A power detection circuit configured to detect an output power of a radio frequency transmitter. The power detection circuit includes a multiplier circuit configured to multiply a first differential input signal and a second differential input signal. The first differential input signal corresponds to a radio frequency signal to be amplified by the radio frequency transmitter. The second differential signal corresponds to an output signal as amplified by an amplifier of the radio frequency transmitter. A bias circuit is configured to generate a bias signal. A differential amplifier is configured to generate, based on the bias signal and the first differential signal and the second differential signal as multiplied by the multiplier circuit, an indication of the output power of the amplifier of the radio frequency transmitter.

Patent
   9292716
Priority
Dec 15 2011
Filed
Mar 26 2015
Issued
Mar 22 2016
Expiry
Dec 13 2032

TERM.DISCL.
Assg.orig
Entity
Large
84
11
currently ok
16. A method for detecting an output power of a radio frequency transmitter, the method comprising:
multiplying a first differential input signal and a second differential input signal, wherein (i) the first differential input signal corresponds to a radio frequency signal to be amplified by an amplifier of the radio frequency transmitter and (ii) the second differential signal corresponds to an output signal as amplified by an amplifier of the radio frequency transmitter;
generating a bias signal; and
generating, based on (i) the bias signal and (ii) the first differential signal and the second differential signal as multiplied, an indication of the output power of the amplifier of the radio frequency transmitter.
1. A power detection circuit configured to detect an output power of a radio frequency transmitter, the power detection circuit comprising:
a multiplier circuit configured to multiply a first differential input signal and a second differential input signal, wherein (i) the first differential input signal corresponds to a radio frequency signal to be amplified by the radio frequency transmitter, and (ii) the second differential signal corresponds to an output signal as amplified by an amplifier of the radio frequency transmitter;
a bias circuit configured to generate a bias signal; and
a differential amplifier configured to generate, based on (i) the bias signal and (ii) the first differential signal and the second differential signal as multiplied by the multiplier circuit, an indication of the output power of the amplifier of the radio frequency transmitter.
2. The power detection circuit of claim 1, wherein:
the multiplier circuit includes a mixer, wherein the mixer includes a plurality of transistors, and wherein each of the plurality of transistors includes a control terminal in communication with (i) the bias signal and (ii) the first differential signal.
3. The power detection circuit of claim 2, wherein:
to generate the bias signal, the bias circuit is configured to generate the bias signal further based on a voltage threshold of one of the plurality of transistors.
4. The power detection circuit of claim 3, wherein:
the bias circuit includes a bias resistance; and
to generate the bias signal, the bias circuit is configured to generate the bias signal further based on a product of (i) a constant reference current and (ii) the bias resistance.
5. The power detection circuit of claim 1, wherein:
the bias circuit comprises
a current source configured to generate a constant reference current,
a bias resistance having a bias resistance and including one end in communication with the current source, and
a first transistor including a first terminal and a control terminal each in communication with one end of the bias resistance; and
to generate the bias signal, the bias circuit is configured to generate the bias signal at a node between the bias resistance and the current source.
6. The power detection circuit of claim 1, wherein:
the bias circuit is connected to the multiplier circuit via a first resistance and a second resistance; and
the first resistance and the second resistance provide a bias voltage to the bias circuit.
7. The power detection circuit of claim 1, further comprising:
a common mode feedback amplifier connected to an output of the differential amplifier, wherein the common mode feedback amplifier includes a common mode input connected to the bias circuit.
8. The power detection circuit of claim 1, wherein, to generate the bias signal, the bias circuit is configured to generate the bias signal such that a conversion gain of the multiplier circuit is substantially constant regardless of variations in process and temperature.
9. The power detection circuit of claim 1, wherein:
the multiplier circuit includes a plurality of matched transistors; and
the bias circuit includes a first transistor that is scaled with respect to the plurality of matched transistors.
10. The power detection circuit of claim 9, wherein:
the plurality of transistors includes a first transistor, a second transistor, a third transistor and a fourth transistor;
the bias signal and a first polarity of the first differential input signal are input to respective control terminals of the first transistor and the fourth transistor; and
the bias signal and a second polarity of the first differential input signal are input to respective control terminals of the second transistor and the third transistor.
11. The power detection circuit of claim 10, wherein:
a first polarity of the second differential input signal is input to first terminals of the first transistor and the second transistor; and
a second polarity of the second differential input signal is input to first terminals of the third transistor and the fourth transistor.
12. The power detection circuit of claim 9, further comprising:
a first resistance; and
a second resistance,
wherein
the plurality of transistors includes a first transistor, a second transistor, a third transistor and a fourth transistor,
respective terminals of the first transistor and the third transistor are in communication with a non-inverting input of the differential amplifier and a first end of the first resistance, and
respective terminals of the second transistor and the fourth transistor are in communication with an inverting input of the differential amplifier and a first end of the second resistance.
13. The power detection circuit of claim 1, further comprising:
a transconductance amplifier configured to (i) receive the first differential input signal and (ii) output the second differential input signal to the multiplier circuit.
14. The power detection circuit of claim 1, wherein the bias circuit is configured to generate the bias signal based on a constant reference current provided to the bias circuit.
15. A radio frequency transmitter comprising the power detection circuit of claim 1.
17. The method of claim 16, wherein:
multiplying the first differential input signal and the second differential input signal includes using a multiplier circuit comprising a plurality of transistors; and
generating the bias signal includes generating the bias signal further based on a voltage threshold of one of the plurality of transistors.
18. The method of claim 16, wherein generating the bias signal includes generating the bias signal further based on a product of (i) a constant reference current and (ii) a bias resistance.
19. The method of claim 16, wherein generating the bias signal includes generating the bias signal such that a conversion gain associated with a power detection circuit is substantially constant regardless of variations in one or more of process and temperature.

The present disclosure is a continuation of U.S. patent application Ser. No. 13/713,328 (now U.S. Pat. No. 8,994,362), filed on Dec. 13, 2012, which claims the benefit of U.S. Provisional Application No. 61/576,306, filed on Dec. 15, 2011 and U.S. Provisional Application No. 61/720,844, filed on Oct. 31, 2012. The entire disclosures of the applications referenced above are incorporated herein by reference.

The present disclosure relates to radio frequency (RF) transmitters, and more particularly to RF power detection circuit for RF transmitters.

The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent the work is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.

Some radio frequency (RF) transmitters require accurate control of transmitted output power. For example, many RF transmitters need to comply with FCC regulations and wireless standards. Control of output power can be accomplished using an open loop or closed loop control system. In open loop control systems, the RF transmitter relies on accurate gain steps within the transmitter. In closed loop control systems, output power is measured and gain is adjusted accordingly.

An RF power detection circuit is an integral part of any RF transmitter closed-loop power-control system. The RF power detection circuit measures absolute transmitted power. This measurement is preferably independent of variation in temperature, device characteristics due to process spread, and load/antenna impedance.

Some RF power detection circuits assume a resistance value of an output load such as an antenna, measure output voltage and calculate output power based the output voltage squared divided by the resistance value. However, the resistance value of the load such as the antenna may vary during operation. For example, the resistance value of the antenna may be affected when the antenna is near or comes in contact with other objects. As can be appreciated, the RF power calculation will be adversely affected due to the difference between the actual resistance value of the antenna and the assumed resistance value.

A circuit includes a multiplier circuit including a mixer configured to multiply a first differential input signal and a second differential input signal. The mixer includes a plurality of transistors including control terminals. The control terminals of the plurality of transistors receive a bias signal and the first differential input signal. A bias circuit is configured to generate the bias signal. The bias signal generated by the bias circuit is based on a voltage threshold of one of the plurality of transistors and a product of constant reference current and a bias resistance.

In other features, the mixer includes a Gilbert cell mixer. The bias circuit is configured to generate the bias signal such that a conversion gain of the mixer is substantially constant regardless of variations in process and temperature. The bias circuit includes a current source configured to generate the constant reference current, a bias resistance having the bias resistance and including one end in communication with the first current source, and a first transistor including a first terminal and a control terminal in communication with one end of the bias resistance. The bias signal is generated at a node between the bias resistance and the current source.

A method of operating a circuit includes, using a mixer, multiplying a first differential input signal and a second differential input signal, wherein the mixer comprises a plurality of transistors including control terminals. The control terminals of the plurality of transistors receive a bias signal and the first differential input signal. The method further includes generating the bias signal based on a voltage threshold of one of the plurality of transistors and a product of constant reference current and a bias resistance.

In other features, the mixer includes a Gilbert cell mixer. Generating the bias signal includes generating the bias signal such that a conversion gain of the mixer is substantially constant regardless of variations in process and temperature. The bias signal is generated at a node between a bias resistance and a current source.

Further areas of applicability of the present disclosure will become apparent from the detailed description, the claims and the drawings. The detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.

FIG. 1 is a functional block diagram and electrical schematic of an example of an RF power detection circuit according to the prior art;

FIG. 2 is a functional block diagram and electrical schematic of an example of a multiplier circuit;

FIG. 3 is a functional block diagram and electrical schematic of an example of a bias circuit according to the present disclosure;

FIG. 4 is a functional block diagram and electrical schematic of an example of a multiplier circuit including a bias circuit according to the present disclosure;

FIG. 5 is a functional block diagram and electrical schematic of another example of a multiplier circuit including a bias circuit according to the present disclosure; and

FIG. 6 is a functional block diagram and electrical schematic of another example of a multiplier circuit including a bias circuit according to the present disclosure.

Referring now to FIG. 1, part of an output circuit 10 of a prior art transmitter is shown. The output circuit 10 includes a power amplifier (PA) 20 that receives a radio frequency (RF) signal to be amplified and transmitted. The PA 20 outputs an amplified RF signal to a primary side of a transformer 24. One end of a secondary side of the transformer 24 is connected to an antenna 26, which may be arranged on a printed circuit board (PCB). Another end of the secondary side of the transformer 24 is connected to a reference potential such as ground. In this example, the antenna is the load, which has a load impedance.

The output circuit 10 also includes an RF detection circuit 32 that detects an output power level of the PA 20. The RF detection circuit 32 includes an amplifier 40 that receives and amplifies inputs to the PA 20 and outputs an amplified signal to first inputs of a multiplier circuit 42. A voltage divider 44 is connected to outputs of the PA 20 (or to nodes 45A and 45B on the secondary side of the transformer 24) and outputs signals to second inputs of the multiplier circuit 42. Outputs of the multiplier circuit 42 are connected to inputs of an amplifier 46, which has first and second feedback resistances RFB connected to respective inputs and outputs of the amplifier 46. The amplifier 46 outputs a power detect voltage signal VPD, which is based on detected output power.

The transmitted RF power is measured by multiplying the output voltage and current of the PA 20. The result is independent of load/antenna impedance (R) or voltage standing wave ratio (VSWR). The output voltage of the PA 20 is sensed through the voltage divider 44 (kv*VPA). The output current of the PA 20 is replicated by using a scaled down replica PA (kI*IPA).

In FIG. 2, an example of the prior art multiplier circuit 42 is shown. The multiplier circuit 42 includes a mixer 50, such as a Gilbert cell mixer, including transistors M1, M2, M3, and M4. First terminals of transistors M1 and M2 receive current Ip. First terminals of transistors M3 and M4 receive current In. Control terminals of transistors M2 and M3 receive a first bias signal VB and the sensed output voltage VPA (or VB−½ VPA). Control terminals of transistors M1 and M4 receive the bias signal VB and the sensed output voltage VPA (or VB+½ VPA). A second terminal of transistor M3 is connected to a second terminal of transistor M1. A second terminal of transistor M2 is connected to a second terminal of transistor M4.

The multiplier circuit 42 has a conversion gain Gc. The mixer 50 performs V*I multiplication. Transistors M1 thru M4 are biased in the linear region. Current Ip divides into two parts, Ip1 and Ip2. The ratio depends on the admittances of transistors M1 and M2 (gds1 and gds2). Similarly, current In is also divided into two parts, In1 and In2, depending on gds3 and gds4. While a virtual GND termination is assumed for ease of derivation, it is not necessary.

I p 1 = g ds 1 g ds 1 + g ds 2 · I p = ( V B + 1 2 V PA - V T ) 2 ( V B - V T ) · I p I out = I op - I on = V PA · ( I p - I n ) 2 · ( V B - V T )

From FIG. 1, the output (voltage) of the power detection circuit is equal to:
VPD=kV·kI·Gc·(VPA·IPARFB
From FIG. 2, the multiplier conversion gain Gc is :

G c = 1 2 ( V B - V T )
Therefore the output of the power detection circuit is equal to:

V PD = k V · k I · ( V PA · I PA ) · R FB 2 · ( V B - V T )

The value of the on-chip resistance RFB depends on temperature and process variation (manufacturing). MOS threshold voltage VT also depends on temperature and process variation (manufacturing). kv and kI (PA voltage and current division ratio) can be accomplished using a ratioed Gilbert cell, which is independent of temperature, process and load impedance.

According to the present disclosure, (VB-VT) is set equal to Iref* Rbias. Resistors RFB and Rbias can be implemented as scaled versions of each other, e.g. RFB=A*Rbias. The ratio of resistances A remains constant and independent of process and temperature variation, therefore the output of the power detector is:

V PD = k V · k I · ( V PA · I PA ) · R FB 2 · I ref · R bias = 1 I ref · R FB R bias · k V · k I 2 · ( V PA · I PA )

The constant reference current Iref does not depend on process or temperature. The constant reference current Iref is usually already available on-chip. The constant reference current Iref can be generated by using a combination of a bandgap voltage and an external high-precision resistance.

Referring now to FIG. 3, a bias circuit 100 for generating a bias voltage VB=VT+Iref*Rbias is shown. The bias circuit 100 includes a current source Iref that is connected to one end of a bias resistance Rbias. Another end of the resistance Rbias is connected to a first terminal and a control terminal of a transistor M5. A second terminal of the transistor M5 is connected to a reference potential such as ground. Assuming:
Vgs5=VT+VI;
If Vdsat5<<VT;
Then Vgs5≈VT

This can be done by biasing the transistor M5 with a very low current density. The transistor M5 is preferably a scaled version of transistors M1-M4 for best matching.

Referring now to FIGS. 4 and 5, an example of the multiplier circuit 200 according to the present disclosure is shown. In FIG. 4, the multiplier circuit 200 includes a mixer 206, such as a Gilbert cell, with transistors M1, M2, M3, and M4. The sampled voltage VPA is connected to first terminals of capacitances C1 and C2. Second terminals of the capacitances C1 and C2 are connected to control terminals of transistors M1, M2, M3, and M4 and to first terminals of resistances R1 and R2. Second terminals of the resistances R1 and R2 provide a bias voltage VB to the bias circuit 100. First terminals of first and second transistors M1 and M2 and third and fourth transistors M3 and M4 are connected to IPA. A second terminal of transistor M3 is connected to a second terminal of transistor M1. A second terminal of transistor M2 is connected to a second terminal of transistor M4.

An amplifier 220 has a non-inverting input connected to the second terminals of the transistors M1 and M3 and to one end of a first feedback resistance RFB. The amplifier 220 has an inverting input connected to the second terminals of the transistors M2 and M4 and to one end of a second feedback resistance RFB. An inverting output of the amplifier 220 is connected to another end of the first feedback resistance RFB and to a first inverting input of an amplifier 230. A non-inverting output of the amplifier 220 is connected to another end of the second feedback resistance RFB and to a second inverting input of the amplifier 230. In FIG. 5, a common mode input of the amplifier 230 is connected to a second terminal of the transistor M5 and one end of a common mode feedback resistance RCMFB.

Transistors M1-M4 are biased with a constant voltage (Vgs−VT). The circuit accommodates a non-zero common-mode input voltage level. Iref*RCMFB sets the common-mode voltage reference. A common-mode feedback amplifier sets V+=V=VCMREF. Therefore, transistors M1-M4 are still biased with (Vgs−VT)=Iref*Rbias.

While the preceding discussion involved a power detector using a passive mixer, the present disclosure can also use an active mixer as well. The active mixer transistors may be biased with a constant overdrive voltage=Iref*R. As can be appreciated, while the foregoing description relates to RF detection circuits, the multiplier circuit can be used in other systems. Additionally, the input does not have to correspond to voltage and current delivered to a load.

PA load impedance is unknown and can vary with the environment ZL=|Z|·e−jφ. Knowing the value of load impedance is useful because PA output matching can be optimized to allow the PA to operate most efficiently. PA load impedance can be measured if we have the following two measurements:
Po=VPA*IPA
Vsq=VPA*VPA=VPA*IPA*|Z|*e−jφ

|Z| and φ can be solved using these two measurements. The voltage Vsq can be generated in multiple ways, one of which is shown in FIG. 6.

Referring now to FIG. 6, the voltage VPA is input to a transconductance amplifier 260, which receives VPA. The transconductance amplifier 260 transforms a voltage input to a current output. The transconductance amplifier 260 generates an output current GmVPA, which is input to the first terminals of the transistors M1 and M2 and transistors M3 and M4 instead of IPA as in FIGS. 4 and 5.

The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical OR. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure.

Winoto, Renaldi, Signoff, David M.

Patent Priority Assignee Title
10003315, Jan 25 2016 KANDOU LABS, S A Voltage sampler driver with enhanced high-frequency gain
10003424, Jul 17 2014 KANDOU LABS, S A Bus reversible orthogonal differential vector signaling codes
10003454, Apr 22 2016 KANDOU LABS, S.A. Sampler with low input kickback
10020966, Feb 28 2014 KANDOU LABS, S A Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage
10044452, Mar 15 2013 KANDOU LABS, S.A. Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication
10056903, Apr 28 2016 KANDOU LABS, S.A. Low power multilevel driver
10057049, Apr 22 2016 KANDOU LABS, S.A. High performance phase locked loop
10091033, Jun 25 2014 KANDOU LABS, S.A. Multilevel driver for high speed chip-to-chip communications
10091035, Apr 16 2013 KANDOU LABS, S.A. Methods and systems for high bandwidth communications interface
10116468, Jun 28 2017 KANDOU LABS, S A Low power chip-to-chip bidirectional communications
10116472, Jun 26 2015 KANDOU LABS, S.A. High speed communications system
10122561, Aug 01 2014 KANDOU LABS, S.A. Orthogonal differential vector signaling codes with embedded clock
10153591, Apr 28 2016 KANDOU LABS, S.A. Skew-resistant multi-wire channel
10164809, May 15 2013 KANDOU LABS, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication
10177812, Jan 31 2014 KANDOU LABS, S.A. Methods and systems for reduction of nearest-neighbor crosstalk
10200188, Oct 21 2016 KANDOU LABS, S A Quadrature and duty cycle error correction in matrix phase lock loop
10200218, Oct 24 2016 KANDOU LABS, S A Multi-stage sampler with increased gain
10203226, Aug 11 2017 KANDOU LABS, S A Phase interpolation circuit
10230549, Jul 21 2014 KANDOU LABS, S.A. Multidrop data transfer
10243765, Oct 22 2014 KANDOU LABS, S.A. Method and apparatus for high speed chip-to-chip communications
10277431, Sep 16 2016 KANDOU LABS, S A Phase rotation circuit for eye scope measurements
10284362, Apr 22 2016 KANDOU LABS, S.A. Sampler with low input kickback
10320588, Jul 10 2014 KANDOU LABS, S.A. Vector signaling codes with increased signal to noise characteristics
10326623, Dec 08 2017 KANDOU LABS, S A Methods and systems for providing multi-stage distributed decision feedback equalization
10333741, Apr 28 2016 KANDOU LABS, S.A. Vector signaling codes for densely-routed wire groups
10333749, May 13 2014 KANDOU LABS, S A Vector signaling code with improved noise margin
10355852, Aug 31 2016 KANDOU LABS, S.A. Lock detector for phase lock loop
10372665, Oct 24 2016 KANDOU LABS, S A Multiphase data receiver with distributed DFE
10468078, Dec 17 2012 KANDOU LABS, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communication
10498305, Jan 25 2016 KANDOU LABS, S.A. Voltage sampler driver with enhanced high-frequency gain
10554380, Jan 26 2018 KANDOU LABS, S A Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation
10560293, May 15 2013 KANDOU LABS, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication
10574370, Mar 15 2013 KANDOU LABS, S.A. Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication
10574487, Apr 08 2019 KANDOU LABS, S A Sampler offset calibration during operation
10608847, Oct 24 2016 KANDOU LABS, S.A. Multi-stage sampler with increased gain
10608849, Apr 08 2019 KANDOU LABS, S A Variable gain amplifier and sampler offset calibration without clock recovery
10628723, Jul 10 2018 HAND HELD PRODUCTS, INC Methods, systems, and apparatuses for encoding a radio frequency identification (RFID) inlay
10673608, Apr 22 2016 KANDOU LABS, S.A. Sampler with low input kickback
10679716, Apr 22 2016 KANDOU LABS, S.A. Calibration apparatus and method for sampler with adjustable high frequency gain
10680634, Apr 08 2019 KANDOU LABS, S A Dynamic integration time adjustment of a clocked data sampler using a static analog calibration circuit
10686583, Jul 04 2017 KANDOU LABS, S A Method for measuring and correcting multi-wire skew
10721106, Apr 08 2019 KANDOU LABS, S A Adaptive continuous time linear equalization and channel bandwidth control
10742451, Jun 12 2018 KANDOU LABS, S A Passive multi-input comparator for orthogonal codes on a multi-wire bus
10848351, Apr 08 2019 KANDOU LABS, S.A. Sampler offset calibration during operation
10904046, Apr 08 2019 KANDOU LABS, S.A. Variable gain amplifier and sampler offset calibration without clock recovery
10931249, Jun 12 2018 KANDOU LABS, S A Amplifier with adjustable high-frequency gain using varactor diodes
10956800, Jul 10 2018 HAND HELD PRODUCTS, INC Methods, systems, and apparatuses for encoding a radio frequency identification (RFID) inlay
11038518, Apr 08 2019 KANDOU LABS, S.A. Dynamic integration time adjustment of a clocked data sampler using a static analog calibration circuit
11115246, Apr 08 2019 KANDOU LABS, S.A. Sampler offset calibration during operation
11159350, Jun 12 2018 KANDOU LABS, S.A. Passive multi-input comparator for orthogonal codes on a multi-wire bus
11183982, Jan 25 2016 KANDOU LABS, S.A. Voltage sampler driver with enhanced high-frequency gain
11183983, Sep 10 2018 KANDOU LABS, S A Programmable continuous time linear equalizer having stabilized high-frequency peaking for controlling operating current of a slicer
11265190, Apr 08 2019 KANDOU LABS, S.A. Variable gain amplifier and sampler offset calibration without clock recovery
11303484, Apr 02 2021 Kandou Labs SA Continuous time linear equalization and bandwidth adaptation using asynchronous sampling
11374800, Apr 14 2021 Kandou Labs SA Continuous time linear equalization and bandwidth adaptation using peak detector
11381203, Aug 07 2020 Analog Devices International Unlimited Company Flicker noise elimination in a double balanced mixer DC bias circuit
11456708, Apr 30 2021 Kandou Labs SA Reference generation circuit for maintaining temperature-tracked linearity in amplifier with adjustable high-frequency gain
11502658, Jun 12 2018 KANDOU LABS, S.A. Amplifier with adjustable high-frequency gain using varactor diodes
11515885, Apr 08 2019 KANDOU LABS, S.A. Dynamic integration time adjustment of a clocked data sampler using a static analog calibration circuit
11575549, Apr 02 2021 Kandou Labs SA Continuous time linear equalization and bandwidth adaptation using asynchronous sampling
11627022, Apr 08 2019 KANDOU LABS, S.A. Variable gain amplifier and sampler offset calibration without clock recovery
11722341, Apr 14 2021 Kandou Labs SA Continuous time linear equalization and bandwidth adaptation using peak detector
11838156, Apr 02 2021 Kandou Labs SA Continuous time linear equalization and bandwidth adaptation using asynchronous sampling
9524106, May 14 2012 KANDOU LABS, S A Storage method and apparatus for random access memory using codeword storage
9544015, Jun 25 2014 KANDOU LABS, S A Multilevel driver for high speed chip-to-chip communications
9577664, Jul 05 2011 KANDOU LABS, S A Efficient processing and detection of balanced codes
9577815, Oct 29 2015 KANDOU LABS, S A Clock data alignment system for vector signaling code communications link
9686106, Feb 28 2014 KANDOU LABS, S A Clock-embedded vector signaling codes
9686107, Jan 17 2013 KANDOU LABS, S A Methods and systems for chip-to-chip communication with reduced simultaneous switching noise
9692381, May 16 2014 KANDOU LABS, S.A. Symmetric linear equalization circuit with increased gain
9692555, Jun 25 2013 KANDOU LABS, S A Vector signaling with reduced receiver complexity
9806761, Jan 31 2014 KANDOU LABS, S A Methods and systems for reduction of nearest-neighbor crosstalk
9819522, May 15 2013 KANDOU LABS, S A Circuits for efficient detection of vector signaling codes for chip-to-chip communication
9832046, Jun 26 2015 KANDOU LABS, S A High speed communications system
9838017, Feb 11 2013 KANDOU LABS, S A Methods and systems for high bandwidth chip-to-chip communcations interface
9838234, Aug 01 2014 KANDOU LABS, S A Orthogonal differential vector signaling codes with embedded clock
9852806, Jun 20 2014 KANDOU LABS, S A System for generating a test pattern to detect and isolate stuck faults for an interface using transition coding
9893911, Jul 21 2014 KANDOU LABS, S A Multidrop data transfer
9900186, Jul 10 2014 KANDOU LABS, S A Vector signaling codes with increased signal to noise characteristics
9906358, Aug 31 2016 KANDOU LABS, S A Lock detector for phase lock loop
9917711, Jun 25 2014 KANDOU LABS, S.A. Multilevel driver for high speed chip-to-chip communications
9929818, Sep 04 2012 KANDOU LABS, S A Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication
9985634, Aug 27 2013 KANDOU LABS, S A Data-driven voltage regulator
9985745, Jun 25 2013 KANDOU LABS, S.A. Vector signaling with reduced receiver complexity
Patent Priority Assignee Title
3900823,
4538300, Sep 07 1983 ALLEGRO MICROSYSTEMS, INC , A CORP OF DE Linear signal strength detector in AM radio
6983135, Nov 11 2002 Marvell International, Ltd. Mixer gain calibration method and apparatus
8994362, Dec 15 2011 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD RF power detection circuit with insensitivity to process, temperature and load impedance variation
20030161411,
20030169089,
20030203722,
20060014509,
20060199562,
EP951138,
EP2302787,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 26 2015Marvell World Trade Ltd.(assignment on the face of the patent)
Dec 31 2019MARVELL INTERNATIONAL LTDCAVIUM INTERNATIONALASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0529180001 pdf
Dec 31 2019CAVIUM INTERNATIONALMARVELL ASIA PTE, LTDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0534750001 pdf
Date Maintenance Fee Events
Sep 17 2019M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 12 2023M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Mar 22 20194 years fee payment window open
Sep 22 20196 months grace period start (w surcharge)
Mar 22 2020patent expiry (for year 4)
Mar 22 20222 years to revive unintentionally abandoned end. (for year 4)
Mar 22 20238 years fee payment window open
Sep 22 20236 months grace period start (w surcharge)
Mar 22 2024patent expiry (for year 8)
Mar 22 20262 years to revive unintentionally abandoned end. (for year 8)
Mar 22 202712 years fee payment window open
Sep 22 20276 months grace period start (w surcharge)
Mar 22 2028patent expiry (for year 12)
Mar 22 20302 years to revive unintentionally abandoned end. (for year 12)