet domain watermarks
6385596, Feb 06 1998 Microsoft Technology Licensing, LLC Secure online music distribution system
6389402, Feb 13 1995 INTERTRUST TECHNOLOGIES CORP Systems and methods for secure transaction management and electronic rights protection
6389538, Aug 13 1998 Wistron Corporation System for tracking end-user electronic content usage
6398245, Aug 13 1998 Level 3 Communications, LLC Key management system for digital content player
6405203, Apr 21 1999 RESEARCH INVESTMENT NETWORK, INC Method and program product for preventing unauthorized users from using the content of an electronic storage medium
6415041, Jun 01 1998 NEC Corporation; National Institute of Information and Communications Technology Digital watermark insertion system and digital watermark characteristic table creating device
6418421, Aug 13 1998 Level 3 Communications, LLC Multimedia player for an electronic content delivery system
6425081, Aug 20 1997 Canon Kabushiki Kaisha Electronic watermark system electronic information distribution system and image filing apparatus
6427140, Feb 13 1995 Intertrust Technologies Corp. Systems and methods for secure transaction management and electronic rights protection
6430301, Aug 30 2000 VOBILE INC Formation and analysis of signals with common and transaction watermarks
6430302, Nov 18 1993 DIGIMARC CORPORATION AN OREGON CORPORATION Steganographically encoding a first image in accordance with a second image
6442283, Jan 11 1999 DIGIMARC CORPORATION AN OREGON CORPORATION Multimedia data embedding
6446211, Jun 04 1998 Z4 Technologies, Inc. Method and apparatus for monitoring software using encryption
6453252, May 15 2000 Creative Technology Ltd. Process for identifying audio content
6457058, Sep 29 1998 Cisco Technology, Inc. Network switch with hash table look up
6463468, Jun 01 1999 NETZERO, INC Targeted network video download interface
6480937, Feb 25 1998 Scientia Sol Mentis AG Method for hierarchical caching of configuration data having dataflow processors and modules having two-or multidimensional programmable cell structure (FPGAs, DPGAs, etc.)--
6480963, Jun 17 1998 Fujitsu Limited Network system for transporting security-protected data
6484153, Sep 04 1996 PRICELINE COM LLC System and method for managing third-party input to a conditional purchase offer (CPO)
6484264, Jun 04 1998 Z4 Technologies, Inc. Method for providing repeated contact with software end-user using authorized administrator
6493457, Dec 03 1997 HANGER SOLUTIONS, LLC Electronic watermarking in the compressed domain utilizing perceptual coding
6502195, Jun 04 1998 Z4 Technologies, Inc. Computer readable storage medium for providing repeated contact with software end-user
6510513, Jan 13 1999 Microsoft Technology Licensing, LLC Security services and policy enforcement for electronic data
6522767, Jul 02 1996 Wistaria Trading Ltd Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
6522769, May 19 1999 DIGIMARC CORPORATION AN OREGON CORPORATION Reconfiguring a watermark detector
6523113, Jun 09 1998 Apple Inc Method and apparatus for copy protection
6530021, Jul 20 1998 Koninklijke Philips Electronics N V Method and system for preventing unauthorized playback of broadcasted digital data streams
6532284, Feb 27 2001 JPMORGAN CHASE BANK, N A Method and system for optimizing bandwidth cost via caching and other network transmission delaying techniques
6539475, Dec 18 1998 NEC Corporation Method and system for protecting digital data from unauthorized copying
6556976, Nov 10 1999 WASTEBID COM, INC Method and system for e-commerce and related data management, analysis and reporting
6557103, Apr 13 1998 The United States of America as represented by the Secretary of the Army Spread spectrum image steganography
6574608, Jun 11 1999 IWANT COM, INC Web-based system for connecting buyers and sellers
6584125, Dec 22 1997 NEC Corporation Coding/decoding apparatus, coding/decoding system and multiplexed bit stream
6587837, Aug 13 1998 Level 3 Communications, LLC Method for delivering electronic content from an online store
6590996, Feb 14 2000 DIGIMARC CORPORATION AN OREGON CORPORATION Color adaptive watermarking
6594643, Nov 14 1997 Automated Business Companies Automatic stock trading system
6598162, Jan 17 1996 Wistaria Trading Ltd Method for combining transfer functions with predetermined key creation
6601044, Mar 11 1998 FOLIO FINANCIAL, INC Method and apparatus for enabling individual or smaller investors or others to create and manage a portfolio of securities or other assets or liabilities on a cost effective basis
6606393, Dec 02 1999 Verizon Laboratories Inc Message authentication code using image histograms
6611599, Sep 29 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Watermarking of digital object
6615188, Oct 14 1999 BUYANDHOLD COM, INC ; BUY AND HOLD, INC Online trade aggregating system
6618188, Mar 23 2001 Minolta Co., Ltd. Rewritable display sheet, image forming apparatus for displaying image on rewritable display sheet, and image displaying method
6647424, May 20 1998 RPX CLEARINGHOUSE LLC Method and apparatus for discarding data packets
6658010, Jul 25 1996 Hybrid Patents Incorporated High-speed internet access system
6665489, Apr 21 1999 RESEARCH INVESTMENT NETWORK, INC System, method and article of manufacturing for authorizing the use of electronic content utilizing a laser-centric medium and a network server
6668246, Mar 24 1999 BEIJING XIAOMI MOBILE SOFTWARE CO , LTD Multimedia data delivery and playback system with multi-level content and privacy protection
6668325, Jun 09 1997 INTERTRUST TECHNOLOGIES CORP Obfuscation techniques for enhancing software security
6674858, Dec 10 1997 Hitachi, Ltd. Receiving device, recording and reproducing device and receiving/recording-reproducing system for digital broadcast signal
6687683, Oct 16 1998 Sovereign Peak Ventures, LLC Production protection system dealing with contents that are digital production
6725372, Dec 02 1999 Verizon Laboratories Digital watermarking
6754822, Apr 30 1998 Thomson Licensing Active watermarks and watermark agents
6775772, Oct 12 1999 LENOVO INTERNATIONAL LIMITED Piggy-backed key exchange protocol for providing secure low-overhead browser connections from a client to a server using a trusted third party
6778968, Mar 17 1999 ViaLogy LLC Method and system for facilitating opportunistic transactions using auto-probes
6784354, Mar 13 2003 Microsoft Technology Licensing, LLC Generating a music snippet
6785815, Jun 08 1999 PLS IV, LLC Methods and systems for encoding and protecting data using digital signature and watermarking techniques
6785825, Jun 04 1998 Z4 Technologies, Inc. Method for securing software to decrease software piracy
6792548, Jun 04 1998 Z4 Technologies, Inc. Method for providing repeated contact with software end-user using authorized administrator
6792549, Jun 04 1998 Z4 Technologies, Inc. Method and apparatus for repeated contact of software end-user
6795925, Jun 04 1998 Z4 Technologies, Inc. Computer readable storage medium for providing repeated contact with software end-user
6799277, Jun 04 1998 Z4 Technologies, Inc. System and method for monitoring software
6804453, May 13 1999 MAXELL, LTD Digital signal recording/reproducing apparatus
6813717, Jun 04 1998 Z4 Technologies, Inc. Method for securing software to reduce unauthorized use
6813718, Jun 04 1998 Z4 Technologies, Inc. Computer readable storage medium for securing software to reduce unauthorized use
6823455, Apr 08 1999 Intel Corporation Method for robust watermarking of content
6834308, Feb 17 2000 Audible Magic Corporation Method and apparatus for identifying media content presented on a media playing device
6839686, Mar 29 1999 DLJ Long Term Investment Corporation Method and system for providing financial information and evaluating securities of a financial debt instrument
6842862, Jun 09 1999 IRDETO B V Tamper resistant software encoding
6853726, Dec 20 1996 Wistaria Trading Ltd Z-transform implementation of digital watermarks
6856967, Oct 21 1999 MERCEXCHANGE LLC Generating and navigating streaming dynamic pricing information
6857078, Jun 04 1998 Z4 Technologies, Inc. Method for securing software to increase license compliance
6865747, Apr 01 1999 GOOGLE LLC High definition media storage structure and playback mechanism
6876982, Feb 19 1996 Lancaster Australia Pty Limited Universal contract exchange
6931534, Nov 20 1998 Telefonaktiebolaget LM Ericsson Method and a device for encryption of images
6950941, Sep 24 1998 SAMSUNG ELECTRONICS CO , LTD Copy protection system for portable storage media
6957330, Mar 01 1999 Oracle America, Inc Method and system for secure information handling
6966002, Apr 30 1999 FLEXERA SOFTWARE, INC Methods and apparatus for secure distribution of software
6968337, Jul 10 2001 AUDIBLE MAGIC, INC Method and apparatus for identifying an unknown work
6977894, May 20 1998 RPX CLEARINGHOUSE LLC Method and apparatus for discarding data packets through the use of descriptors
6978370, Sep 03 1996 IRDETO USA, INC Method and system for copy-prevention of digital copyright works
6983058, Sep 10 1998 KOWA CO , LTD Method of embedding digital watermark, storage medium in which the method is stored, method of identifying embedded digital watermark, and apparatus for embedding digital watermark
6986063, Jun 04 1998 Z4 Technologies, Inc. Method for monitoring software using encryption including digital signatures/certificates
6990453, Jul 31 2000 Apple Inc System and methods for recognizing sound and music signals in high noise and distortion
7003480, Feb 27 1997 Microsoft Technology Licensing, LLC GUMP: grand unified meta-protocol for simple standards-based electronic commerce transactions
7007166, Jul 02 1996 Wistaria Trading Ltd Method and system for digital watermarking
7020285, Jul 13 1999 Microsoft Technology Licensing, LLC Stealthy audio watermarking
7035049, Jul 24 1997 Hitachi Global Storage Technologies Japan, Ltd Glass substrate for a magnetic disk, a magnetic disk which can be formed with a stable texture and a magnetic disk device
7035409, Apr 02 1998 Wistaria Trading Ltd Multiple transform utilization and applications for secure digital watermarking
7043050, May 02 2001 Microsoft Technology Licensing, LLC Software anti-piracy systems and methods utilizing certificates with digital content
7046808, Mar 24 2000 Verance Corporation Method and apparatus for detecting processing stages applied to a signal
7050396, Nov 30 2000 Cisco Technology, Inc Method and apparatus for automatically establishing bi-directional differentiated services treatment of flows in a network
7051208, Mar 14 2000 Microsoft Technology Licensing, LLC Technique for producing through watermarking highly tamper-resistant executable code and resulting “watermarked” code so formed
7058570, Feb 10 2000 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Computer-implemented method and apparatus for audio data hiding
7093295, Oct 15 1998 Kioba Processing, LLC Method and device for protecting digital data by double re-encryption
7095715, Jul 02 2001 TREND MICRO INCORPORATED System and method for processing network packet flows
7095874, Jul 02 1996 Wistaria Trading Ltd Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
7103184, May 09 2002 Intel Corporation System and method for sign mask encryption and decryption
7107451, Jul 02 1996 Wistaria Trading Ltd Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
7123718, Mar 24 1999 Wistaria Trading Ltd Utilizing data reduction in stegnographic and cryptographic systems
7127615, Sep 20 2000 Wistaria Trading Ltd Security based on subliminal and supraliminal channels for data objects
7150003, Nov 25 2002 Matsushita Electric Industrial Co., Ltd. Class coalescence for obfuscation of object-oriented software
7152162, Dec 20 1996 Wistaria Trading Ltd Z-transform implementation of digital watermarks
7159116, Dec 07 1999 Wistaria Trading Ltd Systems, methods and devices for trusted transactions
7162642, Jan 06 1999 GOOGLE LLC Digital content distribution system and method
7177429, Dec 07 2000 Wistaria Trading Ltd System and methods for permitting open access to data objects and for securing data within the data objects
7177430, Oct 31 2001 Nvidia Corporation Digital entroping for digital audio reproductions
7206649, Jul 15 2003 Microsoft Technology Licensing, LLC Audio watermarking with dual watermarks
7231524, May 27 1999 Microsoft Technology Licensing, LLC Method for watermarking computer programs
7233669, Jan 02 2002 Sony Corporation, a Japanese corporation; SONY ELECTRONICS INC A DELAWARE CORPORATION Selective encryption to enable multiple decryption keys
7240210, Apr 24 2001 Microsoft Technology Licensing, LLC Hash value computer of content of digital signals
7266697, Jul 13 1999 Microsoft Technology Licensing, LLC Stealthy audio watermarking
7286451, Jul 17 2002 Koninklijke Philips Electronics N.V. Copy control using digital speed bumps
7287275, Apr 17 2002 Wistaria Trading Ltd Methods, systems and devices for packet watermarking and efficient provisioning of bandwidth
7289643, Dec 21 2000 DIGIMARC CORPORATION AN OREGON CORPORATION Method, apparatus and programs for generating and utilizing content signatures
7310815, Oct 29 2003 QUEST SOFTWARE INC F K A DELL SOFTWARE INC ; Aventail LLC Method and apparatus for datastream analysis and blocking
7343492, Jul 02 1996 Wistaria Trading Ltd Method and system for digital watermarking
7346472, Sep 07 2000 Wistaria Trading Ltd Method and device for monitoring and analyzing signals
7362775, Jul 02 1996 Wistaria Trading Ltd Exchange mechanisms for digital information packages with bandwidth securitization, multichannel digital watermarks, and key management
7363278, Apr 05 2001 AUDIBLE MAGIC Copyright detection and protection system and method
7409073, Jul 02 1996 Wistaria Trading Ltd Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
7444506, Dec 28 2001 FATPIPE NETWORKS PRIVATE LIMITED Selective encryption with parallel networks
7457962, Jul 02 1996 Wistaria Trading Ltd Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
7460994, Jul 10 2001 m2any GmbH Method and apparatus for producing a fingerprint, and method and apparatus for identifying an audio signal
7475246, Aug 04 1999 Wistaria Trading Ltd Secure personal content server
7530102, Apr 17 2002 Wistaria Trading Ltd Methods, systems and devices for packet watermarking and efficient provisioning of bandwidth
7532725, Dec 07 1999 Wistaria Trading Ltd Systems and methods for permitting open access to data objects and for securing data within the data objects
7568100, Jun 07 1995 Wistaria Trading Ltd Steganographic method and device
7630379, Jan 05 2006 WEDGE NETWORKS INC Systems and methods for improved network based content inspection
7647502, Jul 02 1996 Wistaria Trading Ltd Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
7647503, Jul 02 1996 Wistaria Trading Ltd Optimization methods for the insertion, projection, and detection of digital watermarks in digital data
7664263, Mar 24 1998 Wistaria Trading Ltd Method for combining transfer functions with predetermined key creation
7719966, Apr 13 2005 TELLABS COMMUNICATIONS CANADA, LTD Network element architecture for deep packet inspection
7743001, Jun 21 2005 Amazon Technologies, Inc. Method and system for dynamic pricing of web services utilization
7761712, Jun 07 1995 Wistaria Trading Ltd Steganographic method and device
7779261, Jul 02 1996 Wistaria Trading Ltd Method and system for digital watermarking
8095949, Dec 02 1993 Adrea, LLC Electronic book with restricted access features
8121343, Jul 02 1996 Wistaria Trading Ltd Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
8161286, Jul 02 1996 Wistaria Trading Ltd Method and system for digital watermarking
8179846, Sep 08 2008 WSOU Investments, LLC DPI-driven bearer termination for short-lived applications
8214175, Sep 07 2000 Wistaria Trading Ltd Method and device for monitoring and analyzing signals
8265278, Dec 07 1999 Wistaria Trading Ltd System and methods for permitting open access to data objects and for securing data within the data objects
8307213, Jul 02 1996 Wistaria Trading Ltd Method and system for digital watermarking
8400566, Aug 21 2008 Dolby Laboratories Licensing Corporation Feature optimization and reliability for audio and video signature generation and detection
20010010078,
20010029580,
20010043594,
20020009208,
20020010684,
20020026343,
20020056041,
20020057651,
20020069174,
20020071556,
20020073043,
20020097873,
20020103883,
20020152179,
20020161741,
20020188570,
20030002862,
20030005780,
20030023852,
20030027549,
20030033321,
20030126445,
20030133702,
20030200439,
20030219143,
20040028222,
20040037449,
20040049695,
20040059918,
20040083369,
20040086119,
20040093521,
20040117628,
20040117664,
20040125983,
20040128514,
20040225894,
20040243540,
20050135615,
20050160271,
20050177727,
20050246554,
20060005029,
20060013395,
20060013451,
20060041753,
20060101269,
20060140403,
20060251291,
20060285722,
20070011458,
20070028113,
20070064940,
20070079131,
20070083467,
20070110240,
20070113094,
20070127717,
20070226506,
20070253594,
20070294536,
20070300072,
20070300073,
20080005571,
20080005572,
20080016365,
20080022113,
20080022114,
20080028222,
20080046742,
20080075277,
20080109417,
20080133927,
20080151934,
20090037740,
20090089427,
20090190754,
20090210711,
20090220074,
20100002904,
20100005308,
20100064140,
20100077219,
20100077220,
20100098251,
20100106736,
20100153734,
20100182570,
20100202607,
20100220861,
20100313033,
20110019691,
20110069864,
20110128445,
20120057012,
20130145058,
EP372601,
EP565947,
EP581317,
EP649261,
EP651554,
EP872073,
EP1354276,
EP1547337,
NL1005523,
WO57643,
WO118628,
WO143026,
WO2003385,
WO203385,
WO9514289,
WO9629795,
WO9642151,
WO9701892,
WO9724833,
WO9726732,
WO9726733,
WO9744736,
WO9802864,
WO9837513,
WO9952271,
WO9962044,
WO9963443,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 16 2013BERRY, MIKE W Blue Spike, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0339730593 pdf
Apr 18 2013MOSKOWITZ, SCOTT A Blue Spike, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0339730593 pdf
May 06 2014Wistaria Trading Ltd(assignment on the face of the patent)
Aug 14 2015Blue Spike, IncWistaria Trading LtdASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0363880248 pdf
Date Maintenance Fee Events
May 13 2016ASPN: Payor Number Assigned.
Oct 14 2019REM: Maintenance Fee Reminder Mailed.
Mar 30 2020EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Feb 23 20194 years fee payment window open
Aug 23 20196 months grace period start (w surcharge)
Feb 23 2020patent expiry (for year 4)
Feb 23 20222 years to revive unintentionally abandoned end. (for year 4)
Feb 23 20238 years fee payment window open
Aug 23 20236 months grace period start (w surcharge)
Feb 23 2024patent expiry (for year 8)
Feb 23 20262 years to revive unintentionally abandoned end. (for year 8)
Feb 23 202712 years fee payment window open
Aug 23 20276 months grace period start (w surcharge)
Feb 23 2028patent expiry (for year 12)
Feb 23 20302 years to revive unintentionally abandoned end. (for year 12)