An imaging apparatus includes: a plurality of pixels each of which includes a conversion element and a first transistor of which one of a source and a drain is connected to the conversion element; and a second transistor which is shared by the plurality of pixels and has a gate connected respectively to the other of the source and the drain of the first transistor of each of the plurality of pixels. At least one among the gate, a source, a drain and a channel portion of the second transistor is formed to be extended over the plurality of pixels, and the conversion element is arranged over the first and second transistors.
|
1. An imaging apparatus comprising:
a plurality of pixels, each including a conversion element and a first transistor, wherein one of a source and a drain of the first transistor is connected to the conversion element; and
a second transistor being shared by the plurality of pixels and having a gate connected respectively to the other of the source and the drain of the first transistor of each of the plurality of pixels,
wherein at least one among the gate, a source, a drain and a channel portion of the second transistor is formed to be extended over the plurality of pixels, and the conversion element is arranged over the first and second transistors.
11. A manufacturing method of an imaging apparatus comprising:
a plurality of pixels, each including a conversion element and a first transistor, wherein one of a source and a drain of the first transistor is connected to the conversion element, wherein the method comprising steps of:
forming a second transistor being shared by the plurality of pixels and having a gate connected respectively to the other of the source and the drain of the first transistor of each of the plurality of pixels, such that at least one among the gate, a source, a drain and a channel portion of the second transistor is extended over the plurality of pixels; and
forming the conversion element over the first and second transistors.
12. An imaging apparatus comprising:
a plurality of pixels, each including a conversion element and a first transistor, said first transistor of each pixel having a source and a drain, wherein one of the source and the drain of the first transistor of each pixel is connected to the conversion element of that pixel; and
a second transistor being shared by the plurality of pixels and having a source, a drain and a channel portion, and the second transistor having a gate connected to the other of the source and the drain of the first transistor of each pixel of the plurality of pixels,
wherein at least one among the gate, the source, the drain and the channel portion of the second transistor extends over the plurality of pixels, and the conversion element of each pixel is arranged over the first transistor of that pixel and over the second transistor.
2. The imaging apparatus according to
3. The imaging apparatus according to
4. The imaging apparatus according to
5. The imaging apparatus according to
6. The imaging apparatus according to
7. The imaging apparatus according to
8. The imaging apparatus according to
9. A radiation imaging system comprising:
an imaging apparatus according to
a signal processing unit for processing a signal outputted from the imaging apparatus.
10. The imaging system according to
a recording unit for recording a signal outputted from the signal processing unit;
a radiation source generating an electro-magnetic wave;
a display unit for displaying based on the signal outputted from the signal processing unit; and
a transfer processing unit for transferring a signal outputted from the signal processing unit.
|
1. Field of the Invention
The present invention relates to an imaging apparatus, a radiation imaging system, and a method for manufacturing the imaging apparatus.
2. Description of the Related Art
In recent years, a technology for manufacturing a liquid crystal panel using a TFT (thin film transistor) is used in an imaging apparatus such as a radiation imaging apparatus in which the TFT is combined with a semiconductor conversion element. In the imaging apparatus, a technique is proposed which uses a source follower circuit (SFTFT) when reading a signal accumulated in the semiconductor conversion element to a signal line (see Japanese Patent Application Laid-Open No. 2006-345330).
However, in the case in which the source follower circuit is applied to an imaging apparatus, when the signal is read, the delay corresponding to a time constant occurs which is defined by a product of the resistance of the source follower circuit and the wiring capacitance of the signal line. In the case of the radiation imaging apparatus, the size is approximately 40 cm×40 cm, the time constant is extremely large, and the speed of reading the signal results in not being sufficiently adequate. Thus, in a method of reading the signal in Japanese Patent Application Laid-Open No. 2006-345330, the speed of reading the signal causes the delay due to the resistance that the source follower circuit has, which causes a large problem, particularly, in high-speed driving.
The present invention is designed with respect to the above described problems, and provides a highly reliable imaging apparatus and radiation imaging system which enhances the speed of reading the signal even when the signal is transferred by the source follower circuit and can sufficiently cope with the high-speed driving as well, and a method for manufacturing the imaging apparatus.
According to an aspect of the present invention, an imaging apparatus comprises: a plurality of pixels, each including a conversion element and a first transistor, wherein one of a source and a drain of the first transistor is connected to the conversion element; and a second transistor being shared by the plurality of pixels and having a gate connected respectively to the other of the source and the drain of the first transistor of each of the plurality of pixels, wherein, at least one among the gate, a source, a drain and a channel portion of the second transistor is formed to be extended over the plurality of pixels, and the conversion element is arranged over the first and second transistors.
According to a further aspect of the present invention, a radiation imaging system comprises: the above described imaging apparatus; and a signal processing unit for processing a signal outputted from the imaging apparatus.
According to a still further aspect of the present invention, provided thereby is a manufacturing method of an imaging apparatus comprising: a plurality of pixels, each including a conversion element and a first transistor, wherein one of a source and a drain of the first transistor is connected to the conversion element, wherein the method comprising steps of: forming a second transistor being shared by the plurality of pixels and having a gate connected respectively to the other of the source and the drain of the first transistor of each of the plurality of pixels, such that at least one among the gate, a source, a drain and a channel portion of the second transistor is extended over the plurality of pixels; and forming the conversion element over the first and second transistors.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
Embodiments of the present invention will be specifically described below with reference to the attached drawings. Incidentally, in the present application, an electro-magnetic wave means radioactive rays having a wavelength in a wavelength region from light such as visible light and infrared light to X-rays, α rays, β rays, γ rays and the like.
(First Embodiment)
The present embodiment discloses a radiation imaging apparatus as an imaging apparatus.
This radiation imaging apparatus is illustrated by an example of an indirect type of radiation imaging apparatus, which converts an electro-magnetic wave into an electro-magnetic wave having another wavelength and then indirectly converts the electro-magnetic wave into an electrical signal, but may also be illustrated by an example of a direct type of radiation imaging apparatus, which directly converts the electro-magnetic wave into the electrical signal. In the direct type of radiation imaging apparatus, a so-called wavelength conversion element (GOS, CsI or the like) becomes unnecessary, which is different from the indirect type of radiation imaging apparatus. The radiation imaging apparatus has a plurality of pixel regions 10 arranged on a glass substrate 1 in a matrix form, and includes a transfer driving circuit unit 2, a signal processing circuit unit 3, a source voltage 4, a common electrode driving circuit unit 5, a reset voltage supplying circuit unit 6, a reset driving circuit unit 7 and an overall control unit 8.
For information, in addition to the structure of
The pixel region 10 includes a photoelectric conversion element 11, a transfer thin film transistor (first transistor) 12, and a reset thin film transistor 13. In addition, the source follower thin film transistor 14 (second transistor) that is common in the two adjacent pixel regions 10 is connected to the plurality of the pixel regions 10, which is two adjacent pixel regions 10 in the present embodiment.
The transfer driving circuit unit 2 has transfer driving lines 2A each of which is connected to each gate of the transfer thin film transistors 12 in each row in pixel regions 10, which are aligned in a row direction, and drives the transfer thin film transistors 12. The signal processing circuit unit 3 has signal lines 3A each of which is connected to each source of the source follower thin film transistors 14 in each column, which are aligned in the column direction, and performs the signal processing. The source voltage 4 has source voltage supply lines 4A each of which is connected to each drain of the source follower thin film transistors 14 in each row, which are aligned in the row direction, and supplies a drain voltage to the thin film transistors. The common electrode driving circuit unit 5 has common electrode lines 5A each of which is connected to photoelectric conversion elements 11 that are aligned in the column direction, and drives the photoelectric conversion elements 11. The reset voltage supplying circuit unit 6 has reset potential supply lines 6A each of which is connected to the reset thin film transistors 13 in each column, which are aligned in the column direction, and drives the reset thin film transistors 13. The reset driving circuit unit 7 has reset driving lines 7A each of which is connected to each gate of the reset thin film transistors 13 in each row, which are aligned in the row direction, and drives the reset thin film transistors 13.
The overall control unit 8 includes a central processing circuit (CPU), ROM and RAM, is connected to each of the transfer driving circuit unit 2, the signal processing circuit unit 3, the source voltage 4, the common electrode driving circuit unit 5, the reset voltage supplying circuit unit 6 and the reset driving circuit unit 7, and drives and controls the units. Incidentally,
Incidentally, the functions of each component (overall control unit 8 and the like) constituting the radiation imaging apparatus according to the present embodiment can be realized when a program stored in the RAM, the ROM or the like of the computer built in the radiation imaging apparatus works.
The photoelectric conversion element 11 is illustrated by an example of a so-called PIN type formed of a p-type semiconductor/semiconductor/n-type semiconductor, but may also be a so-called MIS type formed of a metal/insulating film/semiconductor. The transfer thin film transistor 12, the reset thin film transistor 13, and the source follower thin film transistor 14 are each illustrated by an example of a transistor using polysilicon, but may be formed of amorphous silicon. In addition, the form of each of the thin film transistors is illustrated by an example of a form of a top gate, but may be a form of a bottom gate.
As for the pixel region 10,
The radiation imaging apparatus usually has a rectangular shape with its one side of approximately 20 cm to 45 cm (for instance, approximately 40 cm×40 cm), and accordingly the length of the signal line 3A is also approximately 20 cm to 45 cm. In this case, the parasitic capacitance of the signal line of the signal processing circuit unit becomes approximately 50 pF to 300 pF. In addition, the electrical resistance of the thin film transistor to be used as the source follower thin film transistor usually becomes 10 kΩ to 100 kΩ, when the transistor is prepared from polysilicon, and becomes approximately 1 MΩ to 10 MΩ when the transistor is prepared from amorphous silicon. A transfer time constant is expressed by a product of the resistance value of the source follower thin film transistor and the resistance value of the signal line, and becomes such an extremely large value as approximately 1μ second to 500μ seconds, in the above described case. It is difficult to realize driving for a moving image by a transfer speed corresponding to the transfer time constant. In order to realize the enhancement of the transfer speed, there is no other way except to lower the resistance of the source follower thin film transistor or lower the parasitic capacitance of the signal line. It is equivalent to reducing the size of the radiation imaging apparatus to largely decrease the parasitic capacitance of the signal line, and is impossible. Accordingly, the resistance of the source follower thin film transistor should be decreased.
For this purpose, the source follower thin film transistor may be formed so as to be extended over the plurality (in the present embodiment, two) of the pixel regions. In the present embodiment, as is illustrated in
In addition, if the flexibility of the layout for the radiation imaging apparatus is enhanced, not only the channel width is enlarged, but also the channel area (channel width×source-drain space) of the source follower thin film transistor 14 can be greatly increased. In the source follower thin film transistor, a fluctuation (1/f) noise is generally a dominant component of a noise, and this 1/f noise is inversely proportional to the channel area. When the source follower thin film transistor is formed so as to be extended over the plurality of the pixel regions, the greatly increased channel width and the greatly increased channel area are obtained, and the low resistance and the low noise are realized.
Firstly, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
By the above steps, the radiation imaging apparatus having a layout illustrated in
In
As has been described above, the present embodiment realizes a highly reliable radiation imaging apparatus which shows an enhanced signal transfer speed even when the signal is transferred through a circuit using the source follower circuit, and can sufficiently cope with the high-speed driving as well.
(Second Embodiment)
The present embodiment discloses a radiation imaging apparatus as an imaging apparatus, similarly to the case of the first embodiment. Each thin film transistor in the present embodiment is illustrated by an example of a bottom gate type of a thin film transistor which uses amorphous silicon. In addition, the components and the like corresponding to those in the first embodiment will be denoted by the same reference numerals, and the detailed description will be omitted.
In
As the value of N is larger, the flexibility of a layout is more enhanced, the channel width (gate width) of the source follower thin film transistor 14 can be more enlarged, and lower resistance can be realized. For instance, it is understood that if the source follower thin film transistor 14 is formed so as to be extended over approximately 10 pixel regions to 30 pixel regions by assuming that the size for one pixel region is approximately 150 μm and by devising the layout, the radiation imaging apparatus can manage to drive a moving image.
Firstly, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated in
Subsequently, as is illustrated
In
As has been described above, the present embodiment realizes a highly reliable radiation imaging apparatus which shows an enhanced signal transfer speed even when the signal is transferred through a circuit using the source follower circuit, and can sufficiently cope with the high-speed driving as well.
(Third Embodiment)
The present embodiment discloses a radiation imaging apparatus as an imaging apparatus, similarly to the case of the second embodiment. Each thin film transistor in the present embodiment is illustrated by an example of a bottom gate type of a thin film transistor which uses amorphous silicon. In addition, the components and the like corresponding to those in the first and second embodiments will be denoted by the same reference numerals, and the detailed description will be omitted.
In the present embodiment, as is illustrated in
Incidentally, in place of a method of etching a predetermined part of the channel portion of the source follower thin film transistor 14 as in the present embodiment, the source follower thin film transistor 14 may be etched in the following way. In other words, the part (portion between adjacent pixel regions) may be etched which has no photoelectric conversion element 11 existing on its upper portion, in the source/drain of the source follower thin film transistor 14. In addition, it is also possible to form a metal layer in the upper portion of the part having no photoelectric conversion element 11 existing in its upper part, in the channel portion of the source follower thin film transistor 14, and shield the light to the part which becomes the path for charge transfer, by this metal layer.
In addition, in
As has been described above, the imaging apparatus according to the present embodiment shows an enhanced transfer speed of the signal even when the signal is transferred through a circuit using the source follower circuit and can sufficiently cope with the high-speed driving as well. Thereby, a highly reliable radiation imaging apparatus is realized which can surely read a signal without impairing the information of the photoelectric conversion element 11.
(Fourth Embodiment)
The present embodiment discloses an X-ray diagnosis system as a radiation imaging system provided with one type of a radiation imaging apparatus selected from first to third embodiments.
This X-ray diagnosis system includes an X-ray tube 51, a photoelectric conversion apparatus 52, an image processor 53, displays 54a and 54b, a telephone line 55 and a film processor 56. The X-ray tube 51 is a radiation source for generating an electro-magnetic wave which is X-rays here. The photoelectric conversion apparatus 52 has a scintillator mounted on its upper part, and is one type of a radiation imaging apparatus selected from the first to third embodiments. The image processor 53 is a signal processing unit for digitizing a signal which has been output from the photoelectric conversion apparatus 52. The displays 54a and 54b are display units for displaying signals which have been output from the image processor 53. The telephone line 55 is a transfer processing unit for transferring the signals which have been output from the image processor 53 to a remote place such as a doctor room that is another place. The film processor 56 is a recording unit for recording the signals which have been output from the image processor 53.
When this X-ray diagnosis system is used, X-rays which have been generated in an X-ray tube 51 transmit through a chest of a patient (subject), and is incident on the photoelectric conversion apparatus 52 which has the scintillator mounted on its upper part. Here, the photoelectric conversion apparatus 52 having the scintillator mounted on its upper part constitutes one type of a radiation imaging apparatus selected from the first to fourth embodiments. These incident X-rays include the information of the inside of the body of the patient. The scintillator emits light in response to the incident X-rays, and the photoelectric conversion apparatus converts the light to an electric signal to obtain electric information. This information is converted into digital signals, the signals are processed into an image by the image processor 53 which becomes a signal processing unit, and the image can be observed through the display 54a which becomes a display unit of a control room.
In addition, this information can be transferred to a remote place through a transfer processing unit such as the telephone line 55, can be displayed on the display 54b which becomes a display unit in the doctor room or the like that is another place, or can be stored in a recording unit such as an optical disk. Based on the information, a doctor in the remote place can also diagnose the disease. In addition, the information can be also recorded on a film 57 which becomes a recording medium, by the film processor 56 that becomes a recording unit.
As has been described above, the present embodiment realizes a highly reliable X-ray diagnosis system which shows an enhanced signal transfer speed even when the signal is transferred through a circuit using the source follower circuit, can sufficiently cope with the high-speed driving as well, and can take images in a desired moving image mode and a desired still picture mode.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2011-279752, filed Dec. 21, 2011, which is hereby incorporated by reference herein in its entirety.
Watanabe, Minoru, Mochizuki, Chiori, Ofuji, Masato, Yokoyama, Keigo, Fujiyoshi, Kentaro, Kawanabe, Jun, Wayama, Hiroshi
Patent | Priority | Assignee | Title |
10473801, | May 08 2017 | Canon Kabushiki Kaisha | Radiation imaging apparatus, radiation imaging system, method of controlling radiation imaging apparatus, and non-transitory computer-readable storage medium |
10537295, | May 22 2015 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
10914849, | Nov 10 2017 | Canon Kabushiki Kaisha | Radiation imaging apparatus |
11045160, | Apr 05 2017 | Canon Kabushiki Kaisha | Radiation imaging apparatus, radiation imaging system, control method of radiation imaging apparatus, and non-transitory computer-readable storage medium |
11067706, | Apr 27 2017 | Canon Kabushiki Kaisha | Radiation image sensing apparatus, radiation image sensing system, control method for radiation image sensing apparatus, and non-transitory computer-readable storage medium |
11083430, | May 09 2017 | Canon Kabushiki Kaisha | Radiation imaging apparatus, control method of the same, control apparatus, and radiation imaging system |
11090018, | Apr 05 2017 | Canon Kabushiki Kaisha | Radiation imaging apparatus, radiation imaging system, control method of radiation imaging apparatus, and non-transitory computer-readable storage medium |
11157059, | Jun 22 2018 | Canon Kabushiki Kaisha | Radiation imaging apparatus, radiation imaging system, control method for radiation imaging apparatus, and non-transitory computer- readable storage medium |
11243314, | Nov 27 2018 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
11280919, | Jul 10 2017 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
11402518, | Jul 08 2020 | Canon Kabushiki Kaisha | Radiation imaging apparatus |
11487027, | Feb 21 2018 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
11630220, | Jul 08 2020 | Canon Kabushiki Kaisha | Radiation imaging apparatus |
11693131, | May 29 2019 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
11733403, | Apr 16 2021 | Canon Kabushiki Kaisha | Radiographic imaging apparatus and radiographic imaging system |
11815637, | Sep 19 2019 | Canon Kabushiki Kaisha | Radiation imaging apparatus |
11831994, | Nov 22 2019 | Canon Kabushiki Kaisha | Radiation detection apparatus and output method |
Patent | Priority | Assignee | Title |
6657665, | Dec 31 1998 | OmniVision Technologies, Inc | Active Pixel Sensor with wired floating diffusions and shared amplifier |
7205547, | Jun 15 2004 | Canon Kabushiki Kaisha | Radiographic imaging substrate, radiographic imaging apparatus, and radiographic imaging system |
7205568, | Feb 14 2003 | Canon Kabushiki Kaisha | Solid state image pickup apparatus and radiation image pickup apparatus |
7435968, | Aug 31 2005 | Canon Kabushiki Kaisha | Radiation detecting apparatus, radiation imaging apparatus and radiation imaging system |
7470908, | May 24 2006 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
7488948, | Nov 21 2003 | Canon Kabushiki Kaisha | Radiation image pick-up device and method therefor, and radiation image pick-up system |
7535506, | Feb 14 2003 | Canon Kabushiki Kaisha | Solid-state image pickup device and radiation image pickup device suitable for use in a flat panel detector |
7541617, | Feb 14 2003 | Canon Kabushiki Kaisha | Radiation image pickup device |
7557355, | Sep 30 2004 | Canon Kabushiki Kaisha | Image pickup apparatus and radiation image pickup apparatus |
7629564, | Jul 11 2005 | Canon Kabushiki Kaisha | Conversion apparatus, radiation detecting apparatus, and radiation detecting system |
7645976, | Jul 25 2005 | Canon Kabushiki Kaisha | Radiation detecting system comprising a plurality of switching elements orientated in the same direction relative to the conversion element |
7812313, | Jul 11 2005 | Canon Kabushiki Kaisha | Conversion apparatus, radiation detecting apparatus, and radiation detecting system |
7897930, | Jun 09 2006 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
7932946, | Aug 07 2007 | Canon Kabushiki Kaisha | Imaging apparatus and radiation imaging system |
8067743, | Jan 27 2006 | Canon Kabushiki Kaisha | Imaging apparatus and radiation imaging apparatus |
8217330, | Jun 24 2009 | Canon Kabushiki Kaisha | Solid-state imaging apparatus |
8253836, | May 30 2008 | Sony Semiconductor Solutions Corporation | Solid-state imaging device, imaging device and driving method of solid-state imaging device |
8368027, | Jul 01 2008 | Canon Kabushiki Kaisha | Radiation detection apparatus and radiographic imaging system |
20090302229, | |||
20100294942, | |||
20130162859, | |||
JP2000232216, | |||
JP2006345330, | |||
JP2009290659, | |||
JP2011009354, | |||
JP5015454, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 07 2012 | WAYAMA, HIROSHI | Canon Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030025 | /0859 | |
Nov 07 2012 | WATANABE, MINORU | Canon Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030025 | /0859 | |
Nov 07 2012 | YOKOYAMA, KEIGO | Canon Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030025 | /0859 | |
Nov 07 2012 | OFUJI, MASATO | Canon Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030025 | /0859 | |
Nov 07 2012 | KAWANABE, JUN | Canon Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030025 | /0859 | |
Nov 07 2012 | FUJIYOSHI, KENTARO | Canon Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030025 | /0859 | |
Nov 13 2012 | MOCHIZUKI, CHIORI | Canon Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030025 | /0859 | |
Nov 21 2012 | Canon Kabushiki Kaisha | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 08 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 16 2023 | REM: Maintenance Fee Reminder Mailed. |
Apr 01 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 23 2019 | 4 years fee payment window open |
Aug 23 2019 | 6 months grace period start (w surcharge) |
Feb 23 2020 | patent expiry (for year 4) |
Feb 23 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 23 2023 | 8 years fee payment window open |
Aug 23 2023 | 6 months grace period start (w surcharge) |
Feb 23 2024 | patent expiry (for year 8) |
Feb 23 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 23 2027 | 12 years fee payment window open |
Aug 23 2027 | 6 months grace period start (w surcharge) |
Feb 23 2028 | patent expiry (for year 12) |
Feb 23 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |